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Abstract: Galaxy cluster merger shocks are the main agent for the thermalization of the intracluster
medium and the energization of cosmic ray particles in it. Shock propagation changes the state
of the tenuous intracluster plasma, and the corresponding signal variations are measurable with
the current generation of X-ray and Sunyaev–Zel’dovich (SZ) effect instruments. Additionally,
non-thermal electrons (re-)energized by the shocks sometimes give rise to extended and luminous
synchrotron sources known as radio relics, which are prominent indicators of shocks propagating
roughly in the plane of the sky. In this short review, we discuss how the joint modeling of the
non-thermal and thermal signal variations across radio relic shock fronts is helping to advance
our knowledge of the gas thermodynamical properties and magnetic field strengths in the cluster
outskirts. We describe the first use of the SZ effect to measure the Mach numbers of relic shocks,
for both the nearest (Coma) and the farthest (El Gordo) clusters with known radio relics.

Keywords: galaxy clusters: intracluster medium; shock waves; radiation mechanisms: thermal;
radiation mechanisms: non-thermal

1. Introduction: Cluster Outskirts as Revealed by Shocks

Despite the oft-quoted phrase of galaxy clusters being the largest virialized objects in the
universe, at no stage of their evolution are galaxy clusters truly isolated systems. In addition to
a continuous matter accretion taking place at the outer boundaries, clusters grow in mass through
dramatic merger events which generate low Mach-number shocks in the hot intracluster medium
(ICM). These shocks, with typical Mach number values in the range 2–4, produce sharp jumps
in the density and temperature fields of the ICM, and also energize a population of GeV-energy
electrons through the first-order Fermi acceleration process (e.g., [1–3]). In the rare cases when the
merger happens roughly in the plane of the sky, the surface brightness discontinuities become easy
to observe and to model. Radio synchrotron emission from cluster shock fronts viewed roughly
edge-on are known as radio relics, and are typically observed in the cluster outskirts (e.g., review
by [4]). Therefore, performing follow-up observations of radio relics in several other wavebands and
carrying out a comprehensive shock modeling can be a useful method to learn about the physical
conditions in the galaxy cluster outskirts.

The connection between merger shocks and the galaxy cluster radio relics has been
established through numerous theoretical works (e.g., [5–9]). Until recently, the observational
evidence followed mainly from X-ray data (e.g., [10–13]), but now powerful millimeter/
sub-millimeter instruments like the MUSTANG/GBT, NIKA/IRAM, and in particular, ALMA are
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ready to provide resolved images of galaxy cluster merger shocks through the Sunyaev–Zel’dovich
(SZ) effect (see [14] for the first SZ shock result in MACS J0744.8+3927). We have made the first SZ
shock measurements for radio relics in the cluster outskirts: for both the nearest radio relic cluster
(Coma) using Planck data [15], and also for the most distant radio relic cluster (ACT-CL J0102−4915,
or “El Gordo”) using ALMA data [16]. In this conference proceeding article, we briefly review these
results to illustrate how the joint modeling of the thermal (SZ effect and X-ray) and the non-thermal
(radio synchrotron) signals can provide a consistent picture of the shock Mach number and the
physical conditions of the ICM in the cluster outskirts. First, however, we start by describing how
the SZ effect can potentially influence the relic flux measurements at GHz frequencies (1–30 GHz),
giving the impression of a rapidly steepening synchrotron spectrum [17].

2. Relic Shocks as Seen in Radio Synchrotron and the SZ Effect

A direct consequence of having a shock for producing a radio relic is that there should be an
associated boost in the ambient thermal pressure of the ICM, just like the boost in the ICM density
and temperature that has been observed in the X-ray. This boost would then be visible in the SZ
effect, which measures the line of sight integral of the gas thermal pressure. Since the pressure boost
roughly scales as Mach number squared, one can easily produce an order of magnitude increase
for aM ∼ 3 shock. Thus, even though the low ambient pressure in the cluster outskirts is currently
difficult to measure from the SZ effect, this shock-related boost should be easily observable. Moreover,
at GHz frequencies, the steeply falling synchrotron spectrum will lead to a situation where the
negative shock-boosted SZ signal amplitude will become comparable to the positive synchrotron
flux. A steepening of the relic spectrum has recently been observed in the famous “Sausage” relic
in the CIZA J2248.8+5301 cluster, and the “Toothbrush” relic in 1RXS J0603.3+4214 [18,19]. This has
resulted in various theoretical speculations attempting to explain the steepening, which are based on
non-standard extensions of the diffusive shock acceleration (DSA) paradigm [20–22]. Our proposed
explanation [17] is a simple consequence of the relic shock hypothesis, and while the SZ effect may
not be the only contributor to the observed spectral steepening, it can be the dominant effect and
should be easy to account for.

