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Abstract: In this work, we consider an Om diagnostic using a non-parametric reconstruction by
employing the Loess–Simex factory. This procedure allows us to perform a model-independent
comparison for w(z) with the astrophysical data. The concordance model can be tested with the
advantage that our approach represents an alternative and efficient way to relax the use of priors and
find a possible w that reliably describes the data with no previous knowledge of a cosmological model.
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1. Introduction

At present, numerous projects and surveys are either underway or being proposed [1–5] to
discover the underlying cause of the accelerated expansion of the universe, which is well established
by present observations such as: Supernovae Type Ia (SNIa) [6,7], Baryon Acoustic Oscillations
(BAO) [8], Cosmic Microwave Background Radiation (CMBR) anisotropies [9], Large Scale Structure
formation [10] and Weak Lensing [11]. The current standard cosmological model, consistent with
these vast observations, is the ΛCDM or concordance model, in which this accelerated behaviour is
driven by a cosmological constant Λ and filled with Cold Dark Matter (CDM). This Λ is usually related
to an extra component in the Universe, the so-called Dark Energy (DE) with w = −1. Despite its
simplicity, the ΛCDM model has a couple of theoretical loopholes (e.g., the fine tuning and coincidence
problems [12]) which had led to alternative proposals that either modified the General Relativity
or considered a scenario with a dynamic DE. In this way, DE can be described by an equation of
state (EoS) written in terms of the redshift, w(z), but until now, we did not have precise evidence
and/or evolution of this quantity. Since its properties are still being researched, a wide variety of
reconstructions of DE parameterizations have been proposed to help discern the dynamics of this
component [13–24].

In spite of the efforts to solve the theoretical loopholes of the concordance model, there has been
no strong alternative yet. In this situation, it may be useful to test the consistency of the ΛCDM
model with cosmological observations and compare it with alternatives models or parameterizations.
However, this mainstream idea is unlikely to yield any new physics beyond this scenario, but revealing
such possible new physics is essential to avoiding prior knowledge of a cosmological model in order
to find an adequate EoS that reliably describes the astrophysical data available. An important goal
along the same lines is to differentiate the ΛCDM model from other DE models in a scenario that
has as few priors as possible because, as we have experienced over the years, incorrect priors of w(z)
or values of the density quantities can lead us to incorrect cosmological results. An interesting null
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test of DE, called the Om diagnostic, was proposed in [25]. The elegance of this proposal lies in its
theoretical form, which is constructed using only the Hubble parameter H(z), a quantity that can
be measured directly from the observations. This procedure allows us to differentiate between the
cosmological constant (flat ΛCDM) and a dynamical model (curved ΛCDM) only by considering as a
prior the value of Ωm. Even if the value of Ωm is not accurately known, Reference [26] presented some
interesting insights using an extension of the Om diagnostic called two-points difference. As a step
forward, Reference [27] analyzed a curved ΛCDM, in which the diagnostic function O(2)

m includes first
derivatives of H(z), and a new parameter related to the curvature, Ok, enters the scene. These tests are
quite helpful because we have a scenario in which the diagnostic function can tell if the previous DE
assumptions are in agreement with the ΛCDM model or deviate from it towards an alternative DE or
a modified gravity model.

One of the most direct ways to reconstruct w(z) is via the luminosity distance dL of SNIa
observations. The derivative of this quantity leads indirectly to H(z). Then, we need the second
derivative of dL to reconstruct w(z). So far, there are two astrophysical samples that directly reflect
measures of it: first, the Cosmic Chronometers (C-C), which gives a compilation of H(z) measurements
estimated with the differential evolution of passively evolving early-type galaxies [28–33]; second,
the radial BAO scale in the galaxy distribution, a relic of the pre-recombination universe [34,35].
The aforementioned diagnostic has been tested with these astrophysical samples and provides
a solution of the cosmic acceleration based in a smoothed model-independent via Gaussian
processes [36,37], but the price that we pay for using this are the strong constraints over the statistical
process and the assumption of an initial guess cosmological model.

