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Abstract: We derive the thermodynamic products, in particular the area (or entropy) products ofH±
for a wide variety of black holes (BHs) in anti-de Sitter (AdS) space. We show by explicit and exact
calculations that, for this class of BHs, more complicated functions of the event horizon area and
Cauchy horizon area are indeed mass-independent. This mass-independent results indicate that they
could turn out to be a “universal” quantity provided that they depend only on the quantized angular
momentum, quantized charges, and cosmological constant, etc. Furthermore, these area (or entropy)
product relations for several classes of BHs in AdS space gives us strong indication to understanding
the nature of non-extremal BH entropy (both inner and outer) at the microscopic level. Moreover,
we compute the famous Cosmic Censorship Inequality (which requires Cosmic-Censorship hypothesis)
for these classes of BHs in AdS space. Local thermodynamic stability has been discussed for these
BHs and under certain conditions, these classes of BHs displayed second order phase transition.
The super-entropic BH does not provide any kind of second order phase transition.

Keywords: area product; entropy product; AdS spacetime; universal quantity; mass-independent
quantity; event horizon; Cauchy horizon

1. Introduction

It has been explicitly shown under examination that, for the thermodynamic products for Reissner
Nordstrøm (RN) BH, Kerr BH and Kerr-Newman (KN) BH [1], a simple area product of H±1 is
sufficient to draw a conclusion such that the product of area (or entropy) is a universal quantity.
For instance, the product of inner horizon (IH) or Cauchy horizon (CH) area (A−) and outer horizon
(OH) or event horizon (EH) area (A+) of a standard four dimensional Kerr-Newman (KN) BH should
be [1]

A−A+ = 64π2 J2 + 16π2Q4 . (1)

This expression indicates that the IH area and OH area product should depend on the
quantized charges and quantized angular momentum but that these are independent of the ADM
(Arnowitt-Deser-Misner) mass of the BH space-time. Since this single area product relation is defined
on the horizons and independent of the ADM mass parameter, it should be treated as a “universal”
relation or “universal” quantity. Alternatively, we can say that a unique product relation/formula only
involving horizon quantities could turn out to be universal, but this is the only necessary condition.
The “universal” term particularly used here in a sense that when the thermodynamic product ofH±
is mass-independent. It may also be noted that the Equation (1) is valid for arbitrary axisymmetric,

1 H+ andH− denote event horizon and Cauchy horizons

Galaxies 2017, 5, 10; doi:10.3390/galaxies5010010 www.mdpi.com/journal/galaxies

http://www.mdpi.com/journal/galaxies
http://www.mdpi.com
http://www.mdpi.com/journal/galaxies


Galaxies 2017, 5, 10 2 of 18

stationary BH with surrounding matter in an Einstein-Maxwell system when both the charge Q 6= 0
and angular momentum J 6= 0.

The first motivation comes from the work of Visser [2]. In this work, the author first demonstrated
that in case of Schwarzschild-de Sitter (Kottler) BH in four dimensions, the area product of cosmological
horizon and EH is not mass independent. Analogously for RN-AdS [2] BH in four dimensions,
it has been proved that the product of CH area and EH area is not explicitly mass independent.
This means that the mass independence of the area of the two physical horizons ( which is computed
perturbatively) is not a generic [2] property.

Since one can not derive a simple area product relation as in Equation (1)2 alternatively, one could
derive some complicated function of EH area and CH area for the above described spacetime that might
be mass-independent and this mass-independent relation could turn out to be a “universal” quantity.
Again these mass independent formulae of two physical horizon areas in spherically symmetry cases
are intimately related to the quasi-local quantities which could potentially hold in a wider setting.
For example, when we have set Q = 0 in Equation (1), one obtains the area product relation for Kerr
BH. In this case ( purely Einstein gravity) a simple area product is sufficient and it only depends on
the quantized angular momentum of the BH, as can easily be seen from the exact solution.

This has been extended by Hennig [3] such that for KN-AdS BH, some complicated function
of IH and OH area is indeed mass independent and that could turn out to be a universal quantity.
Very recently, we have derived a functional relation ofH+ area andH− area for a regular Ayón-Beato
and García (ABG) BH [4]. This suggests some complicated function of horizons area that turns out to
be universal. However, it is not a simple area product of horizon radii as in the case of RN BH, Kerr
BH and KN BH. This has been a very fascinating topic in recent years in the GR (General Relativity)
community [1] as well as in the string theory community [5] (see also [6–9]).

