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Abstract: Self-gravitating Bose-Einstein condensates (BEC) have been proposed in various
astrophysical contexts, including Bose-stars and BEC dark matter halos. These systems are described
by a combination of the Gross-Pitaevskii and Poisson equations (the GPP system). In the analysis of
these hypothetical objects, the Thomas-Fermi (TF) approximation is widely used. This approximation
is based on the assumption that in the presence of a large number of particles, the kinetic term in
the Gross-Pitaevskii energy functional can be neglected, yet it is well known that this assumption
is violated near the condensate surface. We also show that the total energy of the self-gravitating
condensate in the TF-approximation is positive. The stability of a self-gravitating system is dependent
on the total energy being negative. Therefore, the TF-approximation is ill suited to formulate initial
conditions in numerical simulations. As an alternative, we offer an approximate solution of the full
GPP system.
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1. Introduction

Self-gravitating Bose-Einstein condensates (BECs) have been proposed in various astrophysical
contexts, including Bose-stars [1–4] and BEC dark matter halos [5–11].

Nonrelativistic, dilute BECs are well-described by the Gross-Pitaevskii equation (GPE). In its
time-independent form, when kinetic energy can be neglected, the GPE has an approximate solution
in the form of the Thomas-Fermi (TF) approximation.

Self-gravitating systems can also be described using the GPE. The long-range gravitational
interaction is represented by the external potential. Such systems, referred to in the literature as
GPE-Poisson or GPN (Gross-Pitaevskii-Newton) systems, are extensively studied (a few recent
examples of interest include [12–15]).

When applied to self-gravitating systems, the TF-approximation was found to describe an unstable
system [16]. This also agrees with this author’s experience with numerical simulation code,
which failed to yield stable self-gravitating systems when the TF-approximation was used as an
initial estimate of the condensate density.

In the present paper, it is shown that this instability is the consequence of the TF-approximation,
specifically the well-known issue of the divergence of its kinetic energy [7,8,17,18]. To overcome this
issue, we examine the time-independent GPE and attempt to solve it numerically without truncations.
We develop a new approximation that has the desirable property that the system has negative total
energy and it is stable. This approximation has since been incorporated into our simulation code for
self-gravitating GPE-Poisson systems.

Galaxies 2016, 4, 9; doi:10.3390/galaxies4030009 www.mdpi.com/journal/galaxies

http://www.mdpi.com/journal/galaxies
http://www.mdpi.com
http://www.mdpi.com/journal/galaxies


Galaxies 2016, 4, 9 2 of 8

2. Discussion

A self-gravitating Bose-Einstein condensate is described by a combination of the Gross-Pitaevskii
equation and Poisson’s equation for gravity. In units such that the BEC particle mass is m = 1 and also
h̄ = 1, the time-independent Gross-Pitaevskii equation can be written in an attractively simple form:

−1
2
∇2Ψ + (V + c|Ψ|2 − µ)Ψ = 0 (1)

where Ψ is the BEC wavefunction, V is the gravitational potential, c is the BEC coupling coefficient and
µ is the chemical potential, the presence of which guarantees the conservation of energy. We normalize
the wavefunction such that the number of particles is

∫
V |Ψ|

2 = N.
The energy functional from which with the GPE (1) can be derived using the variational principle

(cf. [18,19]; note the additional factor of 1/2 in front of V, required to avoid double counting the
gravitational potential energy between two regions of the condensate as V is itself a function of |Ψ|2)
is given by

E =
1
2
|∇Ψ|2 +

(
1
2

V − µ

)
|Ψ|2 + 1

2
c|Ψ|4 (2)

In the Thomas-Fermi (TF) approximation [6–8], kinetic energy is neglected. Therefore, the
time-independent GPE takes on the following simplified form:

(V + c|Ψ|2 − µ)Ψ ' 0 (3)

If V is not dependent on Ψ, this equation can be solved directly for |Ψ|2:

|Ψ|2 ' µ−V
c

(4)

