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Abstract: Radio loud active galactic nuclei are composed of different spatial features, each one
characterized by different spectral properties in the radio band. Among them, blazars are the most
common class of sources detected at gamma-rays by Fermi, and their radio emission is dominated by
the flat spectrum compact core. In this contribution, we explore the connection between emission at
high energy revealed by Fermi and at radio frequencies. Taking as a reference the strong and very
highly significant correlation found between gamma rays and cm-λ radio emission, we explore the
different behaviours found as we change the energy range in gamma rays and in radio, therefore
changing the physical parameters of the zones involved in the emitted radiation. We find that the
correlation weakens when we consider (1) gamma rays of energy above 10 GeV (except for high
synchrotron peaked blazars) or (2) low frequency radio data taken by the Murchison Widefield Array;
on the other hand, the correlation strengthens when we consider mm-λ data taken by Atacama Large
Millimeter Array (ALMA).
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1. Introduction

The existence, significance, and interpretation of a correlation between radio and gamma-ray
emission in extragalactic sources has attracted interest from several authors over the last few
decades [1–8].

The basic arguments favouring the existence of such a correlation go from purely theoretical
reasoning, i.e., that emission in both bands naturally arises through processes involving a population of
relativistic particles, to observational matters, such as the fact that radio loud (RL) active galactic nuclei
(AGN) dominate the census of gamma-ray catalogues; they made up about one half of the historical
EGRET third catalogue [9], and nearly 40% of the third Fermi Large Area Telescope (LAT) catalogue
(3FGL, [10]), the largest and most recent compilation of gamma-ray sources. In more detail, 98% of the
RL AGNs in the third catalogue of AGN detected by Fermi-LAT (3LAC, [11]) belong to the subclass
of blazars, which are RL AGNs whose jet axis is closely aligned with our line of sight; this indicates
that relativistic beaming is a key element in both the radio and high energy emission, suggesting a
strong connection between the two domains. Finally, simple one-zone synchrotron self-Compton (SSC)
models successfully reproduce the basic features of the broadband spectral energy distribution (SED)
of several blazars (particularly of BL Lac flares, [12]), and radio luminosity itself was shown to govern
the physical properties and radiation mechanisms in relativistic jets up to gamma rays in the early
formulation of the blazar sequence framework [13,14].
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On the other hand, there are several issues that suggest a much more complex picture.
First, the gamma-ray variability time scales, in particular during flares, often reach short values,
down to ∼1 h [15–18]. This indicates that the high energy emission region must be extremely
compact and thus optically thick at radio frequency, because of the synchrotron self-absorption
(SSA) mechanism. Indeed, dedicated systematic radio monitoring of gamma-ray blazars shows that
there are very few sources in which there is a significant correlation between the light curves in
the two regimes [19]; so-called “orphan” gamma-ray flares with no radio counterpart are also quite
common [20–22]. Moreover, while it is true that most of the gamma-ray sources are RL AGNs, and in
particular blazars, the opposite is definitely not true: Radio galaxies are very seldom detected in
gamma rays, and even among blazars the detection rate at high energy is far from unity, both for
luminous and not-so-luminous objects [23,24]. Therefore, while radio emission and beaming are
necessary conditions for the presence of high energy radiation, they are not sufficient.

In this paper, we review some recent results and prospects about the existence and implications
of such correlations, including the study of unidentified gamma-ray sources (UGS). In Section 2,
we review the results based on Fermi and GHz-frequency radio data [1], which constitute the most
comprehensive dataset ever used to address this topic. In the following sections, we consider variations
of the data analysis as gamma-ray or radio data of different wavelengths are considered: in Section 3,
we focus on sources detected at energies E > 10 GeV; in Section 4, on sources detected at radio
frequencies as low as 120 MHz [25] by the Murchison Widefield Array (MWA); in Section 5, on sources
detected as high as 230 GHz with the Atacama Large Millimeter Array (ALMA).

