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Abstract: We study the spin current tensor of a Dirac particle at accelerations close to the upper limit
introduced by Caianiello. Continual interchange between particle spin and angular momentum is
possible only when the acceleration is time-dependent. This represents a stringent limit on the effect
that maximal acceleration may have on spin physics in astrophysical applications. We also investigate
some dynamical consequences of maximal acceleration.
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1. Introduction

Recently, several aspects of spin physics have been actively investigated. The interaction of
photon [1] and neutron spins [2] with non-inertial fields like rotation [3–6] has been experimentally
verified at the quantum level and spin-induced effects for macroscopic objects have been observed [7–9].
It is also known that spin is not a constant of motion when a particle interacts with external fields,
either electromagnetic [10], or gravitational [11] and that continual interchange between spin and
orbital angular momentum is possible.

The purpose of this work is to study the behaviour of spin at large accelerations, those that
may be met close to a black hole and to the maximal acceleration (MA), an upper limit introduced
by Caianiello in his geometrical formulation of quantum mechanics [12–14]. In Caianiello’s model,
in fact, the absolute value of a particle proper acceleration satisfies the inequality a ≤ Am, where
Am = 2mc3/h̄ is the upper limit mentioned and m the particle mass. No counterexamples are known
to the validity of this inequality. The limit h̄→ 0 restores Am to its infinite, classical limit. The value
of Am is mass dependent and very large even for the lightest particles. It leads to violations of the
equivalence principle, also a subject of great interest.

Classical and quantum arguments supporting the existence of a MA have been given in the
literature [4,15–46]. MA is also found in the context of Weyl space [47–50] and of a geometrical
analogue of Vigier’s stochastic theory [51]. It rids black hole entropy of ultraviolet divergences [52]
and is a regularization procedure [53] that avoids the introduction of a fundamental length [54], thus
preserving the continuity of space-time.

A MA also exists in string theory [55–61] when the acceleration induced by a background
gravitational field reaches the critical value ac = λ−1 = (m̃α)−1 where λ, m̃ and α−1 are string size,
mass and tension. At accelerations larger than ac the string extremities become casually disconnected.

Applications of Caianiello’s model include cosmology [62–64], the dynamics of accelerated
strings [65,66], neutrino oscillations [67–69] and the determination of a lower neutrino mass bound [70].
The model also makes the metric observer–dependent, as conjectured by Gibbons and Hawking [71].

The model has been applied to classical [72] and quantum particles [73] falling in the gravitational
field of a collapsing, spherically symmetric object described by the Schwarzschild metric and also to
the Reissner-Nordström [74] and Kerr [75] metrics. In the model, the end product of stellar collapse is
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represented by compact, impenetrable astrophysical objects whose radiation characteristics are similar
to those of known bursters [76].

The consequences of MA for the classical electrodynamics of a particle [77], the mass of the Higgs
boson [78,79], the Lamb shift in hydrogenic atoms [80], muonic atoms [81], the helicity and chirality of
particles [82] and the temperature [83] have also been investigated.

Most recently Rovelli and Vidotto have found evidence for MA and singularity resolution in
covariant loop quantum gravity [84,85].

Caianiello’s model is based on an embedding procedure [72] that stipulates that the line element
experienced by an accelerating particle is represented by

dτ2 =

(
1 +

gµν ẍµ ẍν

A2
m

)
gαβdxαdxβ =

(
1− |a(x)|2

A2
m

)
ds2 ≡ f (x)ds2 , (1)

where gαβ is a background gravitational field and |a| the absolute value of the acceleration. The value
f = 1 corresponds to the classical limit A → ∞ and f = 0 to the MA limit. A particle therefore
experiences acceleration as if subjected to an external gravitational field represented by the metric
gµν = f (x)ηµν, where ηµν is the Minkowski metric (of signature-2), if the background is flat. Particles
of different mass experience different metrics, hence different effective gravitational fields, but their
kinematics is characterized by the same velocity field. The metric (1) lends support to geometrical
models of confinement in the strong interactions and hadronization processes. If an effective space-time
curvature can be generated by acceleration, then confinement inside hadrons can affect only quarks
that are strongly accelerated by the strong interactions, while other particles, leptons for instance,
that are not affected by the strong interactions, experience a geometry identical to that of an inertial
observer. Since Caianiello’s model of quantum geometry offers a metric to work with, it is convenient
to use it in conjunction with covariant wave equations that are the byproduct of minimal coupling and
Lorentz invariance.

