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Abstract:



The luminosity function for quasars (QSOs) is usually fitted by a Schechter function. The dependence of the number of quasars on the redshift, both in the low and high luminosity regions, requires the inclusion of a lower and upper boundary in the Schechter function. The normalization of the truncated Schechter function is forced to be the same as that for the Schechter function, and an analytical form for the average value is derived. Three astrophysical applications for QSOs are provided: deduction of the parameters at low redshifts, behavior of the average absolute magnitude at high redshifts, and the location (in redshift) of the photometric maximum as a function of the selected apparent magnitude. The truncated Schechter function with the double power law and an improved Schechter function are compared as luminosity functions for QSOs. The chosen cosmological framework is that of the flat cosmology, for which we provided the luminosity distance, the inverse relation for the luminosity distance, and the distance modulus.
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1. Introduction


The Schechter function was first introduced in order to model the luminosity function (LF) for galaxies (see [1]), and later was used to model the LF for quasars (QSOs) (see [2,3]). Over the years, other LFs for galaxies have been suggested, such as a two-component Schechter-like LF (see [4]), the hybrid Schechter+power-law LF to fit the faint end of the K-band (see [5]), and the double Schechter LF, see Blanton et al. [6]. In order to improve the flexibility at the bright end, a new parameter [image: there is no content] was introduced in the Schechter LF, see [7]. The above discussion suggests the introduction of finite boundaries for the Schechter LF rather than the usual zero and infinity. As a practical example, the most luminous QSOs have absolute magnitude [image: there is no content] or the luminosity is not ∞ and the less luminous QSOs have have absolute magnitude [image: there is no content] or the luminosity is not zero (see Figure 19 in [8]). A physical source of truncation at the low luminosity boundary (high absolute magnitude) is the fact that with increasing redshift the less luminous QSOs progressively disappear. In other words, the upper boundary in absolute magnitude for QSOs is a function of the redshift.



The suggestion to introduce two boundaries in a probability density function (PDF) is not new and, as an example, Ref. [9] considered a doubly-truncated gamma PDF restricted by both a lower (l) and upper (u) truncation. A way to deduce a new truncated LF for galaxies or QSOs is to start from a truncated PDF and then derive the magnitude version. This approach has been used to deduce a left truncated beta LF (see [10,11]), and a truncated gamma LF (see [12]).



The main difference between LFs for galaxies and for QSOs is that, in the first case, we have an LF for a unit volume of 1 [image: there is no content] and, in the second case, we are speaking of an LF for unit volume but with a redshift dependence. The dependence on the redshift complicates an analytical approach because the number of observed QSOs at low luminosity decreases with the redshift, and the highest observed luminosity increases with the redshift. The first effect is connected with the Malmquist bias, i.e., the average luminosity increases with the redshift, and the second one can be modeled by an empirical law. The above redshift dependence in the case of QSOs can be modeled by the double power law LF (see [13]), or by an improved Schechter function (see [14]). The present paper derives, in Section 2, the luminosity distance and the distance modulus in a flat cosmology. Section 3 derives a truncated version of the Schechter LF. Section 4 applies the truncated Schechter LF to QSOs, deriving the parameters of the LF in the range of redshift [image: there is no content], modeling the average absolute magnitude as a function of the redshift, and deriving the photometric maximum for a given apparent magnitude as a function of the redshift.




2. The Flat Cosmology


The first definition of the luminosity distance, [image: there is no content], in flat cosmology is


[image: there is no content]



(1)




where [image: there is no content] is the Hubble constant expressed in kms−1Mpc−1, c is the speed of light expressed in kms−1, z is the redshift, a is the scale-factor, and [image: there is no content] is


ΩM=8πGρ03H02,



(2)




where G is the Newtonian gravitational constant and [image: there is no content] is the mass density at the present time, see Equation (2.1) in [15]. A second definition of the luminosity distance is


dL(z;c,H0,ΩM)=cH0(1+z)∫0z11+z3ΩM+1−ΩMdz,



(3)




see Equation (2) in [16]. The change of variable [image: there is no content] in the second definition allows finding the first definition. An analytical expression for the integral (1) is here reported as a Taylor series of order 8 when [image: there is no content] and [image: there is no content]kms−1Mpc−1


dL(z)=4282.74(1+z)(2.45214+0.01506(1+z)−8−0.06633(1+z)−7−0.01619(1+z)−6+0.60913(1+z)−5−1.29912(1+z)−4+0.406124(1+z)−3+2.47428(1+z)−2−4.57509(1+z)−1)Mpc,



(4)




and the distance modulus as a function of z, [image: there is no content],


(m−M)=F(z)=43.15861+2.17147ln(7.77498z2+2.45214z8+15.0420z7+39.1085z6+56.4947z5+49.3673z4+26.1512z3+0.99999z+1.7310−7)−15.2003ln(1+z).