2. Radio-Gamma Ray Connection between ∼GHz and E > 100 MeV Data

The most comprehensive approach ever used for the assessment of the connection between radio
and gamma-ray data in extragalactic radio sources was presented in [1]. In that work, we considered
all 599 “clean” AGNs (i.e., gamma-ray sources with a single high confidence association and no
analysis flag) contained in the first catalogue of AGN detected by Fermi-LAT (1LAC, [26]); this was
not only the largest sample ever considered but also the one in which both blazar types (BL Lacs
and flat spectrum radio quasars, FSRQ) were both adequately represented; most other works were
limited to very bright sources, thus excluding most of the BL Lacs. Archival interferometric data
with sub-arcsecond resolution in the GHz domain (typically, at 8 GHz) were available, as well as
simultaneous 15 GHz data from the Owens Valley Radio Observatory (OVRO) monitoring project,
at least for a subsample ([27] see also Pearson, this conference). Finally, a dedicated statistical analysis
was developed in order to assess the significance of the correlation independent of the various biases
that can occur in such kinds of studies [28]. The main results can be summarised as follows:

• The entire 599-source sample shows a correlation characterised by a Pearson’s coefficient r = 0.47
(see Figure 1);

• The chance probability of obtaining this value from two intrinsically uncorrelated quantities with
the same dynamic range in flux density is smaller than 10−7;

• Both BL Lacs and FSRQ considered separately display a strong and highly significant correlation;
the correlation is stronger for BL Lacs (rBLL = 0.62 vs. rFSRQ = 0.42);

• If we classify blazars according to the synchrotron component peak frequency as low-,
intermediate-, high-synchrotron peaked blazars (LSP, ISP, HSP, respectively, for peak frequencies
νpeak in Hz such that log νpeak < 14, 14 < log νpeak ≤ 15, log νpeak > 15), HSP blazars are the type
that shows the strongest correlation;

• If we consider gamma-ray data in sub-energy bands, we find that the energy band showing the
strongest correlation with radio data increases from LSP (which have the strongest correlation
when gamma rays of energy between 100 and 300 MeV are considered), to ISP, to HSP
(which have the peak in the band between 1 and 3 GeV);

• Considering the subset of OVRO-monitored sources, both the correlation strength r and
significance P improve when considering simultaneous vs archival data (chance probability
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decreasing from 1.9 × 10−6 to 9 × 10−8); we note however that this sample contains “only”
161 sources.
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Figure 1. Gamma-ray energy flux at E > 100 MeV vs 8 GHz radio flux density for the 1LAC sample.
Adapted from [5]. Magenta symbols indicate sources without a measured redshift.

3. Radio-gamma ray connection between VLBI and E > 10 GeV data82

While the work of [5] demonstrated the existence of a strong and highly significant correlation83

between radio data and high energy gamma rays, the situation is far more open when we consider84

Very High Energy (VHE, E > 100 GeV) gamma rays. In this domain, observations are carried out85

in targeted mode with imaging atmospheric Cherenkov telescopes (IACT), so that no systematic86

and unbiased survey exists. Sources are often detected when they are in flaring states, and the87

optimization of the observing strategy naturally carries on a selection bias in favour of sources88

physically similar to those already detected. Moreover, it is still true that all the classified extragalactic89

VHE sources are RL AGNs, yet their radio properties are far less extreme, with low-luminosity90

sources, and in particular HSP BL Lacs, being more frequently detected than luminous ones, such91

as LSP BL Lacs and FSRQs.92

In this sense, the first Fermi-LAT catalogue of sources above 10 GeV [1FHL, 6] represents an93

ideal resource to try and connect the HE and VHE domains. The 2FHL and the surveys that will be94

carried out with the Cherenkov Telescope Array (CTA) in the coming years will allow us to extend95

our understanding. The 1FHL is based on three years of Fermi-LAT survey data and it is as uniform96

and unbiased as possible. It contains 514 sources, 76% of which are AGN and 13% un-associated; the97

AGN fraction is larger than in 3FGL and the census leans towards extreme spectral type blazars (HSP,98

41%). The fraction of UGS is lower, thanks to a generally smaller positional uncertainty ellipses when99

higher energy photons are considered.100

We are carrying out a project aimed at studying all the sources in the 1FHL with very long101

baseline interferometry (VLBI), in order to characterize the parsec scale properties of this population,102

which several works have highlighted to be rather peculiar [14,15,21,22,36]. Lico et al. [23] have103

presented new VLBI images for the less studied objects, proposing also associations for some of the104