The second motivation comes from the work of Cvetič et al. [5], where the authors argued
that if the cosmological constant is quantized then the area (or entropy) product relations for general
rotating multicharged BH in four dimensions (D = 4) and greater than four dimensions (D ≥ 4)
in the case of asymptotically flat and asymptotically AdS space may provide a “looking glass for
probing the microscopics of general BHs”. The authors also proposed more specifically, for the BPS
(Bogomol’ni-Prasad-Sommerfield) class of BHs in case of string theoretical model, the area products of
H∓ should be [5]

A−A+ = 64π2`pl
4N, N ∈ N . (2)

where `pl is the Planck length. This indicates that the area product should be quantized. Therefore,
it is quite interesting to investigate the thermodynamic properties, in particular the area (or entropy)
products in AdS space.

However, in this work, we intend to extend our study for several interesting classes of BHs in
AdS space for different classes of theory. We derive the formulae for these BHs that involve the area
(or entropy) relation in terms of BH horizons and BH parameters with a focus on universal relations
that are mass-independent. These mass independent formulae give us a strong indication that they
could turn out to be a universal quantity.

Phase transition [10,11] is an important phenomena in BH thermodynamics where the BH changes
its phase from stability region to instability region. In case of Schwarzschild-AdS BH, Hawking and
Page [10] in 1983 first demonstrated that there exists a first order phase transition between small and
large BH. It should be emphasized that the thermodynamic fluctuations and holographic properties
of charged AdS BH in the non-extended phase space was first examined by Chamblin et al. [12,13]

2 For RN BH, Kerr BH and KN BH, it is very easy to see that the product of H± is mass-independent. However, for AdS
spacetime the task is non-trivial. In this case, a slightly complicated function ofH± is indeed mass-independent. This may
be triggered to investigate the various AdS spacetime.



Galaxies 2017, 5, 10 3 of 18

(see also [14]) where the authors first considered the phase diagram for the canonical (BH charge at
infinity) and grand canonical (electric potential at infinity) ensembles. They studied the thermodynamic
fluctuations, stability, electric permitivity and also examined the small-large BH phase transitions in
the presence of the charge which is quite similar to the liquid-gas phase transitions in fluids which are
called the van der Waals-Maxwell liquid-gas phase transitions. They also determined the swallow-tail
behaviours of charged AdS BH by computing the free energy. On the other hand, Kubizňák and
Mann [11] first showed that second order phase transitions for charged AdS BH could occur in the
extended phase space. Furthermore, we compute the specific heat for these class of BHs to examine
whether they are locally stable or not. Finally, we examine whether these BHs possesses any kind of
second order phase transition or not. This is the another motivation behind this work.

The last and final motivation comes from work of Penrose [15]. In this work, Penrose [15]
presented an interesting idea regarding the “Cosmic Censorship Conjecture” (CCC) which is an
important issue in the general theory of relativity such that the total ADM (Arnowitt-Deser-Misner)
mass M of the Schwarzschild BH spacetime is related to the area A of the BH EH by the relation

M ≥
√
A

16π
. (3)

which is called the Cosmic Censorship Inequality (CCI) or Cosmic Censorship Bound (CCB) [16] and which
is a necessary condition for Cosmic-Censorship hypothesis (CCH) [15] (See [17–21]). We derive this
inequality for these class of BHs. The physical significance of this inequality is that it states the lower
bound on the mass for any time symmetric initial data set which fulfilled the Einstein equations with
the negative cosmological constant. Additionally, it also fulfilled the dominant energy condition which
possesses no naked singularities. Finally, we consider the thermodynamic properties in the extended
phase space [11,22] and in this framework, the cosmological constant is treated as thermodynamic
pressure and its conjugate variable as a thermodynamic volume.

First, we consider the static and spherically symmetric solution in Hořava Lifshitz gravity with
a cosmological constant. It is a UV complete theory of gravity. It is also a non-relativistic and
re-normalizable theory of gravity [23–25]. It can be reduced to Einstein’s general theory of relativity in
the appropriate limit. This theory manifests a broken Lorentz symmetry in the UV cut-off region.

The fact is that the Horava-Lifshitz gravity is known to suffer from some perturbative instabilities
in the IR limit [26–28], ultimately due to an extra mode which comes from the explicit breaking
of general covariance. Therefore, one of the ways to fix this is to have Horava gravity emerging
dynamically in the UV while preserving Lorentz invariance (or rather, not having a preferred foliation)
in the IR. This is the proposal behind “covariant renormalizable gravity" proposed in 2009 by Nojiri
and Odintsov [29]. The normal GR behaviour is naturally recovered in the IR limit, and the theory is
stable [30].