In light of these issues, Reference [38] proposed the use of two statistical techniques: the
Locally Weighted Scatterplot Smoothing (Loess) [39] and the Simulation and Extrapolation methods
(Simex) [40] in order to address a nonparametric scenario with the fewest number of priors, a
smooth reconstruction of the parameter H(z), and, of course, obtain the well established cosmic
acceleration. Two novel achievements using these statistical techniques are: (1) we do not need any
DE parameterization as a prior, and we instead we directly apply the full astrophysical sample in the
code structure, and the evolution of the cosmological parameters will be issued by the smooth curve
given by the observations; (2) we do not require any functional distribution for the analysis. There are
only a couple of restrictions that are related to the statistical analysis: (a) the size of the window data
where we are going to develop a fitting routine based on a specific degree of the polynomial [41,42];
and (b) we require a weight function that will give to each data point some importance with respect to
the other observations around them. We clarify that this factory is a cosmological-model-independent
method due to the relaxed use of information concerning cosmological parameters in comparison to
Gaussian processes, where the use of strong constraints on spatial flatness is required [36]. In order
to proceed with this research, we will follow these ideas to constrain even more the use of priors via
the Loess–Simex factory and reconstruct h(z) and its derivative to test the ΛCDM model. Our final
results demonstrate that the Loess–Simex factory applied to the dynamical Om diagnostic finds a
preference for a DE model with an equation of state w = −2/3, which corresponds to a static domain
wall network.

This paper is organised as follows: in Section 2, we give an overview of the quantities used to test
the ΛCDM model. In Sections 3 and 4, we derive the equations for the Om diagnostic by considering
a constant EoS and presenting the cases for a flat and curved universe. In Section 5, we describe the
astrophysical samples for H(z). In the following two sections, we describe our methodology with the
Loess–Simex factory to reconstruct h(z) and the Om diagnostic. In Section 7, we present a discussion of
the results obtained.
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2. ΛCDM Background

The dark energy reconstruction starts underlying the validity of the FLRW metric that gives the
Friedmann equation(

H(z)
H0

)2

≡ h2(z) = Ω0m(1 + z)3 + Ω0k(1 + z)2 + (1−Ω0m −Ω0k) f (z), (1)

where

f (z) = exp
[

3
∫ z

0
dz̃
(

1 + w(z̃)
1 + z̃

)]
, (2)

and Ω0m, Ω0k are the matter and curvature densities at present epoch, respectively. The EoS that
characterizes DE can be obtained by introducing Equation (2) in Equation (1) and deriving to obtain its
characteristic expression

w(z) =
2(1 + z)hh′ − 3h2 + Ω0k(1 + z)2

3 [h2 −Ω0m(1 + z)3 −Ω0k(1 + z)2]
, (3)

where h′(z) is the first derivative of the normalized Hubble parameter with respect to the redshift
z. Here, we can notice that, depending on the values of the density parameters, there is a strong
restriction over w(z). The simplest explanation for DE is when this parameter acquires the value
w = −1, which is related to a cosmological constant Λ. Other interesting cases emerge when w > −1
(w < −1), which points to the quintessence (phantom) scenario, respectively. Furthermore, the models
are still restricted to the values of the density parameters, and a distinction between them is quite
difficult at this point. However, w(z) degenerates with the density parameters and the current data are
not accurate enough to distinguish between these parameters, making the need for model-independent
methods and experimental tests an important issue. One way to alleviate this problem is via an
approach of cosmography [43–45], which does not take into account any model a priori and can derive
cosmological bounds directly from the astrophysical data. Nevertheless, since this cosmography
relates cosmological parameters to Taylor-like expansions, this approach goes through truncated
series problems.

All of the issues mentioned above were the pattern to propose a diagnostic to differentiate between
DE models in scenarios where w could be a constant (and flat) and dynamical (and non-flat). The
Om diagnostic outlines a test where we can fathom between DE models in the cases when the value
of Om is a constant or not. Following these lines, let us start our study by describing a Om diagnostic
with a flat ΛCDM model as an example. Afterwards, we will proceed with the presentation of the
dynamical (non-flat) diagnostic.