Moreover, if we require the wavefunction to vanish at infinity, we must have

µ−V → 0 (5)

at infinity.
If V is dependent on Ψ, the situation becomes somewhat more complicated. In particular, in the

GPP system, the relationship between V and Ψ is given by Poisson’s equation:

∇2V = 4πG|Ψ|2 (6)

where G is the gravitational constant. Solving the GPE (1) for V in the TF-approximation,

V ' µ− c|Ψ|2 (7)

and substituting this solution back into Poisson’s Equation (6), we get

∇2(µ− c|Ψ|2) ' 4πG|Ψ|2 (8)

If µ = const., we are left with [
∇2 +

4πG
c

]
|Ψ|2 ' 0 (9)
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which is an homogeneous Helmholtz-type equation for |Ψ|2, spherically symmetric solutions of
which are

|Ψ|2 ' C1
sin kr

r
+ C2

cos kr
r

(10)

where k2 = 4πG/c, while C1 and C2 are integration constants. To avoid solutions that are singular at
the origin r = 0, we must set C2 = 0. On the other hand, sin kr/r (and thus, |Ψ|2) vanishes at r = π/k.
Therefore, we set r0 = π/k as the radius of the condensate. This determines C1 since we require that∫

V
C1

sin kr
r

dV = N (11)

This integral can be readily evaluated:∫
V

C1
sin kr

r
dV = 4πC1

∫ r0

0
r sin

πr
r0

dr = 4C1r2
0 (12)

hence C1 = N/4r2
0. Therefore, the TF-approximation for the GPP is given by the Lane-Emden

type solution

|Ψ|2 =
N

4r2
0

sin (πr/r0)

r
(13)

for 0 ≤ r ≤ r0 =
√

πc/4G.
Given |Ψ|2, we can solve the GPE (1) for V:

V = µ− c|Ψ|2 = µ− cN
4r2

0

sin (πr/r0)

r
(14)

again for 0 ≤ r ≤ r0.
At r0 and beyond, the condensate vanishes, and the gravitational potential becomes that of

a point mass M (where M = Nm is the total mass of the condensate), i.e., V = −GN/r (r0 ≤ r).
At the boundary, these two forms must agree. This can be achieved by setting

µ = −GN
r0

(15)

This clarifies the role of the chemical potential in the case of the GPP system in the TF-approximation:
its presence ensures that the gravitational potential takes on the standard form outside the condensate
and vanishes at infinity.

The energy density of the time-independent GPE in the Thomas-Fermi limit is given by

E '
(

1
2

V − µ

)
|Ψ|2 + 1

2
c|Ψ|4 (16)

or, after substituting the solution for V from the GPE (1),

E ' −c|Ψ|4 + 1
2

c|Ψ|4 = −1
2

c|Ψ|4 (17)

E ' −1
2

µ|Ψ|2 =
GN
r0
|Ψ|2 (18)
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To find the total energy, we integrate over the condensate volume:

E =
∫

V
E dV = 4π

∫ r0

0
r2E dr

' πGN2

r3
0

∫ r0

0
r sin(πr/r0) dr =

GN2

r0
(19)

or, after restoring units,

E ' Gm2N2

r0
(20)

The positive sign of the total energy implies that the solution for a self-gravitating BEC using the
TF-approximation is inherently unstable.

This result is based on the assumption that the kinetic energy can be neglected. Now that we
have an explicit solution for |Ψ|2, this assumption can be verified by direct substitution into the energy
functional (2). When we do so we find that, using the solution given by Equation (13), the condensate
kinetic energy,