Secondly, we consider the BH solutions in massive gravity [31]. In the holographic framework,
“a class of strongly interacting quantum field theory with broken translation symmetry” is described.
Massive gravitons are playing key role in this theory. It has a “Lorentz-breaking mass” which is the
alternative for “spatial inhomogenities”. Due to this property, it breaks “momentum conservation in
the boundary field theory”. Whereas in Einstein’s general theory of relativity, graviton is mass-less.
Thus, it is natural to ask the question: does any theory exist where the graviton mass is massive?
Vegh [31] obtains a BH solution in AdS space where graviton mass is massive. Thus, it is interesting
to study its thermodynamic properties and particularly focus on area (or entropy) product relations
which are mass-independent.

Lastly, we consider the another class of BH solution in AdS space where the fields are phantom,
which indicates that exotic matter exists. These phantom fields have negative energy density, which will
be discussed in Section 4. Finally, we consider another interesting class of BHs which are super-entropic.
Their properties are discussed in Section 5.
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2. Thermodynamic Product Relations for Hořava Lifshitz BH in AdS Space

The static and spherically symmetric metric of Hořava Lifshitz BH in AdS Space [32] is given by

ds2 = −X (r)dt2 +
dr2

X (r)
+ r2(dθ2 + sin2 θdφ2) . (4)

where the function X (r) is defined by

X (r) = 1 +
(

ω− 2
3

Λ
)

r2 −

√
r
[

ω

(
ω− 4

3
Λ
)

r3 + β

]
. (5)

where β and Λ are the integration constant and cosmological constant respectively. Let us choose
β = 4Mω, where ω is a free parameter that controls the UV characteristics of the theory. When Λ = 0,
we get back the solution of Kehagias-Sfetsos (KS) BH [33] in Hořava Lifshitz (HL)3 gravity [23–25].
Again we recover the Schwarzschild BH in the IR limit ω → ∞. By inserting β = 4Mω, we can rewrite
the function X (r) as

X (r) = 1 +
(

1− 2Λ
3ω

)
ωr2 −ωr2

√
1− 4Λ

3ω
+

4M
ωr3 . (6)

The BH horizons could be find by setting X (r) = 0 i.e.,

4Λ2r4 + 18ω

(
1− 2Λ

3ω

)
r2 − 36Mωr + 9 = 0 . (7)

The roots of the equation can be find by applying Vieta’s theorem:

4

∑
i=1

ri = 0 . (8)

∑
1≤i<j≤4

rirj =
9ω

2Λ2

(
1− 2Λ

3ω

)
. (9)

∑
1≤i<j<k≤4

rirjrk =
9Mω

Λ2 . (10)

∑
1≤i<j<k<l≤4

rirjrkrl =
9

4Λ2 . (11)

Case I: Eliminating mass parameter, we obtain only a single mass-independent relation in terms
of two horizons:

9
4Λ2

r1r2
−
(

r2
1 + r2

2 + r1r2

)
=

9ω

2Λ2

(
1− 2Λ

3ω

)
. (12)

One can rewrite this formula in terms of area Ai = 4πr2
i , (i = 1, 2) or (i = +,−) and it should be(

9π
Λ2

)
√
A1A2

−
(
A1 +A2 +

√
A1A2

)
4π

=
9ω

2Λ2

(
1− 2Λ

3ω

)
. (13)

3 Within HL gravity, there are some BH solution which is non-asymptotically AdS spacetime [34]. But in our case the BH
solution is asymptotically AdS spacetime.
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The other mass-independent formula becomes

√
A1A2A3A4 =

36π2

Λ2 . (14)

Case II: For our record, we can write the only mass-dependent relation given by

∑
1≤i<j<k≤4

√
Ai
4π

√
Aj

4π

√
Ak
4π

=
9Mω

Λ2 . (15)

The entropy4 of the BH is given by

Si =
Ai
4

. (16)

and the BH temperature is

Ti =
X ′(ri)

4π

where

X ′(ri) = 2ω

(
1− 2Λ

3ω

)
ri

−2ω2
(

1− 4Λ
3ω

)
r3

i√
1 + 2

(
1− 2Λ

3ω

)
ωr2

i +
(

1− 2Λ
3ω

)2
ω2r4

i

−

[
4Λ2r4

i + 18
(

1− 2Λ
3ω

)
ωr2

i + 9
]

18ri

√
1 + 2

(
1− 2Λ

3ω

)
ωr2

i +
(

1− 2Λ
3ω

)2
ω2r4

i

. (17)

We find that the CCI for HL BH in AdS Space:

M ≥

[
18ω

(
1− 2Λ

3ω

) (
Ai
4π

)
+ 4Λ2

(
Ai
4π

)2
+ 9
]

36ω
√
Ai
4π

. (18)

when the inequality becomes equality it is the relation of mass in terms of area. When Λ = 0, we find
the CCI for KS BH in HL gravity

M ≥ 1
2

√
A±
4π

+
1

4ω

√
4π

A±
. (19)

where A± is the area of EH and CH in KS BH [9].

