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Abstract: Using current observations of forecast type Ia supernovae (SNe Ia) Joint Lightcurve
Analysis (JLA) and baryon acoustic oscillations (BAO), in this paper we investigate six bidimensional
dark energy parameterizations in order to explore which has more constraining power. Our results
indicate that for parameterizations that contain z2-terms, the tension (σ-distance) between these
datasets seems to be reduced and their behaviour is <1σ compatible with the concordance model
(ΛCDM). Also, the results obtained by performing their Bayesian evidence show a striking evidence
in favour of the ΛCDM model, but only one parameterization can be distinguished by around 1%
from the other models when the combination of datasets are considered.
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1. Introduction

A highlight in observational cosmology is the origin of the accelerated expansion of the universe.
The standard cosmological model that is consistent with current cosmological observations is the
concordance model or ΛCDM. According to this framework, the observed accelerating expansion
is attributed to the repulsive gravitational force of a cosmological constant Λ with constant energy
density ρ and negative pressure p. Despite its simplicity, this standard model has a couple of theoretical
loopholes (e.g., the fine tuning and coincidence problems) [1,2], which had lead to alternative proposals
that either modified the General Relativity or consider a scenario with a dynamical dark energy. At this
point, dark energy can be described by a parametrized equation of state (EoS) written in terms of
the redshift, w(z). Since its properties are still under-researched, several proposals on dark energy
parameterizations have been discussed in the literature (see, e.g., [3–9]).

The study of the constraints on the EoS parameter(s) has been done using observables such as:
supernovae, baryon acoustic oscillations (BAO), cosmic microwave background (CMB), weak lensing
spectrum, etcetera. The importance of using these compilations is due to the precision with which dark
energy can be fathomed. Currently, some measurements such as the Joint Lightcurve Analysis (JLA)
from supernovae [10,11], BOSS [12], just to cite a few, point out a way to constrain these EoS parameters.
These observations allow deviations from the ΛCDM model, which are usually parametrized by a
bidimensional form (w0, wa).

The aim of this paper is to study six bidimensional dark energy parameterizations, testing
them with the SNe Ia and BAO data available and explore which one has more constraining power.
The organization of this paper is as follows. In Section 2 we present how to model a parametrized
dark energy via its EoS. In Section 3 we review six bidimensional dark energy parameterizations.
The astrophysical compilations to be use are described in Section 4. A description of the Bayesian
model selection is presented in Sections 5 and 6 we discuss our main results related to the tension,
the Figure of Merit and the Bayesian evidence for each dark energy parameterization. Our final
comments are presented in Section 7.
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2. Modeling Dark Energy

In order to achieve the observed cosmic acceleration, we require an energy density with significant
negative pressure at late times. This means that the ratio between the pressure and energy density is
negative, i.e., w(z) = P/ρ < 0. All reasonable fitting dark energy models are in agreement at this point.

We start with the Friedmann and Raychaudhuri equations for a spatially flat universe

E(z)2 =

(
H(z)
H0

)2

=
8πG

3
(ρm + ρDE)

[
Ω0m(1 + z)3 + Ω0(DE) f (z)

]
(1)

and

ä
a

= −H2

2
[Ωm + ΩDE(1 + 3w)] (2)

where H(z) is the Hubble parameter, G the gravitational constant and the subindex 0 indicates
the present-day values for the Hubble parameter and matter densities. The energy density of the
non-relativistic matter is ρm(z) = ρ0m(1 + z)3. And the dark energy density ρDE(z) = ρ0(DE) f (z),

where f (z) = exp[
[
3
∫ z

0
1+w(z̃)

1+z̃ dz̃
]
]. We notice that modeling w(z) can give directly a description

of the E(z)2 function, as e.g., in the case of quiessence models (w = const.) the solution of f (z) is
f (z) = (1 + z)3(1+w). If we consider the case of the cosmological constant (w = −1) then f = 1.
Other cases explore a dark energy density ρDE with varying and non-varying w(z) (see, e.g., [4,13]
and references therein).

3. Bidimensional Dark Energy Models

In this section, we present the evolution of E(z)2 for six bidimensional dark energy
parameterizations most commonly used in the literature and we identify the parameters to be fitted
using the current astrophysical data available.