3. The Om Diagnostic Background

Let us begin with the distance-redshift relation

D(z) =
H0

c
dL(z)
(1 + z)

, (4)

where

dL(z) =
c(1 + z)

H0
√
−Ω0k

sin
[√
−Ω0k

∫ z

0
dz̃

H0

H(z̃)

]
(5)

is the luminosity distance. Deriving Equations (4) and (5) and considering a flat universe (Ω0k = 0),
it can be found that D′(z) = H0/H ≡ h−1. In this flat background with a constant DE EoS, w = w0,
the Equation (1) can be expressed as:

h2(z) = Ω0m(1 + z)3 + (1−Ω0m)(1 + z)3(1+w0), (6)
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from where we can define a function that characterizes this diagnostic

O(1)
m0 (z) ≡

h2 − (1 + z)3(1+w0)

(1 + z)3 [1− (1 + z)3w0 ]
, (7)

where the upper index ‘(1)’ indicates the existence of a first derivative of the luminosity distance dL.
To test the ΛCDM model using direct observations of the Hubble rate H(z), we require a set in

Equation (7) w0 = −1 [25]

O(1)
m (z) =

h2 − 1
z(3 + 3z + z2)

. (8)

At this point, we can distinguish a ΛCDM model from any DE models by rewriting Equation (8)
using Equation (6), obtaining

O(1)
m (z) = Ω0m + (1−Ω0m)

[
(1 + z)3(1+w0) − 1

(1 + z)3 − 1

]
, (9)

where, on one hand, w0 = −1 implies ΛCDM with O(1)
m = Ω0m. On the other hand, w0 > −1 (or

w0 < −1) implies quintessence (or phantom) scenarios with O(1)
m > Ω0m (or O(1)

m < Ω0m), respectively.
These descriptions are detailed in Table 1.

Table 1. Features in the Om diagnostic with respect to the value of Ω0m, which can be taken from recent
Planck results [46] and a constant EoS w = w0.

EoS Om Diagnostic Model

w0 = −1 O(1)
m = Ω0m Flat ΛCDM.

w0 > −1 O(1)
m > Ω0m Quintessence.

w0 < −1 O(1)
m < Ω0m Phantom.

Once we consider a Hubble rate h(z) sample, it is possible to estimate confidence values of O(1)
m .

If the test does not give a constant behaviour, then the ΛCDM model is ruled out and the existence
of DE models or a curved ΛCDM scenario are considered. In the first option, several DE candidates
can be related to O(1)

m (see Figure 1) by considering a specific value for w0, e.g., non-interacting cosmic
strings with w0 = −1/3 [47], static domain walls with w0 = −2/3 [48,49] and phantom models
with w0 < −1 [13–19]. To distinguish between these models, we require the introduction of the Om

diagnostic at the first-order in h, which is related to the dynamical test.

Figure 1. Comparison between dark energy models. The solid grey line represents a ΛCDM model
with Ωm = 0.315. Non-interacting cosmic strings with w0 = −1/3 are represented by the green line.
Static domain walls with w0 = −2/3 are represented by the red line, and the phantom model with
w0 < −1 is represented by the blue line.



Galaxies 2016, 4, 76 5 of 16

4. The Dynamical Om Diagnostic

A more meticulous analysis based on the abovementioned features takes into account a curved
model, where the first derivatives of h(z) come on to the scene. Expressions for this case can be
obtained by considering Ω0k 6= 0 and w = w0 in Equation (1):

h2(z) = Ω0m(1 + z)3 + Ω0k(1 + z)2 + (1−Ω0m −Ω0k)(1 + z)3(1+w0), (10)

from where we can find two expressions:

O(2)
m0 (z) =

h2[3w0(1+z)3w0+1+3z(1+z)3w0+3(1+z)3w0−2]−(1+3w0)(1+z)3(1+w0)

(1+z)3[1−(1+z)3w0+3w0z(1+z)3w0 ]

− 2hh′(1+z)[z(1+z)3w0+(1+z)3w0−1]
(1+z)3[1−(1+z)3w0+3w0z(1+z)3w0 ]

,
(11)

Ok0(z) =
3{w0(1+z)3(1+w0)−h2[w0(1+z)3w0+(1+z)3w0−1]}+2hh′(1+z)[(1+z)3w0−1]

(1+z)2[3w0z(1+z)3w0−(1+z)3w0+1]
, (12)

where the upper index ‘(2)’ indicates the existence of a second derivative of the luminosity distance.
The calculations are explained in Appendix A.