Covariant wave equations that apply to particles with, or without spin, have solutions [86–90]
that are exact to first order in the metric deviation γµν = gµν − ηµν and have been applied to problems
like geometrical optics [89], interferometry and gyroscopy [87], the spin-flip of particles in gravitational
and inertial fields [91], radiative processes [92,93] and spin currents [11]. We are interested in spin-1/2
particles, in particular. The covariant Dirac equation [94][

iγµ(x)Dµ −m
]

Ψ(x) = 0 , (2)

is remarkably successful in dealing with all inertial and gravitational effects discussed in the
literature [95–99]. The notations and units (h̄ = c = 1) are as in [91], in particular Dµ = ∇µ + iΓµ(x),
∇µ is the covariant derivative, Γµ(x) the spin connection, commas indicate partial derivatives and
the matrices γµ(x) satisfy the relations {γµ(x), γν(x)} = 2gµν. In the absence of external fields, (2)
reduces to the free Dirac equation (

iγµ̂∂µ −m
)

ψ0(x) = 0 , (3)

where γµ̂ are the usual constant Dirac matrices.
The first order solution of (2) is of the form

Ψ(x) = T̂(x)ψ0(x) , (4)

where ψ0(x) is a solution of (3), the operator T̂ is given by

T̂ = − 1
2m

(
−iγµ(x)Dµ −m

)
e−iΦT , (5)
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ΦT = ΦS + ΦG, ΦS(x) =
∫ x

P
dzλΓλ(z) , (6)

and

ΦG(x) = −1
4

∫ x

P
dzλ

[
γαλ,β(z)− γβλ,α(z)

] [
(xα − zα) kβ −

(
xβ − zβ

)
kα
]
+

1
2

∫ x

P
dzλγαλ(z)kα . (7)

It is convenient to choose ψ0(x) in the form of plane waves, but wave packets can also be used.
In (6) and (7), the path integrals are taken along the classical world line of the fermion, starting

from an arbitrary reference point P that will be dropped in the following. Only the path to O(γµν)

needs to be known in the integrations indicated because (4) already is a first order solution. The positive
energy solutions of (3) are given by

ψ(x) = u(k)e−ikαxα
= N

(
φ

σ·k
E+m φ

)
e−ikαxα

, (8)

where N =
√

E+m
2E , u+u = 1, ū = u+γ0, u+

1 u2 = u+
2 u1 = 0 and σ are the Pauli matrices. In addition φ

can take the forms φ1 and φ2 where φ1 =

(
1
0

)
, and φ2 =

(
0
1

)
.

Solution (2) contains that of the covariant Klein-Gordon equation that, neglecting curvature
dependent terms becomes to O(γµν)(

∇µ∇µ + m2
)

φ(x) '
[
ηµν∂µ∂ν + m2 + γµν∂µ∂ν

]
φ(x)− 1

2
ησρ

(
2γ

µ
ρ,µ − γ,ρ

)
φ = 0 , (9)

where γ ≡ γ
ρ
ρ. The solution of (9) is obtained by solving the Volterra equation

φ(x) = φ0(x)−
∫ x

P
d4x′G(x, x′)γµν(x′)∂

′µ∂
′νφ(x′) , (10)

along the particle world-line, where P is again a fixed reference point, x a generic point in the physical
future along the world-line, G(x, x′) is the causal Green function with (∂2 + m2)G(x, x′) = δ4(x− x′).
The free Klein-Gordon equation is

(∂2 + m2)φ0 = 0 . (11)

In first approximation φ0 can be substituted for φ in (10) and the integrations can then be carried
following [87,88]. The solution of (9) is

φ(x) = (1− iΦG(x)) φ0(x) , (12)

which is contained in exp(−iΦT). Higher order approximations to the solution of (12), therefore of (2),
can be obtained by writing

φ(x) = Σnφ(n)(x) = ∑
n

e−iΦG φ(n−1)(x) . (13)

Because of the structure of (13), the higher order corrections are expected to be well behaved and
to not affect the conclusions.