3.1. Lambda Cold Dark Matter-Redshift Parameterization (ΛCDM)

Even though our first model has one independent parameter, Ωm, we shall take it into account to
compare with the bidimensional proposals. This model is given by:

E(z)2 = Ωm(1 + z)3 + (1−Ωm) (3)

where we consider w = −1. As it is well known in the literature, this standard model provides a
good fit for a large number of observational data compilations without addressing some important
theoretical problems, such as the cosmic coincidence and the fine tuning of the Λ value [14].

3.2. Linear-Redshift Parameterization

The dark energy EOS for this case was presented in [15,16] and is given by:

w(z) = w0 − w1z (4)

which can be reduced to ΛCDM model (w(z) = w = −1) for w0 = −1 and w1 = 0
Inserting Equation (4) into f (z), we obtain

E(z)2 = Ωm(1 + z)3 + (1−Ωm)(1 + z)3(1+w0+w1) × e−3w1z (5)

However, this ansatz diverges at high redshift and consequently yields strong constraints on w1

in studies involving data at high redhisfts, e.g., when we use CMB data [17].
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3.3. Chevallier-Polarski-Linder Parameterization (CPL)

A simple parameterization that shows interesting properties [18,19] and, in particular, can be
represented by two parameters that exhibit the present value of the EoS w0 and its overall time
evolution w1 is the CPL model, written as:

w(z) = w0 +

(
z

1 + z

)
w1 (6)

The evolution for this parameterization is given by:

E(z)2 = Ωm(1 + z)3 + (1−Ωm)(1 + z)3(1+w0+w1) × e−
(

3w1z
1+z

)
(7)

3.4. Barboza-Alcaniz Parameterization (BA)

Proposed in [20], this model brings a step forward in redshift regions where the CPL
parameterization cannot be extended to the entire history of the universe. Its functional form is
given by:

w(z) = w0 +
z(1 + z)
1 + z2 w1 (8)

which is well-behaved at z→ −1. The evolution of this model can be written as:

E(z)2 = Ωm(1 + z)3 + (1−Ωm)(1 + z)3(1+w0) × (1 + z2)3w1/2 (9)

3.5. Low Correlation Parameterization (LC)

In [8] it was proposed a two parameter EoS for the dark energy component, linear in the scale
factor and given by:

w(z) =
(−z + zc)w0 + z(1 + zc)wc

(1 + z)zc
(10)

where w0 = w(z = 0) and wc = w(z = zc). The subindex c is used to indicate the scale factor
(or redshift) value for which the parameters (w0, wc) are uncorrelated. This value depends on the
different used data set. In this model was proposed to fix it at the value zc = 0.5 being this value
sufficiently close to the current data value (zc ∼ 0.3) and thus arguing that the correlation between
(w0, wc) is relatively small. With this value for ac, the evolution now becomes

E(z)2 = Ωm(1 + z)3 + (1−Ωm)(1 + z)3(1−2w0+3w0.5) × e
[

9(w0−w0.5)z
1+z

]
(11)

The pivot w0.5 is a conservative choice which achieved a low degree of correlation and provides a
simple expression.

3.6. Jassal-Bagla-Padmanabhan Parameterization (JBP)

In [9] another problem in CPL parametrization at high redshift z was addressed. To alleviate this
behaviour, the authors proposed a new parametrization with the form

w(z) = w0 +
z

(1 + z)2 w1 (12)
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which can present a dark energy component with the same values at lower and higher redshifts,
with rapid variation at low z. Combining Equation (12) and f (z) we obtain

E(z)2 = Ωm(1 + z)3 + (1−Ωm)(1 + z)3(1+w0)e
3w1z2

2(1+z)2 (13)

3.7. Wetterich-Redshift Parameterization (WP)

Another bidimensional parameterization was proposed in [21], which include the possibility that
dark energy contributes to the total energy of the universe to some extent at an earlier epoch. Its form
is given by:

w(z) =
w0

[1 + w1 ln (1 + z)]2
(14)

where w1 is called bending parameter and characterized the redshift where an approximately constant
EoS turns over to a different behaviour.