We can obtain the curved ΛCDM case when we consider w0 = −1 in the systems (11) and (12),
which gives [27]

O(2)
m (z) =

2
[
(1 + z)(1− h2) + z(2 + z)hh′

]
z2(1 + z)(3 + z)

, (13)

Ok(z) =
3(1 + z)2(h2 − 1)− 2z(3 + 3z + z2)hh′

z2(1 + z)(3 + z)
. (14)

To perform the distinctions between DE models, we can rewrite Equation (11) using Equation (10)
and its derivative, which gives O(2)

m0 = Ω0m and Ok0 = Ω0k, implying a ΛCDM model.

5. Observations of the Hubble Rate

To perform the diagnostic analysis, we require having at hand the observed H(z) data. This
parameter has become an effective probe in cosmology comparison with SNIa, BAO and CMB data. In
fact, it is more rewarding to study the observational H(z) data directly due to the fact that all these
tests use the distance scale (e.g., the luminosity distance dL, the shift parameter R, or the distance
parameter A) measurement to determine the values of the cosmological parameters, which needs the
integral of H(z) and therefore loses some important information of this quantity.

H(z) depends on the differential age as a function of redshift z in the form:
H(z) = −(1 + z)−1dz/dt, which gives a direct measurement of H(z) through the change of redshift in
cosmic time. As an independent approach of this measure, we provide two samples:

(1) Cosmic Chronometers (C-C) data. This kind of sample gives a measurement of the expansion
rate without relying on the nature of the metric between the chronometer and us. We are going
to employ several data sets presented in [28]. A full compilation of the latter, which includes
28 measurements of H(z) in the range 0.07 < z < 2.3, are reported in [50]. The normalized
parameter h(z) can be easily determined by considering the value H0 = 67.31± 0.96 km s−1 M pc−1 [46].

(2) Data from BAO. Unlike the angular diameter dA measures given by the transverse BAO scale,
the H(z) data can be extracted from the measurements of the line-of-sight of this BAO scale.
Because the BAO distance scale is embodied in the CMB, its measurements on DE parameters are
strongest at low redshift. The samples that we are going to consider consist of three data points
from [34] and three more from [35] measured at six redshifts in the range 0.24 < z < 0.73. This
data set is shown in Table 2.
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Table 2. BAO sample data from [34,35].

z H(z) [km s−1M pc−1] σH
2

0.24 79.69 2.32
0.34 83.80 2.96
0.43 86.45 3.27
0.44 82.6 7.8
0.6 87.9 6.1

0.73 97.3 7.0

6. Nonparametric Reconstructions

Following the same methodology proposed in [38], we are going to reconstruct the normalized
Hubble parameter h using the Loess–Simex factory.

6.1. Reconstruction of h(z)

Step A1. Windows and subsample selection. We are going to select the proportion of observations
fitting in a specific window. Each selection consists of some percentage of the total number of
observations and to each subsample will be assigned a specific weighted least square local polynomial
fit. We use a subsample via one quantity that is usually known in the statistical jargon as the smoothing
parameter or span s, and we use k = ns, where k is the number of observations per window and rounded
to the next largest integer, n is the total number of observations and s typically takes values that oscillate
between 0 and 1. The election of the optimal value of s can be done by using cross-validation [51],
which basically consists of omitting the ith observation from the local regression at the focal value xi,0.
The cross-validation function is given by the expression

CV(s) =
1
n

n

∑
i=1

(ŷ−i(s)− yi)
2, (15)

where ŷ−i(s) is ŷ−i for span s. Using Equation (15), we calculated the values: s = 0.9 for the C-C
sample, s = 0.85 for the BAO sample and s = 0.4 for the C-C+BAO total sample, which correspond to
90, 85 and 40 percent of the data in each window, respectively. A detailed process can be found in [38].

Step A2. Weighted subsamples. Having already selected the amount of data in each window,
consider a certain amount of data points near which are more related between them than others that
are significantly far away and receive a null weight. This idea is encoded in the weight function
described by a tricube kernel:

W(z̄i) =


(
1− |z̄i|3

)3 for |z̄i| < 1,

0 for |z̄i| ≥ 1,
(16)

where z̄i = (zi − z0)/d, indicates the distance between the predictor redshift value for the i-th
observation and the focal redshift z0. d is the maximum distance between the point of interest
and elements inside the window.