(5)







As a consequence, the absolute magnitude, M, is


[image: there is no content]



(6)







The angular diameter distance, [image: there is no content], after [17], is


[image: there is no content]



(7)







We may approximate the luminosity distance as given by Equation (4) by the minimax rational approximation, [image: there is no content], with the degree of the numerator [image: there is no content] and the degree of the denominator [image: there is no content]:


dL,2,1(z)=4.10871+1813.96z+2957.04z20.44404+0.27797z,



(8)




which allows deriving the inverse formula, the redshift, as a function of the luminosity distance:


z2,1(dL)=0.000047dL−0.306718+3.38175×10−141.93181018dL2+1.06093×1023dL+8.10464×1025.



(9)







Another useful distance is the transverse comoving distance, [image: there is no content],


[image: there is no content]



(10)




with the connected total comoving volume [image: there is no content]


[image: there is no content]



(11)




which can be minimax-approximated as


Vc,3,2=3.014841010z3+6.396991010z2−1.267931010z+4.101041080.45999−0.01011z+0.093371z2Mpc3.



(12)








3. The Adopted LFs


This section reviews the Schechter LF, the double power law LF, and the Pei LF for QSOs. The truncated version of the Schechter LF is derived. The merit function [image: there is no content] is computed as


[image: there is no content]



(13)




where n is the number of bins for LF of QSOs and the two indices [image: there is no content] and [image: there is no content] stand for ‘theoretical’ and ‘astronomical’, respectively. The residual sum of squares (RSS) is


[image: there is no content]



(14)




where [image: there is no content] is the theoretical value and [image: there is no content] is the astronomical value.



A reduced merit function [image: there is no content] is evaluated by


χred2=χ2/NF,



(15)




where [image: there is no content] is the number of degrees of freedom and k is the number of parameters. The goodness of the fit can be expressed by the probability Q (see Equation 15.2.12 in [18], which involves the degrees of freedom and the [image: there is no content]). According to [18], the fit “may be acceptable” if [image: there is no content]. The Akaike information criterion (AIC) (see [19]), is defined by


AIC=2k−2ln(L),



(16)




where L is the likelihood function and k is the number of free parameters in the model. We assume a Gaussian distribution for the errors and the likelihood function can be derived from the [image: there is no content] statistic [image: there is no content] where [image: there is no content] has been computed by Equation (13), see [20,21]. Now, the AIC becomes


AIC=2k+χ2.



(17)







3.1. The Schechter LF


Let L be a random variable taking values in the closed interval [image: there is no content]. The Schechter LF of galaxies, after [1], is


Φ(L;Φ*,α,L*)dL=(Φ*L*)(LL*)αexp(−LL*)dL,



(18)




where [image: there is no content] sets the slope for low values of L, [image: there is no content] is the characteristic luminosity, and [image: there is no content] represents the number of galaxies per [image: there is no content]. The normalization is


∫0∞Φ(L;Φ*,α,L*)dL=Φ*Γα+1,



(19)




where


Γ(z)=∫0∞e−ttz−1dt,



(20)




is the gamma function. The average luminosity, [image: there is no content], is


⟨L(Φ*,α,L*)⟩=L*Φ*Γα+2.



(21)







An equivalent form in absolute magnitude of the Schechter LF is


Φ(M;Φ*,α,M*)dM=0.921Φ*100.4(α+1)(M*−M)exp(−100.4(M*−M))dM,



(22)




where [image: there is no content] is the characteristic magnitude. The scaling with h is [image: there is no content] and [image: there is no content] [[image: there is no content]].