4 The entropy in HL gravity is not exactly equal to the area divided by four in addition to that some logarithmic term appears
because the entropy computed here by using the formula dM = TdS and by assuming the first law of thermodynamics is
always satisfied [34]. In fact, due to some unusual properties of HL gravity the P−V criticality also breaks down [35] in the
extended phase space.



Galaxies 2017, 5, 10 6 of 18

Now let us calculate the specific heat to determine the local thermodynamic stability of the BH.
The specific heat is defined by

Ci =
∂M
∂Ti

=

∂M
∂ri
∂Ti
∂ri

. (20)

where,

∂M
∂ri

=
12Λ2r4

i + 18ω
(

1− 2Λ
3ω

)
r2

i − 9

36ωr4
i

. (21)

and

∂Ti
∂ri

=
X ′′(r)

4π
. (22)

where

X ′′(r) = 2ω

(
1− 2Λ

3ω

)

−2ω2
(

1− 4Λ
3ω

)
r2

i

[
3 + 4ω

(
1− 2Λ

3ω

)
r2

i + ω2
(

1− 2Λ
3ω

)2
r4

i

]
[

1 + 2ω
(

1− 2Λ
3ω

)
r2

i + ω2
(

1− 2Λ
3ω

)2
r4

i

] 3
2

− Υ(r)

18r2
i

[
1 + 2ω

(
1− 2Λ

3ω

)
r2

i + ω2
(

1− 2Λ
3ω

)2
r4

i

] 3
2

where

Υ(r) = 4ω2Λ2
(

1− 2Λ
3ω

)2
r8

i − 18ω3
(

1− 2Λ
3ω

)3
r6

i + 16ωΛ2
(

1− 2Λ
3ω

)
r6

i

−27ω2
(

1− 2Λ
3ω

)2
r4

i + 12Λ2r4
i − 18ω

(
1− 2Λ

3ω

)
r2

i − 9. (23)

The local thermodynamic stability requires that Ci > 0 and the second order phase transition
occurs at X ′′(r) = 0, which means the specific heat diverges at that point.

Now if we want to study the thermodynamic behaviour of the HL gravity with AdS space in
the extended phase space by considering the cosmological constant as a thermodynamic pressure,
i.e., Λ = − 3

`2 = −8πP5 and its conjugate quantity as a thermodynamic volume, i.e., Vi =
4
3 πr3

i then
the ADM mass of an AdS BH may be treated as the enthalpy of AdS space-time, i.e., M = H = U + PV.
Where U is the thermal energy of the system [22]. Therefore, one should write the BH equation of state
in the extended phase space as[

36ω2r8
i

(
1 +

16πP
3ω

)4
− 65536π2r8

i P4

]
+
(

2592ω3r6
i − 5184πTiω

3r7
i

)(
1 +

16πP
3ω

)3

5 From Equation (5), it follows that the radius of curvature of the asymtotically AdS region is given in terms of the following

effective cosmological constant i.e., Λe f f = ω − 2
3 Λ −

√
ω
(

ω− 4
3 Λ
)

. It is convenient to define Λ = −8πP rather

Λe f f = −8πP.
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−
[

9216π2ωr6
i

(
1 +

16πP
3ω

)
+ 18432π2ω2r8

i

(
1 +

32πP
3ω

)]
P2

+
[
1296ω2r4

i − 10368πTiω
2r5

i + 5184π2T2
i ω2r6

i

] (
1 +

16πP
3ω

)2

−
[

1296ω4r8
i

(
1 +

32πP
3ω

)2
+ 324ω2r4

i

(
1 +

16πP
3ω

)2
+ 4608π2r4

i P2

]

−1296ω3r6
i

(
1 +

16πP
3ω

)(
1 +

32πP
3ω

)
+
(

10368π2T2
i ωr4

i − 5184πTiωr3
i

)(
1 +

16πP
3ω

)

−
[

18ωr2
i

(
1 +

16πP
3ω

)
+ 648ω2r4

i

(
1 +

32πP
3ω

)]
+ 5184π2T2

i r2
i − 36 = 0. (24)

This is the BH equation of state and the quartic nature of P. It would be interesting if one could study
the P−V criticality of this kind of BH by imposing the condition at the point of inflection, i.e.,