Using Equation (14) in f (z) we obtain the following evolution

E(z)2 = Ωm(1 + z)3 + (1−Ωm)(1 + z)
3
[
1+ w0

1+w1 ln (1+z)

]
(15)

We may argue that the form of Equation (14) is not general enough and, in particular, not suitable
for the description change of sign of w(z). In fact, for typical models with early dark energy we expect
w(z) > 0 in the radiation era. However, this ansatz has some corrections when radiation becomes
important [22].

4. Observational Data

It is quite strongly stablished that dark energy domination began somewhat recently, and therefore
low redshift data, are precisely those best suited for its analysis. The two main astrophysical tools of
such nature are the standard candles (objects with well determined intrinsic luminosity) and standard
rulers (objects with well determinate comoving size). Such probes provide us with distance measures
related to H(z), and the best so far representatives of those two classes are SNe Ia and BAO. Those are
in fact low redshift datasets, and much effort is begin done in those two observational contexts toward
obtaining more and better measurements.

On one hand, SNe Ia are extremely rare astrophysical events, the modern and specifically planned
strategies of detection make it possible to observe and collect them up to relatively high redshift (z ≈ 2).
On the other hand, the main techniques that rest on the BAO peaks detection in the galaxy power
spectrum are promising standard rulers for cosmology, potentially enabling precise measurements of
the dark energy parameters with a minimum of systematic errors.

In the following lines we will describe the sources used for each astrophysical tools
described above.

4.1. Analysis Using SNe Ia Data

To perform the cosmological test we will employ the most recent SNe Ia catalog available:
the JLA [11]. Its binned compilation shows the same trend as using the full catalog itself, for this
reason we will use this reduced sample which can be found in the above reference and explicitly
in [23]. This dataset consist of NJLA = 31 events distributed over the redshift interval 0.01 < z < 1.3.
We remark that the covariance matrix of the distance modulus µ used in the binned sample already
estimated accounting various statistical and systematic uncertainties. For further discussion see
Section 5 in [11,24].

To perform the statistical analysis of the SNe Ia we employ the distance modules of the JLA sample

µ(zi, µ0) = 5 log10

[
(1 + z)

∫ z

0
dz̃E−1(z̃, Ωm; w0, w1)

]
+ µ0
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where (w0, w1) are the free parameters of the model. and compute the best fits by minimizing
the quantity

χ2
SNJLA

=
NJLA

∑
i=1

[µ(zi, Ωm; µ0, w0, w1)− µobs(zi)]
2

σ2
µ,i

(16)

where the σ2
µ,i are the measurements variances.

4.2. Analysis Using BAO Data

We also consider in our analysis the measurements of BAO observations in the galaxy
distribution. These observations can contribute important features by comparing the data of the
sound horizon today to the sound horizon at the time of recombination (extracted from the CMB
anisotropy data). Commonly, the BAO distances are given as a combination of the angular scale and
the redshift separation:

dz ≡
rs(zd)

DV(z)
, with rs(zd) =

c
H0

∫ ∞

zd

cs(z)
E(z)

dz (17)

where rs(zd) is the comoving sound horizon at the baryon dragging epoch, c the light velocity, zd is the
drag epoch redshift and c2

s = c2/3[1 + (3Ωb0/4Ωγ0)(1 + z)−1] is the sound speed with Ωb0 and Ωγ0

are the present values of baryon and photon parameters, respectively. By definition the dilation scale is

DV(z, Ωm; w0, w1) =

[
(1 + z)2D2

A
c z

H(z, Ωm; w0, w1)

]1/3
(18)

where DA is the angular diameter distance:

DA(z, Ωm; w0, w1) =
1

1 + z

∫ z

0

c dz̃
H(z̃, Ωm; w0, w1)

(19)

Through the comoving sound horizon, the distance ratio dz is related to the expansion parameter h
(defined such that H .