KE =
∫ 1

2
|∇Ψ|2 dV = 4π

∫ r0

0

r2

2
|∇Ψ|2 dr

=
πN
2r2

0

∫ r0

0
r2

∣∣∣∣∣∇
√

sin(πr/r0)

r

∣∣∣∣∣
2

dr (21)

is divergent for any r0 > 0.
The implication of this divergence is that the assumption behind the TF-approximation, namely

that the kinetic term in the GPE (1) can be neglected, is maximally violated.
The divergence of the kinetic energy density (represented by the integrand in Equation (21)) in

the Thomas-Fermi approximation, near the condensate surface, and the logarithmic divergence of
the total kinetic energy are well known (the author wishes to thank the anonymous referees and the
Academic Editor of Galaxies for stressing this point) [7,8,17,18]. However, in the case of self-gravitating
systems, as we have seen, the problem gets worse: the total energy of a self-gravitating condensate is
positive, hence the condensate is gravitationally unstable. This has especially important implications
for numerical simulations of self-gravitating Bose-Einstein condensates that use this approximation
to model the initial state (see, e.g., [16,20]). Not only is the magnitude of the total kinetic energy
ill-defined (which makes it dependent on nonphysical simulation parameters, such as the numerical
integration step size or even small rounding errors), the positive total energy is especially troublesome,
as the stability of a self-gravitating system is dependent on E < 0.

This finding agrees with the author’s experience using numerical simulation code [20] that was
designed to model the (time-dependent) GPP system, using the TF-approximation to model the initial
condensate density. It was perplexing that versions of the code ran differently in different programming
environments (e.g., single vs. double precision, FORTRAN vs. C), processors (Intel x86 vs. GPGPU)
and operating systems (Linux vs. Windows). This is clearly not permissible: the results, apart from
accuracy and rounding issues, should not be dependent on such factors. Indeed, the present study
arose as a result of systematically analyzing the failure of these algorithms to produce consistent results.

Numerically stable simulations require an initial state that is not dependent on nonphysical
parameters and has a well-defined total energy that is consistent with stability conditions.
This is clearly not the case when the TF-approximation is used for a self-gravitating condensate.
Therefore, we now aim to find an approximate solution of the GPP system in the spherically symmetric
case without resorting to the TF-approximation (see also [7] for another approximation and [8] for a
numeric solution in terms of hydrodynamics using the Madelung-representation). Assuming spherical
coordinates and a spherically symmetric condensate, the GPE (1) becomes an equation of a single
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independent variable r. Let us denote ∂/∂r = ∂r for brevity, while noting the form of the Laplacian in
spherical coordinates, ∇2 = ∂2

r + (2/r)∂r. We can then write the GPE (1) as

∂2
r Ψ +

2
r

∂rΨ− 2VΨ− 2c|Ψ|2Ψ + 2µΨ = 0 (22)

whereas Poisson’s Equation (6) becomes:

∂2
r V +

2
r

∂rV = 4πG|Ψ|2 (23)

Let us now consider writing the wavefunction as

Ψ(r) = |Ψ|(r)eiφ(r) (24)

in which case

dΨ = eiφ [d|Ψ|+ i|Ψ|dφ] , (25)

d2Ψ = eiφ{d2|Ψ| − |Ψ|(dφ)2 + i[2d|Ψ|dφ + |Ψ|d2φ]} (26)

and the GPE (1) can be rewritten, after dividing through by eiφ, as

∂2
r Ψ| − |Ψ|(∂rφ)2 +

2
r

∂r|Ψ|+ i
(

2∂r|Ψ|∂rφ + |Ψ|∂2
r φ +

2
r
|Ψ|∂rφ

)
− 2V|Ψ| − 2c|Ψ|3 + 2µ|Ψ| = 0 (27)

Since |Ψ|, φ, V, c and µ are all real, the real and imaginary parts of this equation can be separated:

∂2
r |Ψ|+

2
r

∂r|Ψ| −
[
(∂rφ)2 + 2V + 2c|Ψ|2 − 2µ

]
|Ψ| = 0, (28)

∂2
r φ + 2

[
∂r ln |Ψ|+ 1

r

]
∂rφ = 0 (29)

Equation (29) can be integrated:

∂rφ =
C

r2|Ψ|2 (30)

where C is an integration constant with the dimensions of r|Ψ|2. It seems that C = 0 is not only
a valid choice but the only choice that does not result in φ becoming singular at the origin (assuming
the wavefunction does not vanish at the origin). Therefore, φ = const.