Step A3. Regression analysis. Following the Loess technique, we consider a low-degree polynomial
to perform a local fit of the subsample in each window:

H(z) = a0 + a1z. (17)

A similar fit routine proposal was presented in [42]. The right hand side second term is related
to H′, parameter that we will reconstruct in Section 6.2. As we can see from Equation (17), we shall
consider a linear polynomial appropriate to fit each subset of data. Higher-degree polynomials are
possible, and would work in theory, but it would result in models that are not really compliant with
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the spirit of Loess, which looks for a low-order polynomial and a simple model that can fit data easily.
The reconstructed quantity is a weighted sum of the observations H(z) represented as:

Ĥ(z) =
n

∑
i=1

WijHi, (18)

where the weights in this regression are Wij = W[(xi − x0)/d] and j = 1, . . . , k.
Step A4. Simulated data sample. Simex is a simple simulation algorithm that allows for displaying

the effect of measurement errors on parameter estimates. It consists of adding to the data sets an
additional measurement error as follows:

ηi(λ) = Hi +
√

βσHi , (19)

where ηi(λ) denotes the simulated data points and σHi is the measurement error variance of each H(z)
observation. The resulting measurement error is β = (1 + λ), in which we can extrapolate the data
sample to an error free zone if λ = −1. This zone is achieved after performing a standard regression,
using a quadratic polynomial, of the data set computed for different values of λ. Specifically, we are
going to consider as a starting value λ = 0.5 until λ = 2 increasing in steps of 0.1.

Step A5. Starting the reconstruction. After performing the latter extrapolation step, the data set
will be simplified to the same length of the initial data, and, finally, these simulated data sets are
normalized by H0, given as a result the reconstruction of h(z). All of the above steps are repeated for
all the data points in the astrophysical sample. The connection of the Loess–Simex reconstructed data
points are represented by a curve due to the lack of parameter estimates. The reconstructed normalized
Hubble parameter h(z) gives a general trend of the model.

Step A6. About the confidence regions. To design the confidence regions of the reconstructed
parameter h(z), we require the transfer uncertainties via error propagation given by

σh
2 =

(
σH
H0

)2
+

(
H2

H0
4

)
σ2

H0
. (20)

With this expression, we can calculate the uncertainties for the Om diagnostic

σ2
O(1)

m
=

[
2h

z(3 + 3z + z2)

]2
σh

2. (21)

For the dynamical Om diagnostic, we have the following uncertainties:

σ2
O(2)

m
=

[
−4h(1 + z) + 2z(2 + z)h′

z2(1 + z)(3 + z)

]2

σ2
h +

[
2(2 + z)h

z(1 + z)(3 + z)

]2

σ2
h′ , (22)

σ2
Ok

=

[
6h(1 + z)2 − 2z(3 + 3z + z2)h′

z2(1 + z)(3 + z)

]2

σ2
h +

[
−2(3 + 3z + z2)h
z(1 + z)(3 + z)

]2

σ2
h′ . (23)

As the set implies, we need to find the value of the variable σH . Let us start with the fitted value
Ĥ(z) obtained in the Step A3. For nonparametric regression models, we estimate the error variance as

S2 =
1

n− d fmod

n

∑
i=1

r2
i , (24)
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where ri = Hi − Ĥi is the residual for the i-th observation and d fmod is the equivalent degrees of
freedom for the model, which, in our case, is equal to two. With this, we are capable of computing the
variance of the fitted value Ĥ(z) at z = zi as:

V̂(Ĥi) ≡ σ2
Ĥi

= S2
n

∑
j=1

W2
ij. (25)

The results of the latter are considered to compute the propagation values σh in Equation (20).

Finally, the 68% confidence interval and the 95% confidence interval are given by hi ±
√

V̂(Ĥi) and

hi ± 2
√

V̂(Ĥi), respectively, and hi = Ĥi/H0.

6.2. Reconstruction of h′(z)

The logistics in this issue remains in the steps explained above. Nonetheless, we are going to
proceed with a data set that only includes the coefficients related to the first derivative of H(z).