In Figure 1 (left), we show a simplified model of how at GHz frequencies the radio synchrotron
and the SZ effect signals may look at the position of a radio relic. The shock is assumed to have a
Mach number M = 3 at the radius of one Mpc from the center of a typically massive cluster. The
SZ effect causes a negative signal boost of roughly the same spatial scale as the radio synchrotron
emission. In Figure 1 (right), the impact of this flux contamination is shown for fiducial relic spectra
with different Mach numbers. The relative effect is stronger at lower Mach numbers, where the
synchrotron spectrum is steeper. In Figure 2, we demonstrate that since the SZ signal variation occurs
roughly at the same length scale as the relic synchrotron emission, interferometric measurements
trying to obtain the GHz-frequency relic fluxes will not be immune to SZ flux contamination, even
though the global SZ signal from the cluster itself will be almost completely filtered out.

We showed in [17] that the flux contamination can be from a few percent to over 80% in the
frequency range of 10–20 GHz for several well-known cluster relics. For the measured flux values
in the Sausage and Toothbrush relics, this simple model provides an adequate fit (Figure 3). In the
Sausage relic, the 16 GHz data point appears to be low in comparison to the models, but still within
the range of a steep spectrum synchrotron emission (M . 3). A similarly low Mach number for
the Sausage relic shock is actually inferred from the X-ray observations [12]. We also note that a
steep spectrum is not a necessary condition for the SZ contamination to be of significance; in these
examples, it is suggested that way because we are trying to fit the full relic spectrum with a single
power-law model. The difficulty of fitting the low-frequency part with a single power-law for these
relics is well known, and in reality, the shock fronts can have a distribution of Mach numbers (e.g., [8]).
Our goal is to show that the SZ flux contamination is non-negligible and can even be the dominant
effect behind the observed spectral steepening of radio relics at GHz frequencies. This hypothesis can
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furthermore lead to new methods for testing the relic-shock connection and putting constraints on
the relic magnetic field or the shock acceleration efficiency (see [17]).
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Figure 1. Sunyaev–Zel’dovich (SZ) effect contamination at GHz-frequency observations of radio relics
(from [17]). Left: Projected synchrotron and SZ effect signals at the location of a radio relic based on
a simple spherical shock model, illustrating the decrease in the observed synchrotron flux. Right:
Model spectra for radio relics in the GHz frequency range, based on a linear Mach dependence of
the synchrotron-to-SZ flux ratio. The dashed lines are the uncontaminated spectra, which follow
a power-law at all frequencies. (Credit: Basu, K., et al. A&A, 591, A142., 2016, reproduced with
permission ©ESO.)
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Figure 2. Simulation of the SZ flux contamination for radio relic observations (from [17]). Left: A 2D
toy model of the synchrotron and SZ flux distribution in a cluster with a spherical shock front. The
SZ signal is shown azimuthally extended beyond the radio synchrotron emission region purely for
illustration. Right: A mock but realistic interferometric observation of this radio relic at 10 GHz with
and without the SZ effect. The low relic flux measurement in the presence of the SZ signal is evident.
(Credit: Basu, K., et al. A&A, 591, A142., 2016, reproduced with permission ©ESO.)
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Figure 3. Fit to the actual relic flux measurements for the “Sausage” relic in CIZA J2248.8+5301 (left),
and the “Toothbrush” relic in 1RXS J0603.3+4214 (right), against our model predictions for three
different shock Mach numbers (from [17]). These model spectra correspond to an ideal total power
measurement, and the results from specific interferometric imaging can differ. (Credit: Basu, K., et al.
A&A, 591, A142., 2016, reproduced with permission ©ESO.)

3. The First SZ Effect Measurement of a Relic Shock

We have discussed the potential impact of the SZ effect in measuring radio relic fluxes
at GHz-frequencies, but are these hypothesized pressure boosts from the relic shocks actually
observable? For answers, we turn to direct SZ measurements of radio relics at 100 GHz or above
(at these frequencies, synchrotron contamination to the SZ signal similar to what we discussed in
Section 2 can be safely ignored). Our work reported on the first SZ measurement of a relic shock,
by making use of the publicly available Planck data, at the location of the Coma cluster relic [15].
This Coma relic shock had been measured previously in the X-ray, using XMM-Newton and Suzaku
data [12,13], but a debate persisted on whether it is an infall shock caused by accreting materials,
or a merger shock originating from the core region of the Coma from a past merger [13,23]. Our
measurements show clear preference for the merger shock scenario.