Under these circumstances, the GPE (1) will read

∂2
r |Ψ|+

2
r

∂r|Ψ| −
[
2V + 2c|Ψ|2 − 2µ

]
|Ψ| = 0, (31)

which is readily solvable for V algebraically:

V =
∂2

r |Ψ|
2|Ψ| +

∂r|Ψ|
r|Ψ| − c|Ψ|2 + µ. (32)

This result can be substituted back into Poisson’s equation, yielding a fourth-order ordinary differential
equation in |Ψ|:
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∂4
r |Ψ| −

2∂|Ψ|∂3
r |Ψ|

|Ψ| +
4∂3

r |Ψ|
r
− (∂2

r |Ψ|)2

|Ψ| − 4c|Ψ|2∂2
r |Ψ|+

2(∂r|Ψ|)2∂2
r |Ψ|

|Ψ|2 − 8∂r|Ψ|∂2
r |Ψ|

r|Ψ| (33)

+
4(∂r|Ψ|)3

r|Ψ|2 − 4c|Ψ|(∂r|Ψ|)2 − 8c|Ψ|2∂r|Ψ|
r

− 8πG|Ψ|3 = 0

This equation can be solved numerically. Given that it is a fourth-order homogeneous differential
equation in |Ψ|, it has a very large solution space, parameterized by boundary or initial conditions,
such as the values of |Ψ| and its first three derivatives at some value of r. A hint for a suitable solution
comes from numerical simulation [20], where we find that apparently stable nonrotating spherically
symmetric solutions converge on |Ψ|2 ∝ [sin(r/r0)/(r/r0)]2α, with 3 . α . 4. This approximate
solution has many desirable properties. It is smooth in the interval 0 ≥ r/r0 ≥ π. The corresponding
kinetic energy (21) is finite in the same interval. Moreover, it is possible to compute the condensate
mass, which is given by

M(r) =
∫

V
|Ψ|2 dV = 4π

∫ r

0
r′2|Ψ(r′)|2 dr′ (34)

and this, too, is finite and well-behaved. Therefore, we find that the following initial approximation
for the magnitude of the BEC-Poisson wavefunction:

|Ψ| ∝
∣∣∣∣ sin r/r0

r/r0

∣∣∣∣3 (35)

agrees well with a numerical solution (except for very small values of r), as shown in Figure 1.
Furthermore, this choice yields a corresponding solution of Equation (6) for the gravitational potential
that is finite, negative, and vanishes at infinity, as expected. The stability of these solutions is confirmed
by numerical simulation of a condensate using Equation (35) as an initial approximation. An example
result is shown in Figure 2.

Figure 1. Numerical solution (solid red line) of Equation (34), giving the norm of the wavefunction |Ψ|
of a spherically symmetric self-gravitating Bose-Einstein condensates (BEC) as a function of radius r,
compared to the approximation (dashed blue line) provided in Equation (35).
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Figure 2. Density cross-section of a stable simulated 1 M�, r ' 50 km Bose-star (or stellar core)
after approximately 300,000 numerical iterations that corresponds to 3 s [21]. (For comparison,
the period of a circular orbit at r = 50 km is approximately 0.006 s.) Axes are in km, density is
in units of 1030 kg/km3 ' 0.5 M�/km3. NB: The spatial grid used in this simulation is low resolution
(60× 60× 60) and image smoothing was used to improve the presentation quality.

3. Conclusions

We have demonstrated that when the Thomas-Fermi approximation is used to describe
self-gravitating Bose-Einstein condensates in astrophysical contexts, the resulting systems have
divergent (positive) total energy and are unstable. However, this behavior is a specific consequence
that arises from the use of the TF-approximation; GPE-Poisson systems are not inherently unstable.
By investigating the untruncated Gross-Pitaevskii equation, we found that the total energy is,
in fact negative. Furthermore, using an approximate numerical solution as a guide, we developed
a simple approximation formula that can be used to provide an initial density estimate for BECs in
numerical simulations. These simulations can be applied to describe, e.g., BEC dark matter stars or
stellar cores; these results and analysis will be reported elsewhere [21] as they become available.
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