3.2. The Truncated Schechter LF


We assume that the luminosity L takes values in the interval [image: there is no content], where the indices l and u mean ‘lower’ and ‘upper’; the truncated Schechter LF, [image: there is no content], is


ST(L;Ψ*,α,L*,Ll,Lu)=−LL*αe−LL*Ψ*Γα+1L*Γα+1,LuL*−Γα+1,LlL*,



(23)




where [image: there is no content] is the incomplete Gamma function defined as


Γa,z=∫z∞ta−1e−tdt,



(24)




see [22]. The normalization is the same as for the Schechter LF, see Equation (19),


∫0∞ST(L;Ψ*,α,L*,Ll,Lu)dL=Ψ*Γα+1.



(25)







The average value is


⟨L(Ψ*,α,L*,Ll,Lu)⟩=NL*Γα+1,LuL*−Γα+1,LlL*



(26)




with


N=Ψ*(L*2Γ(α+1,LuL*)α−L*2Γ(α+1,LlL*)α+L*2Γ(α+1,LuL*)−L*2Γ(α+1,LlL*)−L*−α+1e−LlL*Llα+1+L*−α+1e−LuL*Luα+1)Γα+1.



(27)







The four luminosities [image: there is no content] and [image: there is no content] are connected with the absolute magnitudes M, [image: there is no content], [image: there is no content] and [image: there is no content] through the following relationship:


LL⊙=100.4(M⊙−M),LlL⊙=100.4(M⊙−Mu),L*L⊙=100.4(M⊙−M*),LuL⊙=100.4(M⊙−Ml),



(28)




where the indices u and l are inverted in the transformation from luminosity to absolute magnitude and [image: there is no content] and [image: there is no content] are the luminosity and absolute magnitude of the sun in the considered band. The equivalent form in absolute magnitude of the truncated Schechter LF is therefore


[image: there is no content]



(29)







The averaged absolute magnitude is


[image: there is no content]



(30)








3.3. The Double Power Law


The double power law LF for QSOs is


[image: there is no content]



(31)




where [image: there is no content] is the characteristic luminosity, [image: there is no content] models the low boundary, and [image: there is no content] models the high boundary, see [8,13,23,24,25,26]. The magnitude version is


[image: there is no content]



(32)




where the characteristic absolute magnitude, [image: there is no content], and [image: there is no content] are functions of the redshift.




3.4. The Pei Function


The exponential [image: there is no content] LF, or Pei LF, after [14], is


Φ(L;ϕ*,β,L*)=CE*LL*−βe−LL*4L*,



(33)




and the magnitude version is


Φ(M;ϕ*,β,M*)=0.4CE*10−0.4M10−0.4M*−βe−10−0.4M10−0.4M*410−0.4Mln1010−0.4M*.



(34)









4. The Astrophysical Applications


This section explains the K-correction for QSOs, introduces the sample of QSOs on which the various tests are performed, finds the parameters of the new LF in the range of redshift [image: there is no content], and finds the number of QSOs as a function of the redshift.



4.1. K-Correction


The K-correction for QSOs as a function of the redshift can be parametrized as


K(z)=−2.5(1+αν)log(1+z),



(35)




with [image: there is no content] (see [27]). Following [28], we have adopted [image: there is no content]. The corrected absolute magnitude, [image: there is no content], is


[image: there is no content]



(36)







In the following, both the observed and the theoretical absolute magnitude will always be K-corrected.




4.2. The Sample of QSO


We selected the catalog of the 2dF QSO Redshift Survey (2QZ), which contains 22,431 redshifts of QSOs with [image: there is no content], a total survey area of 721.6 [image: there is no content], and an effective area of 673.4 [image: there is no content], see [8] 1. Section 3 in [8] discusses four separate types of completeness that characterize the 2QZ and 6QZ surveys: (i) morphological completeness, [image: there is no content], (ii) photometric completeness, [image: there is no content], (iii) coverage completeness [image: there is no content] and (iv) spectroscopic completeness, [image: there is no content]. The first test can be done on the upper limit of the maximum absolute magnitude, [image: there is no content], which can be observed in a catalog of QSOs characterized by a given limiting magnitude, in our case [image: there is no content], where [image: there is no content] has been defined by Equation (5):


[image: there is no content]



(37)




(see Figure 1).


Figure 1. The absolute magnitude [image: there is no content] computed with the nonlinear Equation (36) for 22,413 QSOs versus the redshift (green points). The lower theoretical curve (upper absolute magnitude) as represented by the nonlinear Equation (37) is the red thick line. The redshifts cover the range [image: there is no content].