UGS. Thanks to these new images, it is now possible to discuss the radio-gamma correlation for the105

sample (in particular, the northern subset) without any observational bias. If we consider the VLBI106

flux density and the 3FGL energy flux (i.e. the gamma-ray energy flux in the entire E > 100 MeV107

band), the sample shows a strong and highly significant correlation, with r = 0.73 and Pchance < 10−6,108

even stronger than what presented in Sect. 2. This is likely due to the fact that VLBI observations filter109

out extended emission and provide a measurement of a jet region much closer to the gamma-ray zone.110

Figure 1. Gamma-ray energy flux at E > 100 MeV vs 8 GHz radio flux density for the 1LAC sample.
Adapted from [1]. Magenta symbols indicate sources without a measured redshift.

3. Radio-Gamma ray Connection between VLBI and E > 10 GeV Data

While the work of [1] demonstrated the existence of a strong and highly significant correlation
between radio data and high energy gamma rays, the situation is far more open when we consider
Very High Energy (VHE, E > 100 GeV) gamma rays. In this domain, observations are carried out in
targeted mode with imaging atmospheric Cherenkov telescopes (IACT), so that no systematic and
unbiased survey exists. Sources are often detected when they are in flaring states, and the optimization
of the observing strategy naturally carries a selection bias in favour of sources physically similar to
those already detected. Moreover, it is still true that all the classified extragalactic VHE sources are RL
AGNs, yet their radio properties are far less extreme, with low-luminosity sources, and in particular
HSP BL Lacs, being more frequently detected than higher bolometric luminosity ones, such as LSP BL
Lacs and FSRQs.

In this sense, the first Fermi-LAT catalogue of sources above 10 GeV (1FHL, [29]) represents an
ideal resource to try and connect the HE and VHE domains. The 2FHL (above 50 GeV, [30]) and the
surveys that will be carried out with the Cherenkov Telescope Array (CTA) in the coming years will
allow us to extend our understanding. The 1FHL is based on three years of Fermi-LAT survey data
and it is as uniform and unbiased as possible. It contains 514 sources, 76% of which are AGN and 13%
are UGS; the AGN fraction is larger than in 3FGL and the census leans towards extreme spectral type
blazars (HSP, 41%). The fraction of UGS is lower, thanks to generally smaller positional uncertainty
ellipses when higher energy photons are considered.

We are carrying out a project aimed at studying all the sources in the 1FHL with very long baseline
interferometry (VLBI), in order to characterize the parsec scale properties of this population, which
several works have highlighted to be rather peculiar [31–35]. Lico et al. [36] have presented new
5 GHz VLBI images for the less studied objects, proposing also associations for some of the UGS.
Thanks to these new images, it is now possible to discuss the radio-gamma correlation for the sample
(in particular, the northern subset) without any observational bias. If we consider the VLBI flux density
and the 3FGL energy flux (i.e., the gamma-ray energy flux in the entire E > 100 MeV band), the sample
shows a strong and highly significant correlation, with r = 0.73 and Pchance < 10−6, even stronger
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than what was presented in Section 2. This is likely due to the fact that VLBI observations filter out
extended emission and provide a measurement of a jet region much closer to the gamma-ray zone.

However, when we consider gamma rays of energy E > 10 GeV, the correlation essentially
vanishes, with r = −0.02. Both weak (typically, BL Lacs) and bright (typically, FSRQs) radio sources
have lower gamma-ray energy flux in this band, which is obvious as the band itself is narrower.
However, the brightest sources have softer photon indexes, which results in a more pronounced
decrease of the gamma-ray energy flux for these objects (Figure 2). As a consequence, no significant
trend is observed. Only if we focus on the sub-class of HSP blazars, do we find evidence of a correlation
between the two bands (r = 0.60, Pchance = 0.0032).
Version July 14, 2016 submitted to Galaxies 4 of 8

Figure 2. Gamma-ray energy flux at E > 100 MeV (a) or E > 10 GeV (b) vs 5 GHz VLBI flux density
for the 1FHL sample. Blue: BL Lacs; red: FSRQs; green: BCUs; black: misaligned AGNs.