2. Spin Currents

The transfer of angular momentum between the external field and the fermion spins can be
calculated using the spin current tensor [10]

Sρµν =
1

4im
[(∇ρΨ̄) σµν(x)Ψ− Ψ̄σµν(x) (∇ρΨ)] , (14)
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that satisfies the conservation law Sρµν,ρ = 0 when all γαβ(x) vanish and yields in addition the expected
result Sρµν = 1

2 ū0σµ̂ν̂u0 in the rest frame of the particle. Writing σµν(x) ≈ σµ̂ν̂ + hµ
τ̂ στ̂ν̂ + hν

τ̂σµ̂τ̂ , where
σα̂β̂ = i

2 [γ
α̂, γβ̂], substituting (3) and (5) in (14) one obtains, to O(γαβ),

Sρµν = 1
16im3 ū0

{
8im2kρσµ̂ν̂ + 8imkρh[µτ̂ στ̂ν̂] + 4imkρ

(
ΦG,α + kσhσ

α̂

) {
σµ̂ν̂, γα̂

}
−8imkρΦGk[µγν̂] + 4mkρkα

[
σµ̂ν̂,

(
γα̂ΦS − γ0̂Φ+

S γ0̂γα̂
)]

+4m2kρ
[
σµ̂ν̂,

(
ΦS − γ0̂Φ+

S γ0̂
)]
− 8m2kρh0

α̂

[
γ0̂,
[
σ0̂α̂, σµ̂ν̂

]]
−8im2kσ

(
Γσ

αβηβρ + ∂ρhσ
α̂

)
ηα[µγν̂] + 8im2∂ρΦG

(
4mσµ̂ν̂ − 2ik[µγν̂]

)
+4im2γ0̂Γρ+γ0̂ {(γα̂kα + m

)
, σµ̂ν̂

}
Γρ
}

u0

(15)

where use has been made of the relation

ΦG,µν = kαΓα
µν . (16)

It is therefore possible to separate Sρµν in inertial and non-inertial parts. The first term on the
r.h.s. of (15) gives the usual result in the particle rest frame, when the external field vanishes. From (1)
we get

γµν = ( f (x)− 1)ηµν . (17)

To first order the tetrad is given by

eµ
α̂ ≈ δ

µ
α + hµ

α̂ , hν
α̂ = δν

α

(
1√

f
− 1

)
, (18)

from which the spinorial connection can be calculated using the relations

γµ(x) = eµ
α̂(x)γα̂ , Γµ(x) = −1

4
σα̂β̂eν

α̂∇µeνβ̂ . (19)

The result is

Γµ = σα̂β̂ηαµ

(
1
2

ln f
)

,β
. (20)

The choice φ = φ1 corresponds to u1 and φ = φ2 to u2. Substituting in (8), one finds

u1 = N


1
0
k3

E+m
k1+ik2

E+m

 , u2 = N


0
1

k1−ik2

E+m
−k3

E+m

 ,

that are not eigenspinors of the matrix Σ3 = σ3 I whose eigenvalues represent the spin components in
the z-direction, but become eigenspinors of Σ3 when k1 = k2 = 0, or in the rest frame of the fermion
k = 0. By performing a transformation of coordinates xµ → xµ + ξµ, where ξµ is small of first order,
we obtain γµν → γµν − ξµ,ν − ξν,µ and write the Lanczos-DeDonder condition in the form

γν
α,ν −

1
2

γ,α → γν
α,ν −

1
2

γ,α − ∂ν∂νξα − f,α = 0 . (21)

By choosing ξα to satify ∂β∂βξα + f,α = 0, we get ∂µΦG,µ = kαΓα
µνηµν = 0. We also

find ∂α∂αΦG,β = kβ∂α∂α f /2 , Γβ
α$ = ηβσ(ησα f,$ + ησ$ f,α − ηα$ f,σ)/2, and the spinorial connection gives
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∂ρΓρ = 0 except at f = 0 for which the external field approximation breaks down. With these
simplifications, setting k1 = k2 = k3 = 0 and by differentiating (14) with respect to xρ, we finally find