= 100h) and the physical densities Ωm and Ωb. The BAO distances measurements
employed in this paper are compilations of three surveys: dz(z = 0.106) = 0.336 ± 0.015 from
6dFGS [25], dz(z = 0.35) = 0.1126 ± 0.0022 from SDSS [26] and dz(z = 0.57) = 0.0726 ± 0.0007
from BOSS CMASS [27]. Also, we consider three correlated measurements of dz(z = 0.44) = 0.073,
dz(z = 0.6) = 0.0726 and dz(z = 0.73) = 0.0592 from the WiggleZ survey [28], with the inverse
covariance matrix:

C−1
WiggleZ =

 1040.3 −807.5 336.8
−807.5 3720.3 −1551.9
336.8 −1551.9 2914.9

 (20)

The χ2 function for the BAO data can be defined as:

χ2
BAO(θ) = XT

BAOC−1
BAOXBAO (21)

where XBAO is given as
XBAO =

(
rs(zd)

DV(z,Ωm ;w0,w1)
)− dz(z)

)
(22)

Then, the total χ2
BAO is directly obtained by the sum of the individual quantity by using

Equation (21) in: χ2
BAO−total = χ2

6dFGS + χ2
SDSS + χ2

BOSSCMASS + χ2
WiggleZ.
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5. Bayesian Evidence

A Bayesian model selection is a methodology to describe the relationship between the
cosmological model, the astrophysical data and the prior information about the free parameters.
Using Bayes theorem [29] we can updated the prior model probability to the posterior model
probability. However, when we compare models, the evidence is used to evaluate the model’s evolution
using the data available. The evidence is given by

E =
∫
L(θ)P(θ)dθ (23)

where θ is the vector of free parameters, which in our analysis correspond to (w0, wa) and P(θ) is
the prior distribution of these parameters. Equation (23) can be difficult to calculate due that the
integrations can consume to much time when the parametric space is large. Nevertheless, even when
several methods exist [30,31], in this work we applied a nested sampling algorithm [32] which has
proven practicable in cosmology applications [33]. We compute the logarithm of the Bayes factor
between two models Bij = Ei/Ej, where the reference model (Ei) with highest evidence is the ΛCDM
model and impose a flat prior on H0. The interpretation scale known as Jeffreys’s scale [34], is given as:
if ln Bij < 1 there is not significant preference for the model with the highest evidence; if 1 < ln Bij < 2.5
the preference is substantial; if 2.5 < ln Bij < 5 it is strong; if ln Bij > 5 it is decisive.

6. Results

Our main goal is to investigate the six bidimensional dark energy parameterizations presented
in Section 2 and confronting them by using the SNe Ia JLA and BAO datasets in order to explore
which has more constraining power and observe whether there is tension between these two datasets,
which are so far two of the most worthy tools to explore dark energy, and which are anticipated to
play an even more preeminent role in the future.

The process of considering dark energy constraints from the combination of SNe Ia JLA and
BAO datasets is relevant and useful, as is comparing the individual predictions drawn from each
other. This fact does not mean that we are going to completely avoid the use of the CMB analysis;
in particular, the selected priors for Ωm and Ωb are obtained from a forecast of CMB observations with
the Planck mission [10]. The predicted best fits at 68% confidence level are Ωm = 0.3089± 0.0062 and
Ωb = 0.0486± 0.0010 with our choice for H0 = 67.74± 0.46 km s−1 Mpc−1.

6.1. About the Likelihood and Tension

We will employ the maximum likelihood method in order to determine the best fit values of the
parameters w0 and w1 for the six parameterizations described. The ΛCDM case can be set with Ωm

as an independent parameter and compute its best fit. The total likelihood for joint data analysis is
expressed as the sum of each dataset, i.e.,

χ2
total = χ2

SNe IaJLA
+ χ2

BAO-total (24)

To compare results and test the tension among datasets, we compute the so called σ-distance,
dσ, i.e., the distance in units of σ between the best fit points of the SNe Ia, BAO and the total compilation
SNe Ia + BAO and the best fit points of each parameterization in comparison to the ΛCDM model.
Following [35], the σ-distance is calculated by solving