Step B1. Reconstruction of h′(z). Let us proceed as in Step A1 until Step A3, where in the latter
we performed a linear fit for these points using Equation (17). The fitting coefficients of our interest
are determined by the evaluation of the polynomial in z = 0 as H′(0) = a1, where the prime denotes
differentiation with respect to z. The new data set will consist of these a1 coefficients for the 28
simulated data points, to which we apply a least squares fit and then extrapolate to λ = −1, giving us
the data set that we normalize to obtain the values of h′(z) and its respective curve as in Step A5.

Step B2. About the error propagation. Estimating the errors of h′(z) and constructing a similar step
as was developed with Equations (24) and (25) can be a little tricky, and it is necessary to be careful in
the following methodology. This can be seen from the form of Equation (19), an expression that can
be used similarly for h′(z) if we have at hand the values of H′(z) (already obtained in the linear fit
performance in Step B1). The next question is: how we can compute the uncertainties of H′(z)? We
need to start from Step A4, where we perform a least squares fit and the polynomial that we need to
propagate now is

σH′
2 = σ2

a0
+ z2σ2

a1
+ z4σ2

a2
, (26)

where the σ-values are the diagonal elements of the covariance matrix obtained from H′(z) data set.
With the new set [H′(z), σH′ ], we are ready to reproduce the same steps starting in Equation (19)

and computing its error and matrix variance Equations (24) and (25). Until now, we have not taken
yet into account any normalization of H′(z), an aspect that is implicit in the following propagation
of errors

σh′
2 =

(
σH′

H0

)2
+

(
H′2

H0
4

)
σ2

H0
. (27)

Finally, using this error propagation and its respective h′(z) value, we can construct the confidence
regions as in Step A6.

6.3. Nonparametric Reconstruction of the Om Diagnostic

On one hand, regarding the Om diagnostic for ΛCDM flat model (8), it is straightforward to
compute the Om data set using the Loess–Simex estimate values h(z) calculated in Section 6. The values
of Om are given directly from the new data set ĥ(z).

On the other hand, the uncertainty calculations are easily performed via Equation (21). Thereupon,
we constructed the 68% and the 95% confidence intervals using the expressions: Ôm ± σÔm

and
Ôm ± 2σÔm

, respectively.
As we discussed, the existence of a non-flat universe brings to the scene h′(z) and Ok. In this case,

the system is given by Equations (13) and (14), which are independent of the values of the cosmological
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parameters Ωm and Ωk and imply a model that only relies on the values of our reconstructed h(z)
and h′(z).

The confidence regions will be computed using the error propagation Equations (21) and (22) and
the expressions: Ô(2)

m ± σ
Ô(2)

m
, Ô(2)

m ± 2σ
Ô(2)

m
and Ôk ± σÔk

, Ôk ± 2σÔk
.

7. Discussion and Conclusions

We developed the Loess–Simex factory to achieve two interesting goals. First, we performed the
reconstruction of the normalized Hubble parameter h(z), results that are represented by red dots (red
line) in Figures 2–4. In addition, in the upper plots of Figure 2, we illustrated the original H(z) data set
represented by blue dots with its respective error values and its nonparametric reconstruction (red
dots/line). It is interesting to note the comparison between these reconstructed points and the ΛCDM
model, which is represented by a dotted green line.

Our second goal was the reconstruction of the Om diagnostic and the O(2)
m and Ok parameters using

two astrophysical samples (C-C and BAO) for H(z) and the combination of them. The reconstruction
of the Om diagnostic was made by considering two options: (I) using the already reconstructed h
values (top of Figure 3) and (II) performing directly its reconstruction (bottom of Figure 3).

Let us discuss the results for each case.
For the C-C sample, the nonparametric reconstruction has the same trend as the one reported

in [38]. However, in our case, we worked with the normalized Hubble parameter h, the behaviour of
which is analogous to the previous case, as it is expected. The direct reconstruction of the Om diagnostic
appears to be in good agreement with ΛCDM at z > 1. It is interesting to notice that, in this case, the
confidence regions look smaller than in the case when we use the reconstructed h data.

For the BAO sample, unlike other proposals mentioned above, our results show a ΛCDM model
that lies in our Om confidence contour reconstructions at 2-σ, even by performing the reconstruction
with a few values of this data set. As in the previous sample, the direct reconstruction of this diagnostic
gave a concordance model between 1 up to 2-σ. The reconstructions of O(2)

m and Ok imply the
reconstruction of h′, and the analysis shows large uncertainties. Even so, the reconstructions at high
redshifts show a trend that possibly can loiter to ΛCDM at z > 0.7 (see Figure 4, middle row).