∂P
∂ri

= 0 . (25)

∂2P
∂ri

2 = 0 . (26)

This may provide some interesting phase behaviour in the P−V diagram.
Now in the extended phase space, the mass parameter becomes

M =
256π2P2r4

i + 18ω
(

1 + 16πP
3ω

)
r2

i + 9

36ωri
. (27)

The thermodynamic volume is defined in the extended phase space as

V =

(
∂M
∂P

)
S

. (28)

and it is found to be for HL BH in AdS space:

Vi =
4
3

πr3
i

(
32πP

3ω
+

2
ωr2

i

)
. (29)

It is quite interesting that the thermodynamic volume for HL BH in AdS space does not satisfy
the formula

Vi =
4
3

πr3
i . (30)

that means HL gravity in AdS space violates the naive geometric volume formula. This is the counter
example [35–37] of any spherically symmetric BH for which the thermodynamic volume is

Vi 6=
4
3

πr3
i . (31)
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However, it has been shown that another interesting feature of the thermodynamic volume is
called Reverse Isoperimetric Inequality [38] which is defined as

R =

(
3V
4π

) 1
3
(

4π

A

) 1
2

. (32)

and it is calculated to be for this BH:

Ri =

(
32πP

3ω
+

2
ωr2

i

) 1
3

> 1 . (33)

It is satisfied for this BH.
Finally, we compute the Gibbs free energy for this AdS BH and it is found to be

Gi = H − TiSi =
256π2P2r4

i + 18ω
(

1 + 16πP
3ω

)
r2

i + 9

36ωri
− r2

i
X ′(ri)

4
. (34)

This indicates that Gi depends upon both the thermodynamic pressure and coupling constant.

3. Area Products for BH Solutions in Massive Gravity

In this section we would like to derive the thermodynamic product relations, in particular the
area product relation for BH solutions in massive gravity [31]. The action for BH solutions in massive
gravity in (n + 2) dimension is given by

I =
1

16π

∫ √
−g dn+2x

[
R +

n(n + 1)
`2 − 1

4
FµνFµν + m2

4

∑
i=1

ciUi(g, f )

]
. (35)

where m, ` and f are graviton mass, AdS radius and reference metric respectively. The reference
metric is defined by fµνdxµdxν = hijdxidxj and hijdxidxj represents line element for n = 2 dimensional
Einstein space with constant curvature n(n− 1)k. Where k = −1, 0, 1 are the hyperbolic, planar and
spherical topology of the BH horizons respectively. The field tensor is given by Fµν = ∂µ Aν − ∂ν Aµ.
ci and Ui are constants and symmetric polynomials of the eigen values of (n + 2)× (n + 2) matrix

Kµ
ν ≡

√
gµβ fβν, i.e.,

U1 = [K],
U2 = [K]2 − [K2],

U3 = [K]3 − 3[K][K2] + 2[K3],

U4 = [K]4 − 6[K]2[K2] + 8[K][K3] + 3[K2]2 − 6[K4] . (36)

More details can be found in Reference [39]. So we do not repeat here. Finally, we obtain the static
BH solutions in massive gravity as found in [39] in the form as follows

ds2 = −F (r)dt2 +
dr2

F (r) + r2hijdxidxj . (37)

where the F (r) is given by

F (r) = k +
r2

`2 −
M

rn−1 +
Q2

2n(n− 1)r2(n−1)
+

c0c1m2

n
r
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+c2
0c2m2 +

(n− 1)c3
0c3m2

r
+

(n− 1)(n− 2)c2
0c4m2

r2 . (38)

with the chemical potential at infinity is given by

µ =
Q

(n− 1)rn−1
+

. (39)

Since in this work we are restricted in the four dimensional case, thus we choose the parameter
c3 = c4 = 0. M, Q and c0 are BH mass, BH charge and a positive constant respectively. For

convenience, we have set c0c1m2

2 = a and c2
0c2m2 = b respectively. These are remnant graviton mass

dependent parameters. Also we have set the parameter k = 1 for BH case. Therefore, the function
F (r) becomes [40]

F (r) = 1− 2M
r

+
r2

`2 +
Q2

4r2 + ar + b . (40)

The BH horizons correspond to F (r) = 0:

4r4 + 4a`2r3 + 4(1 + b)`2r2 − 8M`2r + Q2`2 = 0 . (41)

To finding the roots we apply the Vieta’s theorem:

4

∑
i=1

ri = −a`2 . (42)

∑
1≤i<j≤4

rirj = (1 + b)`2 . (43)