The work presented in [15] was based on a Comptonization map (or y-map) extracted from the
15-month nominal Planck mission data, and we additionally made use of a high-resolution 2.3 GHz
radio measurement of the Coma relic to set a prior on the shock location. The Planck SZ image is
shown in Figure 4 (top), along with the radio contours for the relic at 2.3 GHz. The SZ profile in
the direction of the shock propagation is shown in the lower-left panel, in comparison to profiles
from other radial directions. The apparent significance of the y-jump is not high; nevertheless,
Planck data give clear evidence for a shock (M = 2.7+0.8

−0.9 from a cylindrical shock model). This
result is corroborated when the final (2015) data release from Planck is used; for example, using a
spherical geometry as is common in cluster shock modeling, we obtainedM = 2.2± 0.3 [17], which
is fully consistent with the original results from [15]. Models based on an infall shock or a pressure
excess associated with a sub-cluster are ruled out when Planck results are combined with X-ray
measurements. Importantly, Planck data alone show evidence for a pressure jump in the Coma relic
without any additional radio or X-ray priors (Figure 4 lower-right), thus making it an independent
confirmation of the existence of a shock.
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Figure 4. The relic shock in the Coma cluster as detected by the SZ effect (from [15]). Top: Coma
Comptonization map derived from a linear combination of the Planck data, overlayed with 2.3 GHz
radio contours from the Westerbork Synthesis Radio Telescope (WSRT) array. The thin white circle
denotes the R500 of Coma, and the conical sector used for profile fitting and the cylindrical shock
model geometry are shown respectively in yellow and red. Lower left: SZ profile in the direction of
the relic shock, shown in blue. Various gray lines denote similar profiles in the other directions, and
the dashed line is the best-fit model averaging these other sectors (see [15] for details). Lower Right:
Joint likelihood contours for the shock position and the pressure ratio, with (solid lines) and without
(dashed lines) having a radio prior on the shock location. FWHM: full width at half maximum.

4. ALMA-SZ Measurements of a Relic Shock

Using Planck y-maps with roughly 10′ resolution is clearly not the optimal method for measuring
relic shocks; nevertheless, it was made possible thanks to the proximity of the Coma cluster.
As the X-ray observations evolved from Uhuru to Chandra to provide excellent spectral-imaging
measurements of shock fronts in several galaxy clusters, the SZ effect now has a similarly
powerful instrument in ALMA, to make arcsecond resolution images of shock fronts in the
millimeter/sub-millimeter wavebands. We have recently reported the first measurement of a cluster
merger shock with ALMA [16], which is also one the first ALMA results on galaxy cluster SZ effect
in general. The target was the highest redshift radio relic currently known, in the famous El Gordo
cluster at z = 0.87 [24,25], in a clear demonstration of the power of the SZ effect to make resolved
cluster images with equal efficiency at all redshifts.
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The small field of view of ALMA at 100 GHz (primary beam FWHM∼ 1′) allows for the imaging
of only a limited sector of a galaxy cluster with a single pointing, but the angular resolution (in a
compact array configuration) is roughly 3′′ and unparalleled for SZ observations. Our observation
of the prominent NW relic in the El Gordo cluster using a brief 3 hr ALMA exposure is depicted in
Figure 5 (left panel). The background image is a mosaic of Spitzer IRAC pointings at 3.6 µm, and the
colored contours show the soft-band X-ray (from Chandra: in orange) and 2.1 GHz radio synchrotron
(from Australia Telescope Compact array: in green) emissions. With ALMA, we were able to clearly
detect the signature of an underlying pressure discontinuity from an observed modulation of the SZ
signal, as shown by the deconvolved image (or dirty image) in the inset. The shock modeling was not
based on this image, however, but used a novel Markov chain Monte Carlo fitting technique directly
applied to the visibility data (or uv-data) in order to avoid imaging biases. This Bayesian method also
enables an easy combination of results from the X-ray and radio wavebands.
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Figure 5. A relic shock in the El Gordo cluster at z = 0.87 (from [16]). Left: Multi-wavelength
view of the El Gordo cluster and its NW relic. The background image is a Spitzer IRAC mosaic
at 3.6 µm, and the orange and green contours mark the Chandra X-ray 0.5–2 keV emission and the
ATCA 2.1 GHz radio emission, respectively. The observed SZ intensity distribution from an ALMA
deconvolved image is shown in the zoomed-out inset. Right: Thermal and non-thermal signal
variations across the relic shock. Shown here from top are the 2.1 GHz radio synchrotron profile,
the Chandra X-ray temperature measurements, the X-ray brightness profile across the relic, and the
ALMA SZ measurement together with the best fit shock model (green lines).

The ALMA SZ data provides evidence for a shock whose amplitude and location is consistent
with the radio and X-ray measurements, as shown in Figure 5 (right panel). This is the first instance
where the thermal and non-thermal signal variations are modeled self-consistently across a relic shock
based on the same underlying shock geometry. The Chandra exposure totals roughly 100 hr (350 ks),
but even with that deep data, the outer (pre-shock) region’s temperature cannot be constrained for
this high-z object. SZ measurements can thus be an indispensable tool to robustly constrain the
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shock Mach numbers from many high-z radio relics, soon to be discovered from multiple upcoming
radio surveys. More broadly, joint SZ/X-ray analysis combining high-resolution SZ observations
with short-exposure X-ray data—where the latter would provide constraints on the gas density but
not necessarily its temperature—can be an efficient and wide-ranging tool for modeling the shock
velocities and physical conditions in the pre-shock medium.