However, when we consider gamma rays of energy E > 10 GeV, the correlation essentially111

vanishes, with r = −0.02. Both weak (typically, BL Lacs) and bright (typically, FSRQs) radio sources112

have lower gamma-ray energy flux in this band, which is obvious as the band itself is narrower.113

However, the brightest sources have softer photon indexes, which results in a more pronounced114

decrease of the gamma-ray energy flux for these objects (Figure 2). As a consequence, no significant115

trend is observed. Only if we focus on the sub-class of HSP blazars, we do find evidence of a116

correlation between the two bands (r = 0.60, Pchance = 0.0032).117

4. Radio-gamma ray connection between ∼ 100 MHz and E > 100 MeV data118

Although somehow counter-intuitively, low frequency observations have been shown to be119

useful in studying blazars and in classifying UGS [29,30,33]. The main reason is that UGSs are120

in general faint, and on the basis of the correlation demonstrated in [5], we can expect them to be121

associated to weak radio sources. Since weak radio sources are much more numerous than the bright122

ones, it is difficult to pinpoint the correct counterpart of a given UGS. It is therefore mandatory to add123

some physical information about the nature of the known gamma-ray sources and low frequency124

surveys are a relatively cheap way to obtain this information, e.g. by studying the spectral index.125

The MWA [41] is the first operational Square Kilometer Array (SKA) precursor. It paves the126

way towards low frequency (< 200 MHz) radio astronomy. A commissioning survey catalogue127

(MWACS, presented in [19]) includes ∼ 14, 000 sources over 6, 100 deg2 in the southern sky, with128

a 3σ sensitivity of ∼ 120 mJy, a positional accuracy of ∼ 3′, flux density values at 120, 150, 180 MHz,129

and the corresponding spectral index αlow. We cross-correlated the MWACS with the fifth edition of130

the Roma BZCat [28], finding low frequency matches for 36% of all known blazars in the MWACS sky131

area: the detection rate is higher for FSRQs than for BL Lacs, and it is higher for gamma-ray blazars132

than for non-gamma-ray ones (see Table 1).133

In terms of low frequency spectral indexes, blazars are flatter than the rest of the sources in134

MWACS, with αlow, blazars = 0.51± 0.05 and αlow, all = 0.81± 0.01 (Figure 3, left panel). Moreover,135

many sources whose ∼ GHz flux density is above 120 mJy are not detected in MWA, indicating136

that they must have inverted spectra between 120 MHz and ∼ 1 GHz. Taken together, these results137

indicate that the flat-spectrum core remains prominent also at low frequency.138

(a)

Version July 14, 2016 submitted to Galaxies 4 of 8

Figure 2. Gamma-ray energy flux at E > 100 MeV (a) or E > 10 GeV (b) vs 5 GHz VLBI flux density
for the 1FHL sample. Blue: BL Lacs; red: FSRQs; green: BCUs; black: misaligned AGNs.
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Figure 2. Gamma-ray energy flux at E > 100 MeV (a) or E > 10 GeV (b) vs. 5 GHz very long baseline
interferometry (VLBI) flux density for the 1FHL sample. Blue: BL Lacs; red: flat spectrum radio quasars
(FSRQs); green: blazars of uncertain type (BCU); black: misaligned active galactic nuclei (AGNs).

4. Radio-Gamma ray Connection between ∼100 MHz and E > 100 MeV Data

Although somehow counter-intuitively, low frequency observations have been shown to be useful
in studying blazars and in classifying UGS [37–39]. The main reason is that UGSs are in general faint,
and on the basis of the correlation demonstrated in [1], we can expect them to be associated with
weak radio sources. Since weak radio sources are much more numerous than the bright ones, it is
difficult to pinpoint the correct counterpart of a given UGS. It is therefore mandatory to add some
physical information about the nature of the known gamma-ray sources and low frequency surveys
are a relatively cheap way to obtain this information, e.g., by studying the radio spectral index.

The MWA [40] is the first operational Square Kilometer Array (SKA) precursor. It paves the way
towards low frequency (<200 MHz) radio astronomy. A commissioning survey catalogue (MWACS ,
presented in [41]) includes ∼14,000 sources over 6100 deg2 in the southern sky, with a 3σ sensitivity
of ∼120 mJy, a positional accuracy of ∼3′, flux density values at 120, 150, 180 MHz, and
the corresponding spectral index (We define the spectral index α such that Sν ∝ ν−α) αlow.
We cross-correlated the MWACS with the fifth edition of the Roma BZCat [42], finding low frequency
matches for 36% of all known blazars in the MWACS sky area: the detection rate is higher for FSRQs
than for BL Lacs, and it is higher for gamma-ray blazars than for non-gamma-ray ones (see Table 1).