∑
1≤i<j<k≤4

rirjrk = 2M`2 . (44)

∑
1≤i<j<k<l≤4

rirjrkrl =
Q2`2

4
. (45)

Case I:
Since we are interested in finding the mass-independent area product formula in terms of two

physical horizons, by eliminating mass parameter from the above Eqs. we have found

Q2`2

4
r1r2

− a`2(r1 + r2)−
(

r2
1 + r2

2 + r1r2

)
= (1 + b)`2 . (46)

If we are working with area of the BH horizons, i.e., Ai = 4πr2
i (i = 1, 2) then we should find the

following mass-independent area functional relation in terms of two BH physical horizons:

πQ2`2
√
A1A2

− a`2

[√
A1

4π
+

√
A2

4π

]
−
(
A1 +A2 +

√
A1A2

)
4π

= (1 + b)`2 . (47)

Once again the other mass-independent formula becomes√
A1A2A3A4 = 4π2`2Q2 . (48)

Case II: For our record, we have only single mass dependent area functional relation is given by[
πQ2`2
√
A1A2

−
√
A1A2

4π

] [√
A1

4π
+

√
A2

4π

]
− a`2

√
A1A2

4π
= 2M`2 . (49)
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The BH temperature in massive gravity is given by

Ti =
F ′(ri)

4π

=
12r4

i + 8a`2r3
i + 4`2(1 + b)ri − `2Q2

16π`2r3
i

. (50)

where i = 1, 2.
The CCI for this BH should read

M ≥
√
Ai

16π
+

(
Ai

4π`2

)√
Ai

16π
+

a
2
+ b

√
Ai

16π
. (51)

Finally the specific heat is given by

Ci = 2πr2
i

[
12r4

i + 8a`2r3
i + 4`2(1 + b)r2

i − `2Q2][
12r4

i − 4`2(1 + b)r2
i + 3`2Q2

] . (52)

The specific heat diverges at

ri = ±

√√√√ (1 + b)`2

6

[
1±

√
1− 12Q2

`2(1 + b)2

]
. (53)

which indicates that the BH in massive gravity shows second order phase transition. This can be seen
from the Figure 1.

Figure 1. In this figure, we have plotted the variation of specific heat with horizon radius for massive
gravity. Here a = b = ` = 1 and x = r+.

Now if we consider the extended phase space the mass parameter becomes

M =
4
3

πPr3
i +

ri
2
+

Q2

8ri
+

a
2
+

bri
2

. (54)
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The thermodynamic volume is found to be

Vi =

(
∂M
∂P

)
S
=

4
3

πr3
i . (55)

Unlike HL gravity with AdS space it does satisfied that the thermodynamic volume is equal to
the naive geometric volume.

The Gibbs free energy for massive gravity is calculated to be

Gi = M− TiSi =
4
3

πPr3
i +

ri
2
+

Q2

8ri
+

a
2
+

bri
2
− r2

i
F ′(ri)

4
. (56)

4. Area Products for Phantom AdS BHs

In this section we would like to compute the thermodynamic product relations of charged
phantom spherically symmetric AdS BHs [41]. The main motivation behind this investigation comes
from the fact that phantom fields are exotic fields in theoretical physics. This phantom field is due to
negative energy density. Current observational data [42] tells us that phantom field can explain the
acceleration of our universe. Thus, it is important to study the thermodynamic properties of phantom
fields by calculating thermodynamic products, in particular, area (or entropy ) products.

The action for an AdS BH with phantom charge is given by

I =
1

16π

∫ √
−g d4x

[
R− 2Λ + 2ηFµνFµν

]
. (57)

where the constant η determines the nature of the electro-magnetic (EM) field. For η = 1, we obtain
the classical EM theory but when η = −1, one gets the Maxwell field which is phantom. The spherically
symmetric solution of the above action is given by

ds2 = −V(r)dt2 +
dr2

V(r) + r2(dθ2 + sin2 θdφ2) . (58)

where the function V(r) is

V(r) = 1− 2M
r
− Λ

3
r2 + η

Q2

r2 . (59)

and,

F =
1
2

Fµνdxµ ∧ dxν =
Q2

r2 dt ∧ dr . (60)

and also M and Q are represents the mass of the BH and charge of the EM source. When η = −1,
the energy of the EM field to the action becomes negative so it could be interpreted as exotic matter.