[image: Galaxies 05 00025 g001]






A careful examination of Figure 1 allows concluding that all of the QSOs are in the region over the border line, the number of observed QSOs decreases with increasing z, and the average absolute magnitude decreases with increasing z. The previous comments can be connected with the Malmquist bias, see [29,30], which was originally applied to the stars and later on to the galaxies by [31].




4.3. The Luminosity Function for QSOs


A binned luminosity function for quasars can be built in one of the two methods suggested by [32]: the [image: there is no content] method (see [33,34,35]), and a binned approximation. Notably, Ref. [36] argued that both the [image: there is no content] and the binned approximation can produce bias at the faint end of the LF due to the arbitrary choosing of redshift and luminosity intervals.



We implemented the binned approximation of [32], [image: there is no content], as


[image: there is no content]



(38)




where [image: there is no content] is the number of quasars observed in the [image: there is no content] bin. The error is evaluated as


[image: there is no content]



(39)







The comoving volume in the flat cosmology is evaluated according to Equation (11),


[image: there is no content]



(40)




where [image: there is no content] and [image: there is no content] are, respectively, the upper and lower comoving distance. A correction for the effective volume of the catalog, [image: there is no content], gives


Vq=VAedeg241252.9deg2,



(41)




where [image: there is no content] is the effective area of the catalog in [image: there is no content].



A typical example of the observed LF for QSOs when [image: there is no content] is reported in Figure 2 and Figure 3 reports the LF for QSOs in four ranges of redshifts.


Figure 2. The observed LF for QSOs is reported with the error bar evaluated as the square root of the LF (Poissonian distribution) when z[image: there is no content].



[image: Galaxies 05 00025 g002]





Figure 3. The observed LF for QSOs when z [image: there is no content] and M [image: there is no content] (empty stars), [image: there is no content] and M [image: there is no content] (full triangles), [image: there is no content] and M [image: there is no content] (empty crosses) and [image: there is no content] and M [image: there is no content] (stars of David).



[image: Galaxies 05 00025 g003]






The variable lower bound in absolute magnitude, [image: there is no content], can be connected with evolutionary effects, and the upper bound, [image: there is no content], is fixed by the physics (see the nonlinear Equation (37) and see Section 4.4).



The five parameters of the the best fit to the observed LF by the truncated Schechter LF can be found with the Levenberg–Marquardt method and are reported in Table 1. The resulting fitted curve is displayed in Figure 4.


Figure 4. The observed LF for QSOs, empty stars with error bar, and the fit by the truncated Schechter LF when z[image: there is no content] and M[image: there is no content].



[image: Galaxies 05 00025 g004]






Table 1. Parameters of the truncated Schechter LF in the range of redshifts [image: there is no content] when n = 10 and k = 5.







	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
Q

	
AIC






	
–24.93

	
–23.28

	
–22.29

	
3.38 × [image: there is no content]

	
–0.97

	
12.89

	
2.57

	
0.024

	
22.89










For the sake of comparison, Table 2 reports the three parameters of the Schechter LF.



Table 2. Parameters of the Schechter LF in the range [image: there is no content] when k = 3 and n = 10.







	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
Q

	
AIC






	
–23.75

	
8.85 × [image: there is no content]

	
–1.37

	
–10.49

	
1.49

	
0.162

	
16049










As a first reference, the fit with the double power LF (see Equation (32)), is displayed in Figure 5 with parameters as in Table 3.


Figure 5. The observed LF for QSOs, empty stars with error bars, and the fit by the double power LF when the redshifts cover the range [image: there is no content]



[image: Galaxies 05 00025 g005]






Table 3. Parameters of the double power LF in the range of redshifts [image: there is no content] when n = 10 and k = 4.







	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
Q

	
AIC






	
–23.82

	
5.44 × [image: there is no content]

	
–3.57

	
–1.48

	
9.44

	
1.57

	
0.15

	
17.44










As a second reference, the fit with the Pei LF (see Equation (34)), is displayed in Figure 6 with parameters as in Table 3.


Figure 6. The observed LF for QSOs, empty stars with error bar, and the fit by the Pei LF when the redshifts cover the range [image: there is no content].