For the C-C+BAO sample, we observe that the reconstruction is almost similar to the C-C case,
clearly due to the amount of data of the first sample in comparison to the second sample. The
concentration of data points at z < 0.5 is related to the effects of the evaluation of the reconstructed
data in Equation (8). We observed in the O(2)

m analysis a pull of the reconstructed curve up at z < 0.3,
which probably shows the important relationship between derivatives of the data and the model itself.
The direct reconstruction at zero-order loiters to ΛCDM up to z = 1, but because this is not a constant
in the entire redshift range, we need to consider a dynamical test.

In order to find the adequate DE model in agreement with the reconstructions, we have performed
a O(2)

m diagnostic (first-order in h, i.e., h′), determining that even when the O(1)
m diagnostic hints to a

phantom behaviour, when we enter in the region w > −1, the reconstructions have a preference for a
EoS with known physical meaning w = −2/3, which corresponds to a static domain wall network in
the entire redshift range. This EoS value is also able to reproduce the current cosmic acceleration in
unified dark energy models [52–57]. At the top of Figure 5, we compare the dynamical O(2)

m diagnostics
reconstructed (red curves) with O(2)

m diagnostics Equation (11) (green dashed curves) using two specific
DE EoS models. How much is the fraction of the reconstructed data that make one DE model better
than the other? To answer this, we calculated the probability of this fraction for each DE model
in terms of the O(2)

m bins. The results are represented by the histograms at the bottom of Figure 5.
The green bars represent DE models (phantom and static domain walls) and the red bars represent
the amount of the reconstructed data. The bin widths for the O(2)

m reconstructed values are calculated
by using [58]. We have that 62% of the reconstructed data lie in O(2)

m < 0. Then, in this range, we
observe that the amount of O(2)

m deviation between this data and each DE model corresponds to 8% for
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a phantom model and 3% for a static domain wall, making the latter a better model in agreement with
the reconstructed data.

In addition, we notice the existence of poles in both analyses (see, for instance, Equations (8),
(11) and (12)) only for the case when w = −1, which can be related with the problem of the phantom
divide line. However, at least at this point in the diagnostic, this kind of divergence is an intrinsic
problem that is not relevant since the current data available do not include z = 0. Forthcoming studies
along the lines of these analyses promise to greatly improve with the use of high quality observations
to make this nonparametric Om diagnostic more accurate and a very useful tool for testing alternative
DE parameterizations and modify gravity proposals.
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Figure 2. Reconstruction of H(z), h(z) and h′(z) parameters for C-C data (left column), BAO data
(middle column) and C-C+BAO data (right column). The red dots (line) are (is) the Loess–Simex results
for each sample. The dashed green line is ΛCDM with Ωm = 0.315. Shaded yellow areas represent the
68% and 95% confidence regions. Top row: H(z) Loess–Simex reconstructions. The blue dots are the
real data sample with its respective error bars; Middle row: h(z) Loess–Simex reconstructions. The
blue dots represent the normalized real data h with its respective error propagation bars; Bottom row:
h′(z) Loess–Simex reconstructions. The purple dots represent the values of the second coefficient after
performing a Loess routine fit, which also gives the uncertainty bars via the covariance matrix.
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The dashed green line is Ωm = 0.315. Shaded purple areas represent the 68% and 95% confidence

regions. Top row: O(1)
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reconstructed directly via Loess–Simex. The blue dots are these values using h normalized with its
error propagation bars.