In terms of low frequency spectral indexes, blazars are flatter than the rest of the sources in
MWACS, with αlow, blazars = 0.51± 0.05 and αlow, all = 0.81± 0.01 (Figure 3, left panel). Moreover,
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many sources whose ∼GHz flux densities are above 120 mJy are not detected in MWA, indicating that
they must have inverted spectra between 120 MHz and ∼1 GHz. Taken together, these results indicate
that the flat-spectrum core remains prominent also at low frequency.

On the other hand, a linear fit to the gamma-ray energy flux vs MWA flux density at 180 MHz
shows no significant (r = 0.26, Pchance = 0.27) correlation (Figure 3, right panel). This indicates that a
substantial contribution from the non-beamed lobes enters in the total radio flux density. Assuming the
lobes to have a spectral index αl = 0.81 (the MWACS mean spectral index for the non-blazar population)
and the core to have αc = 0.096 (as indicated by the ∼ 1 GHz to 20 GHz spectral index of the MWACS
blazars), we determined that the flux density ratio of the two components is Sc/Sl ∼ 0.5, 3.5, 27 at
120 MHz, 1 GHz, and 20 GHz, respectively.

A detailed presentation of this work can be found in [25]. Future deeper all-sky surveys with
MWA and LOFAR [43] will further improve our detection rates and provide a clearer picture of the
relative contribution of these components.

(a) (b)

Figure 3. (a): Cumulative distribution function for the low frequency spectral index of the
entire MWACS catalogue (red line) and the blazar subset (blue line); (b): Gamma-ray energy
flux at E > 100 MeV vs. 120 MHz flux density (main panel) or upper limits (side histogram).
Adapted from [25]. Reproduced with permission from Astronomy & Astrophysics, c© ESO.

Table 1. Detection rates of blazars in the MWACS.

All Blazars Gamma-ray Blazars

Class Fraction % Fraction %

Total 186/517 36% 79/174 45%
FSRQ 147/327 45% 52/71 73%

BL Lacs 23/153 15% 19/87 22%
BCU 16/37 43% 8/16 50%

5. Radio-Gamma Ray Connection between 230 GHz and E > 100 MeV Data

Deep observations at high frequency are certainly more challenging to obtain for large samples,
as the atmospheric conditions are more problematic and the instrument field of view is smaller.
Since they provide crucial information about the most compact regions, it is however important to try
to obtain millimetre data for as many sources as possible. For this reason, we selected a representative



Galaxies 2016, 4, 30 6 of 9

subsample of the 3LAC to be observed at 230 GHz with ALMA. This sample contains 77 sources,
including 26 BL Lacs, 31 FSRQs, 16 blazars of uncertain type, 1 narrow-line Seyfert 1 galaxy, and 2 radio
galaxies. In terms of SED-defined sub-classes, it contains 43, 14, and 18 blazars of the LSP, ISP, and HSP
types. The gamma-ray flux and photon index distribution overlap strongly with those of the entire
3LAC, so that this sub-sample is suitable to represent the entire known gamma-ray blazar population
(Figure 4).

The sources were observed in ALMA Cycle 3; all targets were detected, with rms noise generally
in agreement with the predicted values of 0.3–0.5 mJy·beam−1; some exceptions were found for the
brightest sources, due to dynamic range limitations. Flux densities range between just above 1 mJy
and 6.5 Jy, for the core of Cen A.

A preliminary comparison of the ALMA and Fermi-LAT data already shows some interesting
findings. The 230 GHz flux density and the E > 100 MeV energy flux are correlated with a coefficient
rALMA−LAT = 0.55; the correlation coefficient is significantly larger than what we find if we consider
1.4 GHz arcsecond-scale data, i.e., rNVSS−LAT = 0.39. A more detailed analysis and discussion is in
progress, including an assessment of the importance of comparing simultaneous data.
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Figure 4. Gamma-ray photon flux and index distribution for the entire 3LAC (solid histogram) and
the subset observed with ALMA (dashed histogram).
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