[image: Galaxies 05 00025 g006]







4.4. Evolutionary Effects


In order to model the evolutionary effects, an empirical variable lower bound in absolute magnitude, [image: there is no content], has been introduced:


[image: there is no content]



(42)







The above empirical formula is classified as a top line in Figure 5 of [28] and connected with the limits in magnitude. Conversely, the upper bound, [image: there is no content], was already fixed by the nonlinear Equation (37). A second evolutionary correction is


[image: there is no content]



(43)




where [image: there is no content] has been defined in Equation (37). Figure 7 reports a comparison between the theoretical and the observed average absolute magnitudes; the value of [image: there is no content] reported in Equation (43) minimizes the difference between the two curves.


Figure 7. Average observed absolute magnitude versus redshift for QSOs (red points), average theoretical absolute magnitude for truncated Schechter LF as given by Equation (30) (dot-dash-dot green line), theoretical curve for the empirical lowest absolute magnitude at a given redshift, see Equation (42) (full black line) and the theoretical curve for the highest absolute magnitude at a given redshift (dashed black line), see Equation (37), RSS = 1.212.



[image: Galaxies 05 00025 g007]






As a first reference, Figure 8 reports a comparison between the theoretical and the observed average absolute magnitudes in the case of the double power LF—the value of [image: there is no content], which minimizes the difference between the two curves


[image: there is no content]



(44)




and other parameters as in Table 3.


Figure 8. Average observed absolute magnitude versus redshift for QSOs (red points), average theoretical absolute magnitude for the double power LF as evaluated numerically (dot-dash-dot green line), theoretical curve for the empirical lowest absolute magnitude at a given redshift, see Equation (42) (full black line) and the theoretical curve for the highest absolute magnitude at a given redshift (dashed black line), see Equation (37), RSS = 1.138.



[image: Galaxies 05 00025 g008]






As a second reference, Figure 9 reports a comparison between the theoretical and the observed average absolute magnitude in the case of the Pei LF with parameters as in Table 4.


Figure 9. Average observed absolute magnitude versus redshift for QSOs (red points), average theoretical absolute magnitude for the Pei LF as evaluated numerically (dot-dash-dot green line), theoretical curve for the empirical lowest absolute magnitude at a given redshift, see Equation (42) (full black line) and the theoretical curve for the highest absolute magnitude at a given redshift (dashed black line), see Equation (37), RSS = 5.41.



[image: Galaxies 05 00025 g009]






Table 4. Parameters of the Pei LF in the range of redshifts [image: there is no content] with k = 3 and n = 10.







	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
Q

	
AIC






	
–16.47

	
3.68 × [image: there is no content]

	
0.924

	
14.4

	
2.05

	
0.044

	
20.40










In the above fit, the evolutionary correction for [image: there is no content] is absent.




4.5. The Photometric Maximum


The definition of the flux, f, is


[image: there is no content]



(45)




where r is the luminosity distance. The redshift is approximated as


[image: there is no content]



(46)




where [image: there is no content] has been introduced into Equation (9). The relation between [image: there is no content] and [image: there is no content] is


dr=2626.1z+821.99z2+804.330.44404+0.27797z2dz,



(47)




where r has been defined as [image: there is no content] by the minimax rational approximation, see Equation (8). The joint distribution in z and f for the number of galaxies is


[image: there is no content]



(48)




where [image: there is no content] is the Dirac delta function and [image: there is no content] has been defined in Equation (23). The above formula has the following explicit version


[image: there is no content]



(49)




where


NL=−1.71174×1021z+0.611164z+0.002274×1.422109fz+0.611162z+0.002272z+1.597392L*αe−1.422109fz+0.611162z+0.002272z+1.597392L*×Ψ*Γα+1z+2.85165z+0.343138,



(50)




where


DL=z+1.597396L*Γα+1,LuL*−Γα+1,LlL*.



(51)







The magnitude version is


[image: there is no content]



(52)




with


NM=−1.25459×1030z+0.611164z+0.002274×1.13159×1018e0.92103M⊙−0.92103mz+0.611162z+0.002272z+1.597392100.4M⊙−0.4M*α×e−1.13159×1018e0.92103M⊙−0.92103mz+0.611162z+0.002272z+1.597392100.4M⊙−0.4M*×Ψ*Γα+1.0z+2.85165z+0.34313e0.92103M⊙−0.92103m



(53)




and


DM=z+1.597396100.4M⊙−0.4M*×Γα+1,100.4M⊙−0.4Ml100.4M⊙−0.4M*−Γα+1,100.4M⊙−0.4Mu100.4M⊙−0.4M*,



(54)




where m is the apparent magnitude of the catalog, and the absolute magnitudes [image: there is no content], [image: there is no content],[image: there is no content] and [image: there is no content] have been defined in Section 3.2. The conversion from flux, f, to apparent magnitude, m, in the above formula is obtained from the usual formula


f=7.95774×108e0.92103M⊙−0.92103m,



(55)




and


df=−7.32935×108e0.92103M⊙−0.92103mdm.