∂ρSρµν = ū0
16im3

[
8im3∂0Bµν + 4im2 (ΦG,α0 + m∂0h0

α̂

) {
σµ̂ν̂, γα̂

}
−8im2 (kµγν̂ − kνγµ̂

)
+ 4m3

(
σµ̂ν̂γ0̂Γ0 − γ0̂Γ†

0σµ̂ν̂
)

+4m3
(

σµ̂ν̂Γ0 − γ0̂Γ†
0γ0̂σµ̂ν̂

)
+ 4im3∂0h0

α̂

(
γ0̂γα̂σµ̂ν̂ − σµ̂ν̂γα̂γ0̂

)
−4im∂ρ∂ρΦG,α

(
ηαµγν̂ − ηανγµ̂

)
− 8im3

(
σµ̂ν̂Γρ

0ρ + σα̂ν̂Γµ
α0 + σµ̂α̂Γν

α0

)]
u0 ,

(22)

where Bµν ≡ hµ
τ̂ στ̂ν̂ + hν

τ̂σµ̂τ̂ . The only non-vanishing components of (22) are

∂ρSρ12 = − 3 f,0

4 f
3
2
− f,0 ' −

9
8

f,0 , ∂ρSρ01 ' 1
4

f,2 , ∂ρSρ02 ' −1
4

f,1 . (23)

The derivatives of f = 1− (|a|/A)2, rather than f itself, are responsible for the interchange of
spin and angular momentum. In fact, no interchange is possible for a strictly uniform acceleration [100].
The interchange can take place for any value of the acceleration for 0 < f < 1. We notice that in
order to alter the component Sρ

12, that in the rest system of the particle corresponds to the spin density
in the direction of motion, simple flow of momentum between field and particle is not sufficient.
A time-dependent acceleration is necessary, and that requires that energy be transferred from the
external accelerating agent. It is therefore not so much the acceleration that affects the spin-angular
momentum interchange, as the way acceleration is applied. The remaining two components of ∂ρSρµν

refer to the motion of the particle as a whole and do not require any time dependence of f . These results
do not depend on any specific model for f .

3. Dispersion Relations and Particle Motion

Some considerations about particle motion in the MA model are now in order. We are not
concerned with spin in this section and consider a spinless, uncharged particle for simplicity. By using
Schroedinger’s logarithmic transformation φ = e−iS [101], we can pass from the KG Equation (9) to
the quantum Hamilton-Jacobi equation. We find to O(γµν)

i(ηµν − γµν)∂µ∂νS− (ηµν − γµν)∂µS∂νS + m2 = 0 , (24)

where

S = kβ

{
xβ +

1
2

∫ x
dzλγβλ(z)−

1
2

∫ x
dzλ

(
γαλ,β(z)− γβλ,α(z)

)
(xα − zα)

}
. (25)

It is known that the Hamilton-Jacobi equation is equivalent to Fresnel’s wave equation in the limit
of large frequencies [101]. However, at smaller, or moderate frequencies the complete Equation (24)
should be used. We follow this path. By substituting (25) into the first term of (24), we obtain

i(ηµν − γµν)∂µ∂νS = iηµν∂µ(kν + ΦG,ν)− iγµν∂µkν = iηµνΦG,µν = ikαηµνΓα
µν = 0 , (26)

on account of (21). This part of (24) is usually neglected in the limit h̄ → 0. Here it vanishes as a
consequence of (25). The remaining terms of (24) yield the classical Hamilton-Jacobi equation

(ηµν − γµν)∂µS∂νS−m2 = γµνkµkν − 2kµΦG,µ = 0 , (27)

because kµΦG,µ = 1/2γµνkµkν. Equation (12) is therefore a solution of the more general quantum
Equation (24). It also follows that the particle acquires a generalized “momentum”

Pµ = kµ + ΦG,µ = kµ +
1
2

γαµkα − 1
2

∫ x
dzλ

(
γµλ,β(z)− γβλ,µ(z)

)
kβ , (28)