h and h' reconstructed
Planck LCDM

0.5 1.0 1.5 2.0
-3

-2

-1

0

1

2

3

z

O
m

H2
L HzL

C-C

h and h' reconstructed
Planck LCDM

0.3 0.4 0.5 0.6 0.7

-4

-3

-2

-1

0

1

z

O
m

H2
L HzL

BAO

h and h' reconstructed
Planck LCDM

0.5 1.0 1.5 2.0

-5

0

5

z

O
m

H2
L HzL

C-C+BAO

h and h' reconstructed
Planck LCDM

0.5 1.0 1.5 2.0

-5

0

5

z

O
kHz

L

h and h' reconstructed
Planck LCDM

0.3 0.4 0.5 0.6 0.7
-2

0

2

4

6

8

z

O
kHz

L

h and h' reconstructed
Planck LCDM

0.5 1.0 1.5 2.0

-10

-5

0

5

10

z

O
kHz

L

Figure 4. Reconstruction of the O(2)
m and Ok diagnostics for C-C data (left column), BAO data (middle

column) and C-C+BAO data (right column). The red dots (line) are (is) the reconstructed O(2)
m
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Figure 5. Top: Comparison between DE models: phantom and static domain walls and the O(2)
m

reconstructed using C-C+BAO data. The green dashed lines represent Equation (11) for a phantom

(w0 < −1) and static domain walls (w0 = −2/3) models . The red solid lines represent the O(2)
m

diagnostic using the reconstructed h and h′. We observe on the right-hand side plot that the static

domain walls model appears to be more in agreement with the O(2)
m diagnostic reconstructed in

comparison to the left plot where the phantom model starts to deviate from the O(2)
m reconstructed

at low redshifts (z < 0.5); Bottom: Probability comparison between DE models. The green bars
represent DE models (phantom and static domain walls) and the red bars represent the amount of the

reconstructed data. In addition, a 62% fraction of the reconstructed data lies in O(2)
m < 0, and then,

in this range, we observe that the amount of O(2)
m deviation between this data and each DE model

corresponds to 8% for a phantom model and 3% for a static domain wall. These probabilities support
the results obtained above.
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Appendix A. Reconstruction of D(z)

In order to formulate a test for DE models, let us consider the derivative of the luminosity
distance (5) and the distance-redshift (4) to obtain the following expressions:

d′L =
c

H0
√
−Ωk

sin
(√
−Ωk

∫ z

0
dz′

H0

H(z′)

)
+

c(1 + z)
H

cos
(√
−Ωk

∫ z

0
dz′

H0

H(z′)

)
, (A1)
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D′(z) =
H0

c

[
− dL

(1 + z)2 +
d′L

(1 + z)

]
, (A2)

from where we can extract the following cases:

• If we have a flat universe (Ωk = 0), then the equations are

d′L =
c(1 + z)

H
, D′ =

H0

H
≡ h−1. (A3)

• For the case of a non-flat universe (Ωk 6= 0), we have

d′L = c
H0
√
−Ωk

sin
(√
−Ωk

∫ z
0 dz′ H0

H(z′)

)
+ c(1+z)

H cos
(√
−Ωk

∫ z
0 dz′ H0

H(z′)

)
,

D′ = H0
H cos

(√
−Ωk

∫ z
0 dz′ H0

H(z′)

)
.

(A4)

From Equation (1), we can obtain an expression for the derivative of the distance-redshift

D′−2 = Ωm(1 + z)3 + Ωk(1 + z)2 + (1−Ωm −Ωk) f (z), (A5)

where f (z) is given by Equation (2), which is f (z) = 1 if w0 = −1 and f (z) = (1 + z)3(1+w0) for a
constant EoS. Possible scenarios are:

• For w = −1 and Ωk = 0,
D′−2 = Ωm(1 + z)3 + (1−Ωk). (A6)

• For w = w0 and Ωk = 0,

D′−2 = Ωm(1 + z)3 + (1−Ωm)(1 + z)3(1+w0). (A7)

• For w = −1 and Ωk 6= 0,

D′−2 = Ωm(1 + z)3 + Ωk(1 + z)2 + (1−Ωm −Ωk). (A8)

• For w = w0 and Ωk 6= 0,

D′−2 = Ωm(1 + z)3 + Ωk(1 + z)2 + (1−Ωm −Ωk)(1 + z)3(1+w0). (A9)

From Equation (A7), we obtain the first generalized equation for the Om diagnostic described by
Equation (7).

When we consider a non-flat universe, the Ωk arises, and we are going to need a system of
two equations: the first one given by Equation (10) and the second is the EoS when we rearranged
Equation (3). After straightforward calculations and redefining Ωm ≡ O(2)

m and Ωk ≡ Ok, we obtain
the generalized equations for a non-flat universe and a constant dark energy EoS described by
Equations (11) and (12).
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