1− Γ(1, |∆χ2
σ/2|)/Γ(1) = erf(dσ/

√
2) (25)

where Γ and erf are the Gamma and error function, respectively. For homogeneity and consistency our
‘ruler’ is in every case the total χ2 function Equation (24), and our prescription is the following [36]:
if we want to calculate the tension between SNe Ia and SNe Ia+BAO and the best fit parameters ([w0,w1])
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then the previous ∆χ2
σ will be defined as χ2

tot([w0, w1]SNeIa+BAO) − χ2
tot([w0, w1]SNeIa); other cases

follow this recipe.
Looking at our results regarding the σ-distances in Tables 1 and 2 we can notice that the tension

between compilations seems to be reduced when we use the parameterizations that contain z2-terms,
as the BA and JBP models (see Figures 1 and 2). Is important to address that this tension effect can
change depending of the priors Ωm and Ωb as it was showed in [36], but even with these changes,
the tension remains reduced for the BA and JBP parameterizations.
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Figure 1. 1 and 2σ confidence contours for dark energy parameterizations. Ia supernovae Joint
Lightcurve Analysis (SNe Ia JLA) is represented by the green region, the baryon acoustic oscillations
(BAO) by the purple region and SNe Ia JLA+BAO by the red region. The best fits are indicated by the
points for each sample, respectively. The point where the dashed line cross indicates the concordance
model (ΛCDM).
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Figure 2. E(z)2 evolution function for each dark energy parameterizations. We use the best fit obtained
in each parameterizations with the SNe Ia JLA+BAO joined dataset. Left: Evolution of Equation (3) and
the bidimensional dark energy parameterizations Equations (5), (7) and (15). Right: Evolution of the
Equations (3) and the bidimensional dark energy parameterizations (9)–(13) (with z2-terms in w(z)).
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Table 1. Dark energy parameterizations with best fits and σ−distances values using SNe Ia JLA data.

Model Parameterization dΛCDM
σ Best Fit Parameters using SNe Ia JLA data

LCDM H2(z) = H2
0 [Ωm(1 + z)3 + (1−Ωm)] − Ωm = 0.295± 0.034

Linear H2(z) = H2
0 [Ωm(1 + z)3 + (1−Ωm)(1 + z)3(1+w0+w1)e−3w1z] 0.285 w0 = −0.991± 0.036, w1 = 0.297± 0.779

CPL H2(z) = H2
0 [Ωm(1 + z)3 + (1−Ωm)(1 + z)3(1+w0+w1)

×e
−3w1z

1+z ] 0.258 w0 = −0.997± 0.049, w1 = −0.337± 1.822

BA H2(z) = H2
0 [Ωm(1 + z)3 + (1−Ωm)(1 + z)3(1+w0)

×(1 + z2)3w1/2 0.243 w0 = −0.993± 0.034, w1 = −0.245± 0.545

LC H2(z) = H2
0 [Ωm(1 + z)3 + (1−Ωm)(1 + z)3(1−2w0+3w0.5)

×e

[
9(w0−w0.5)z

1+z

]
] 0.258 w0 = −0.997± 0.049, w0.5 = −1.109± 0.066

JBP H2(z) = H2
0 [Ωm(1 + z)3 + (1−Ωm)(1 + z)3(1+w0)

×e
3w1z2

2(1+z)2 ] 0.236 w0 = −1.013± 0.070, w1 = −0.295± 4.306

WP H2(z) = H2
0

{
Ωm(1 + z)3 + (1−Ωm)(1 + z)

3
[

1+ w0
1+w1 ln (1+z)

]}
0.278 w0 = −0.987± 0.040, w1 = −0.169± 0.258

Table 2. Dark energy parameterizations with best fits and σ-distances values using BAO and the
combining samples.

Model Best Fit Parameters using BAO data dΛCDM
σ Best Fit Parameters using SNe Ia JLA+BAO data dΛCDM

σTotal

Linear w0 = −0.605± 0.130, w1 = 2.078± 4.063 0.610 w0 = −0.888± 0.025, w1 = 0.645± 0.650 0.380

CPL w0 = −0.540± 0.184, w1 = −3.105± 9.327 0.594 w0 = −0.878± 0.034, w1 = −0.894± 1.487 0.323

BA w0 = −0.621± 0.119, w1 = −1.707± 2.731 0.600 w0 = −0.892± 0.024, w1 = −0.535± 0.450 0.316

LC w0 = −0.540± 0.184, w0.5 = −1.575± 0.359 0.594 w0 = −0.878± 0.034, w0.5 = −1.175± 0.054 >1