Galaxies 2017, 5, 103 6 of 10

that describes the geometrical optics of particles correctly and gives the correct deflection predicted
by general relativity. It is Feynman’s “p-momentum” in the case of gravity and gravity-like fields.
On using the relation ΦG,µν = kαΓα

µν and differentiating (28) we obtain the covariant derivative of Pµ

DPµ

Ds = m
[

duµ

ds + 1
2
(
γαµ,ν − γµν,α + γαν,µ

)
uαuν

]
= m

(
duµ

ds + Γα,µνuαuν
)
= Dkµ

Ds .
(29)

This result is independent of any choice of field equations for γµν. We see from (29) that if kµ

follows a geodesic, then DPµ/Ds = 0 and D(PαPα)/Ds = 0. The classical equations of motion are
therefore contained in (29), but it would require the particle described by (9) to just choose a geodesic,
among all paths allowed to a quantum particle. It also follows from (28) that

D(PαPα)

Ds
= 2m2 d f

ds
, (30)

and that, therefore, PαD(Pα/Ds) 6= 0. For massless bosons, however, Pα and DPα/Ds are still
orthogonal. Remarkably, (28) is an exact integral of (29) which can itself be integrated to give the
particle’s motion

Xµ = xµ +
1
2

∫ x
dzλ

{
γµλ −

(
γαλ,µ − γµλ,α

)
(xα − zα)

}
. (31)

By substituting the explicit espressions for γµν in (28) and (31), we obtain

Pµ = kµ +
m
2

∫ s
ds f,µ , Xµ = xµ +

1
2m

∫ s
ds
{

kµ ( f − 1)− kα (xα − zα) f,µ + kµ f,α (xα − zα)
}

. (32)

There is no back reaction to the motion described by (31) and (28). The field experienced by the
particle is its own acceleration and that takes into account any back reaction automatically. This can
also be seen as follows. The back reaction is normally introduced by means of a four-vector [102] gµ

such that gµPµ = 0. A natural choice for gµ is

gµ = m2 D2Pµ

Ds2 − PµPα
D2Pα

Ds2 ≈ m2 D2Pµ

Ds2 − kµkα
D2Pα

Ds2 (33)

to O(γαβ). We obtain, in fact,

gµ = m2
[

ΦG,µναuαuν + ΦG,µν
duν

ds

]
− kµkα

[
ΦG,ανσuσuν + ΦG,αν

duν

ds

]
, (34)

from which gµPµ = 0 follows. By substituting (17) in (34), we obtain

gµ =
m2

2

(
d f,µ

ds
− kµ

d2 f
ds2

)
, (35)

which along a particle world-line gives gµkµ/m = 0 and also
∫

gµdxµ = 0, as expected, because no
energy-momentum dissipation mechanism is provided. The situation would of course change if the
particle were charged.

4. Conclusions

We have investigated a particle spin at accelerations close to the MA limit. The model incorporates
MA by assuming that particles are subjected to a metrical field that has a gravity-like behaviour
that changes from particle to particle according to a particle’s mass. The model also provides a
comprehensive framework to treat accelerations with values between the classical and the MA limits.
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The solutions of the covariant Dirac equation, consisting of plane wave solutions of the free
Dirac equation and appropriate spin terms, have been applied to the third rank spin current tensor.
The calculations are performed in the rest frame of the fermion and confirm that continual interchange
between spin and angular momentum occurs in the case of MA fields, but only if the acceleration is
time-dependent ( f,0 6= 0). This requires that a transfer of energy from the agent responsible for the
acceleration, say a very compact star, or a black hole and the particle take place because the field is
not stationary. The non vanishing components ∂ρSρ01 and ∂ρSρ02 of the spin current tensor refer to the
motion of the particle as a whole and are present whatever the nature of the acceleration. Even in the
case of MA, uniform acceleration produces no observable effects on the particle spin, in agreement
with [100]. These results are independent of any model for f and provide a stringent limit on the the
astrophysical applications of spin physics, even in the case of MA.

The back reaction of the MA field on the particle vanishes along the particle world-line and
momentum cannot therefore be dissipated unless the particle is charged, or another specific radiation
mechanism is provided.

Conflicts of Interest: The author declare no conflict of interest.
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