Now setting −Λ
3 = 1

`2 . Therefore, the BH horizons correspond to V(r) = 0:

r4 + `2r2 − 2M`2r + η`2Q2 = 0 . (61)
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Proceeding analogously, applying Vieta’s theorem we find

4

∑
i=1

ri = 0 . (62)

∑
1≤i<j≤4

rirj = `2 . (63)

∑
1≤i<j<k≤4

rirjrk = 2M`2 . (64)

∑
1≤i<j<k<l≤4

rirjrkrl = ηQ2`2 . (65)

Case I:
Again eliminating mass parameter, one finds only single mass-independent relation in terms of

two physical horizons:

η
`2Q2

r1r2
−
(

r2
1 + r2

2 + r1r2

)
= `2 . (66)

Similarly, one can rewrite this formula in terms of area Ai = 4πr2
i , (i = 1, 2):

η
(4π`Q)2
√
A1A2

−
(
A1 +A2 +

√
A1A2

)
= 4π`2 . (67)

The other mass-independent formula becomes√
A1A2A3A4 = 16π2η`2Q2 . (68)

Case II:
It may be noted that the only single mass dependent area product relation is[

η
(4π`Q)2
√
A1A2

−
√
A1A2

] [√
A1

4π
+

√
A2

4π

]
− a`2

√
A1A2

4π
= 8πM`2 . (69)

The BH temperature should read

Ti =
V ′(ri)

4π
=

1
4πri

(
1 + 3

r2
i
`2 − η

Q2

r2
i

)
. (70)

where i = 1, 2.
The CCI for phantom BHs should be

M ≥
√
Ai

16π

(
1 +

Ai
4π`2 + η

4πQ2

Ai

)
. (71)

The specific heat is calculated to be

Ci = 2πr2
i

 3 r2
i
`2 − η Q2

r2
i
+ 1

3 r2
i
`2 + 3η Q2

r2
i
− 1

 . (72)
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The specific heat diverges at

ri = ±

√√√√ `2

6

[
1±

√
1− 36η

Q2

`2

]
. (73)

that indicates the phantom BHs possesses second order phase transition. It could be found from the
Figure 2.

Figure 2. In this figure, we have plotted the variation of specific heat with horizon radius for phantom
AdS BH. Here η = −1, ` = 1 and x = r+.

In the extended phase space the mass parameter becomes

M =
4
3

πPr3
i +

ri
2
+ η

Q2

2ri
. (74)

The thermodynamic volume in this case is found to be

Vi =

(
∂M
∂P

)
S
=

4
3

πr3
i . (75)

Unlike HL gravity in AdS space, it indeed do satisfied that the thermodynamic volume is equal to
the naive geometric volume.

The Gibbs free energy for phantom BH is given by

Gi = M− TiSi =
4
3

πPr3
i +

ri
2
+ η

Q2

2ri
− r2

i
V ′(ri)

4
. (76)

It may be noted that the product of Gibbs free energy depends upon the mass parameter. In the
limit η = 1, all the results reduce to for RN-AdS BH and for η = −1, one obtain the results for
phantom BHs.

5. Area Products for Super-Entropic BHs

This section deals with a new class of spinning AdS BHs having non-compact EHs of finite area
in four dimensions and they are the solutions of gauged supergravity [43]. Additionally, their entropy
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exceeds the maximal bound followed by the conjecture Reverse Isoperimetric Inequality. These types of
BHs are called super-entropic BH [44–46].

The metric for super-entropic BH [44] (in units where G = c = 1) is given by

ds2 = − ∆
ρ2

[
dt− `sin2θdψ

]2
+

sin4 θ

ρ2

[
`dt− (r2 + `2) dψ

]2
+ ρ2

[
dr2

∆
+

dθ2

sin2θ

]
. (77)

where

ρ2 ≡ r2 + `2cos2θ (78)

∆ ≡
(
`+

r2

`

)2

− 2mr + q2 . (79)

The horizon location can be determined by the condition ∆(r) = 0

r4 + 2`2r2 − 2m`2r + `2(`2 + q2) = 0 . (80)

Applying Vieta’s rule we get

4

∑
i=1

ri = 0 . (81)

∑
1≤i<j≤4

rirj = 2`2 . (82)

∑
1≤i<j<k≤4

rirjrk = 2m`2 . (83)

∑
1≤i<j<k<l≤4

rirjrkrl = `2(`2 + q2) . (84)

The relevant thermodynamic quantities for the super-entropic BH are

M =
mµ

2π
, J = M`, Ωi =

`

r2
i + `2

. (85)

Si =
Ai
4

=
µ

2

(
r2

i + `2
)

, Φi =
qri

r2
i + `2

, Q =
µq
2π

. (86)

where µ is dimensionless parameter and i = 1, 2.
Case I:
Now eliminating the mass parameter, one obtains the mass-independent relation in terms of two

physical horizons:

`2(q2 + `2)

r1r2
−
(

r2
1 + r2

2 + r1r2

)
= 2`2 . (87)

Similarly, one obtains this formula in terms of area Ai = 2µ(r2
i + `2), (i = 1, 2):

`2(q2 + `2)√
A1
2µ − `2

√
A2
2µ − `2

−
[(
A1

2µ
+
A2

2µ

)
− 2`2 +

√
A1

2µ
− `2

√
A2

2µ
− `2

]
= 2`2 . (88)

The other mass-independent formula for super-entropic BHs is√
A1

2µ
− `2

√
A2

2µ
− `2

√
A3

2µ
− `2

√
A4

2µ
− `2 = `2(q2 + `2) . (89)
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Case II:
The mass dependent area product formula for super-entropic BH should read `2(q2 + `2)√

A1
2µ − `2

√
A2
2µ − `2

−
√
A1

2µ
− `2

√
A2

2µ
− `2

 [√A1

2µ
− `2 +

√
A2

2µ
− `2

]
= 2m`2 . (90)

The BH temperature should read

Ti =
1

4πri

(
3

r2
i
`2 − 1− q2

r2
i + `2

)
. (91)

where i = 1, 2.
The CCI for this BH is calculated to be

m ≥

[
`2q2 +

(√
Ai
2µ − `2 + `2

)2
]

2`2
√
Ai
2µ − `2

. (92)

The specific heat is found to be

Ci =
2π

`2


(
r2

i + `2) (3r2
i − `2)− q2`2

1 + 3 r2
i
`2 + q2 (3r2

i +`2)

(r2
i +`2)

2

 . (93)

The specific heat diverges for super-entropic BH at the point by solving the following equation

3r6
i + 7`2r4

i + `2
(

5`2 + 3q2
)

r2
i + `4(q2 + `2) = 0. (94)

It seems that this equation has no real solution at all and from the Figure 3, it is clear that, in fact,
no second order phase transition occurs for four dimensional super-entropic BHs.

Figure 3. In this figure, we have plotted the variation of specific heat with horizon radius for
super-entropic BH. Here ` = 1 and x = r+.
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The thermodynamic volume for super-entropic BH is calculated in [44]

Vi =
2
3

µri

(
r2

i + `2
)

. (95)

which is reminiscent of the naive geometric volume. It follows from the equation is that it is
independent of the BH charge. It is also important to note why this BH is called super-entropic.
This can be calculated in [44] forH+:

Ri =

(
r2

i
r2

i + `2

) 1
6

< 1 . (96)

which means it has not satisfied the conditionRi > 1, this is why it is called super-entropic BH.
If we consider the extended phase space, the mass parameter becomes

m =
1

2ri

[
q2 +

8πP
3

(
r2

i +
3

8πP

)2
]

. (97)

Therefore the Gibbs free energy is computed to be

Gi = m− TiSi

= 1
2ri

[
q2 + 8πP

3
(
r2

i +
3

8πP
)2
]
− µ

8πri

(
r2

i +
3

8πP
) [

8πPr2
i − 1− q2

(r2
i +

3
8πP )

]
. (98)

This indicates that the product of Gibbs free energy does depend on the mass parameter, so it is
not a mass-independent quantity.

6. Discussion

We studied the intriguing thermodynamic properties for different class of asymptotically
spherically symmetric BH solutions in AdS space in Einstein gravity as well as certain modified
theories of gravity. The common feature for each AdS BH is that it is quartic in nature for the radial
variable. We computed their area (or entropy) product relations. We showed that for each AdS BH,
there are more complicated functions ofH± area that are mass-independent and which also relates the
different BH parameters.

Also, these mass-independent thermodynamic product relations for multi-horizon BHs have
interesting implications in BH thermodynamics. Firstly, these thermodynamic relations signal that
they could turn out to be a universal quantity. Secondly, they may provide some insight into the
microscopic origin of non-extremal BH entropy (both inner and outer) which is an outstanding issue
in quantum theory of gravity. We have also studied the local thermodynamic stability by computing
the specific heat at constant pressure. We determined the condition under which the BH possesses
second order phase transition. Interestingly, we found that super-entropic BH does not possess any
kind of second order phase transition.

Furthermore, we have derived the important inequality in general relativity which is called CCI.
This relates the mass and area of the BH. Finally, we computed the Gibbs free energy for each BH.
The thermodynamic product relations in case of alternative theories of gravity like f (R) gravity can be
found in a very recent work [47] by using the extended phase-space formalism.

Conflicts of Interest: The authors declare no conflict of interest.
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