JBP w0 = −0.456± 0.274, w1 = −4.653± 21.910 0.569 w0 = −0.869± 0.049, w1 = −1.196± 3.441 0.257

WP w0 = −0.670± 0.046, w1 = −0.941± 0.363 0.626 w0 = −0.882± 0.022, w1 = −0.375± 0.165 0.386

6.2. About the Figure of Merit (FoM)

In order to statistically compare our results, we compute, first, the Figure of Merit (FoM)
as was proposed by the Dark Energy Task Force [37], which is generally as the N-dimensional
volume enclosed by the confidence contours of the free parameters (w0, w1) and written as:
FoM(w0,w1)

= 1/
√

detCov(w0, w1), with Cov(w0, w1) the covariance matrix of the considered
theoretical parameters. The FoMs for each dark energy parameterizations are detailed in Table 3.
From these values we notice that the FoM for WP and LC parameterizations are better since they
correspond to smaller error ellipse (see Figure 1). Also, we see that BA parameterization shows a large
parameter space volume in comparison to the JBP model.

6.3. About the Bayesian Evidence

We estimate the evidence using the algorithm discussed in [33] and run it several times to obtain a
distribution of ≈100 values to reduce the statistical noise. Then we extract the best value to compute
the value of ln Bij, which is reported in Table 4 for each dark energy parameterization. As a result,
the ln Bij values for each dark energy models lies in a region in which ΛCDM is not discounted
(1 < ln Bij < 2.5). These results show a striking evidence in favour of the ΛCDM model. Moreover,
BA parameterization display a ln Bij of around 1% larger than the other parameterizations when SNe
Ia+BAO is used.
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Table 3. Values of the Figure of Merit for each parameterization.

Model
FoM

SNe Ia JLA BAO SNe Ia+BAO

Linear 14.203 7.015 23.657

CPL 9.312 4.631 15.681

LC 27.936 13.893 47.043

BA 16.981 8.555 28.437

JBP 6.076 3.024 10.337

WP 26.208 33.996 53.677

Table 4. Values of Bayes factor for each parameterization.

Model
Bayes Factor ln Bij

SNe Ia JLA BAO SNe Ia JLA+BAO

Linear 1.904 1.897 1.857

CPL 1.912 1.903 1.875

LC 1.912 1.903 1.875

BA 1.921 1.921 1.921

JBP 1.918 1.912 1.854

WP 1.906 1.891 1.855

7. Conclusions

We have presented the study of six bidimensional dark energy parameterizations (Linear, CPL,
BA, LC, JBP and WP). All of them were tested using observations from SNe Ia JLA and BAO datasets,
together with their combination. Our results indicate that for parameterizations with z2-terms in their
w(z)-formulation (as BA and JBP models), the tension between these datasets are reduced and their
behaviour is <1σ compatible with ΛCDM.

Furthermore, for both parameterizations we have w(z = 0) = w0, but at high redshifts for BA
w(z→ ∞) = w0 + w1 and for JBP w(z→ ∞) = w0, this means that the JBP model can model a dark
energy component which has the same equation of state at the present epoch and at high redshift, while
for the BA model we can rely on the results only if w0 + w1 is below zero at the time of decoupling
so that dark energy is not relevant for the physics of recombination of the evolution of perturbations
up to that epoch. Due to these behaviours we can consider that parameterizations with z2-terms are
well-behaved and in better agreement with ΛCDM in comparison to other parameterizations where a
divergence is present.

Also, the Bayes factor shows striking evidence in favour of the ΛCDM model, but the evidence
for the concordance model is substantial with respect to the BA parameterization by around 1% in
comparison to the other parameterization. These results seems to be of interest since the bidimensional
form of dark energy parameterizations are in better agreement with ΛCDM, wherever higher order
parameterizations can be developed. We remark that these analyses were implemented to perform a
complete treatment of selected w(z) parameterizations along the lines of the study of contributions to
the matter power spectra [23].
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Complementary conclusions are that the use of statistical tools like Akaike Information Criterion
(AIC) [38] can help us to discern between dark energy models that display different numbers of
free parameters.
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