(56)







The number of galaxies in z and m, as given by formula (52), has a maximum at [image: there is no content] but there is no analytical solution for such a position and a numerical analysis should be performed. Figure 10 reports the observed and the theoretical number of QSOs as functions of the redshift at a given apparent magnitude when [image: there is no content] is given by Equation (42) and [image: there is no content] is given by Equation (37). Here, we adopted the law of rare events, i.e., the Poisson distribution, in which the variance is equal to the mean, i.e., the error bar is given by the square root of the frequency.


Figure 10. The QSOs with [image: there is no content] are organized in frequencies versus spectroscopic redshift, points with error bars. The redshifts cover the range [image: there is no content] and the histogram’s interval is 0.14. The maximum frequency of observed QSOs is at [image: there is no content] and the number of bins is 20. The full line is the theoretical curve generated by [image: there is no content] as given by the application of the truncated Schechter LF, which is Equation (52) with parameters as in Table 1 but [image: there is no content]. The theoretical maximum is at [image: there is no content].



[image: Galaxies 05 00025 g010]






In the above fit, the observed position of the maximum, [image: there is no content], and the theoretical prediction, [image: there is no content], have approximately the same value. In the two regions surrounding the maximum, the degree of prediction is not as accurate, due to the fact that the three absolute magnitudes [image: there is no content], [image: there is no content] and [image: there is no content] are functions of z.





5. Conclusions


Absolute Magnitude



The evaluation of the absolute magnitude of a QSO is connected with the distance modulus, which, in the case of the flat cosmology, ([image: there is no content], [image: there is no content]kms−1Mpc−1) is reported in Equation (5) as a Taylor series of order 8 with range in z, [image: there is no content]. As an application of the above series, we derived an inverse formula for the redshift as a function of the luminosity distance and an approximate formula for the total comoving volume.



Truncated Schechter LF



The Schechter LF is characterized by three parameters: [image: there is no content], [image: there is no content] and [image: there is no content]. The truncated Schechter LF is characterized by five parameters: [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content]. The reference LF for QSOs, the double power law LF, is characterized by four parameters: [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content]. An application of the above LFs in the range of z [image: there is no content] gives the following reduced chi-square [image: there is no content] 2.57 for the truncated Schechter LF, [image: there is no content] 1.49 for the Schechter LF, [image: there is no content] 1.57 for the double power LF, and [image: there is no content] 2.05 for the Pei LF. The other statistical such as the AIC are reported in Table 1, Table 2, Table 3 and Table 4. We can therefore speak of minimum differences between the four LFs here analyzed in the nearby universe defined by redshifts [image: there is no content].



Evolutionary effects



The evolution of the LF for QSOs as a function of the redshift is here modeled by an upper and lower truncated Schechter function. This choice allows modeling the lower bound in luminosity (the higher bound in absolute magnitude) according to the evolution of the absolute magnitude (see Equation (37)). The evaluation of the upper bound in luminosity (the lower bound in absolute magnitude) is empirical and is reported in Equation (42). A variable value of [image: there is no content] with z in the case of the truncated Schechter LF (see Equation (43)), allows matching the evolution of the observed average value of absolute magnitude with the theoretical average value of absolute magnitude (see Figure 7). A comparison is done with the theoretical average value in absolute magnitude for the case of a double power law and the Pei function (see Figure 8 and Figure 9).



Maximum in magnitude



The joint distribution in redshift and energy flux density is here modeled in the case of a flat universe, see formula 48. The position in redshift of the maximum in the number of galaxies for a given flux or apparent magnitude does not have an analytical expression and is therefore found numerically (see Figure 10). A comparison can be done with the number of galaxies as a function of the redshift in [image: there is no content] for the 2dF Galaxy Redshift Survey in the South and North galactic poles (see Figure 6 in [37]), where the theoretical model is obtained by the generation of random catalogs.
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