Two present examples of joint SZ/X-ray modeling (also in combination with radio synchrotron
data) are shown in Figure 6. In the left panel, we illustrate the Mach number constraints. SZ/X-ray
joint fit suggests a similar Mach number value as in a previous radio spectral slope analysis [25],
but there is a mild tension between the individual X-ray and SZ measurements, as shown in the left
panel inset. ALMA SZ modeling by itself points towards a weak shock, with peak likelihood for the
Mach number aroundM∼ 1.5, whereas the X-ray brightness modeling supports a strong shock with
M & 3. Although statistically not very significant, we can speculate on some physical effects that can
cause a similar difference between the SZ and X-ray Mach number measurements. Such effects can
include a possible non-equilibrium between the electron and ion temperatures or a boost in the X-ray
brightness from an inverse Compton emission behind the shock front. The mismatch can also be
partially due to a projection bias, where the choice of the shock geometry affects the X-ray brightness
and the Comptonization profiles differently.

0 5 10 15 20 25

1

2

4

7

0 5 10 15 20 25
M500 (× 1014 M �•)

1

2

4

7

M
ac

h 
nu

m
be

r

 

 

 

 
 

 

 

0 5 10 15 20 25

1

2

4

7

 

 

 

 

 

 

 

 

 

 

 

ALMA SZ +
Chandra X-ray

ALMA SZ only

0.000 0.002 0.006 0.011 0.017 0.024
upstream pressure (keV cm-3)

1 2 3 4 5 6
Mach number

SZ X-ray

-60 -40 -20 0
downstream distance (kpc)

0.0

0.2

0.4

0.6

0.8

1.0

sy
nc

hr
ot

ro
n 

em
is

si
vi

ty
 (a

rb
. u

ni
t)

0 5 10 15 20 25
Brelic (µG)

10

100
re

lic
 w

id
th

 @
 2

 G
H

z 
(k

pc
)

Sausage (z=0.2)

El Gordo

Figure 6. Results from the thermal/non-thermal modeling of the El Gordo NW relic shock (from [16]).
Left: Joint likelihood contours for the shock Mach number and the cluster mass/pre-shock pressure.
Darker and lighter colors mark the 68% and 95% credible regions. The inset figure shows the
marginalized Mach number distribution from independent SZ and X-ray analyses. Right: Relic
magnetic field strength from the width of its synchrotron emissivity region. The solid line shows
a deprojected emissivity model, and the horizontal grey bands mark the maximum relic width at
68% (dark grey) and 95% (light grey) confidence, as estimated from a joint modeling of the radio
synchrotron and the X-ray/SZ data.

In the right panel of Figure 6, the magnetic field strength inside the radio relic is constrained from
a deprojected synchrotron emissivity profile, making use of an empirical model described in [17]. The
upstream temperature and the shock Mach number are constrained from the SZ/X-ray analysis when
calculating the relic width as a function of the magnetic field strength (results shown in the inset of
the right panel). The estimated field strength is of the order 4–10 µG, which is unusually high for
this redshift. It is possible that part of the observed relic width at 2 GHz comes from a secondary
amplification of the particle energies or the magnetic fields [22,26].

5. Conclusions

We presented the first SZ measurements of galaxy cluster merger shocks at the location of
radio relics. These are also the first SZ-measured shocks in the cluster outskirts. Even though
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SZ measurements alone cannot provide a complete thermodynamical description of the ICM
(i.e., independent density and temperature measurements) as in X-ray imaging/spectral analyses, SZ
imaging is clearly adequate for modeling the location, strength, and the geometry of a merger shock.
Especially in the cluster outskirts and for high-z objects, SZ measurements should be the preferred
tool, as it scales linearly with the gas density and its surface brightness is redshift independent.
For a complete thermodynamical description of the pre-shock medium and an estimation of the
shock velocities, joint SZ/X-ray analysis combining short-exposure X-ray and SZ data can be far
more efficient than deep X-ray observations alone. For radio observers, we have shown that
the SZ effect can act as an effective contaminant to the synchrotron flux measurements at GHz
frequencies (1–30 GHz), lowering the measured fluxes and giving the impression of a steepening
synchrotron spectrum. However, far from being a simple nuisance for relic measurements, this SZ
flux modification can potentially offer some of the best evidence for the relic-shock connection, and
under certain assumptions can provide an independent method for estimating the relic magnetic field
or the shock acceleration efficiency.
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