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Abstract: Though helical magnetic fields are generally believed to arise when the jets of Active
Galactic Nuclei (AGN) are launched, it is still unclear what role they play (and if they survive) to the
largest jet scales. A helical or toroidal B-field may contribute substantially to the collimation of the jet.
This B-field structure can be detected in images of the Faraday rotation measure (RM)—a measure of
the change in polarisation angle of an electromagnetic wave as it passes through a magneto-ionic
medium. The Faraday rotation measure is directly proportional to the line-of-sight magnetic field;
therefore a monotonic gradient in the RM transverse to the jet indicates similar behaviour of the
line-of-sight B-field component. This type of analysis has mostly been done on parsec scales using
VLBI observations at centimetre wavelengths, while relatively few studies have probed decaparsec
to kiloparsec scales. The detection of RM gradients with significances of 3σ or more on such large
scales can demonstrate the presence of a toroidal field component, which may be associated with
a helical field that has persisted to these distances from the centre of the AGN. We present the results
of new Faraday rotation analyses for 2 AGN on kiloparsec scales based on multiwavelength VLA
observations, with robust transverse RM gradients detected in both. Furthermore, the direction of the
inferred toroidal B-fields on the sky supports previous results indicating a predominance of outward
currents in the jets on kiloparsec scales.
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1. Introduction

Analysis of the polarized emission from radio jets from Active Galactic Nuclei (AGN) is a powerful
tool for investigating their magnetic (B) field structure. The radio emission from these jets is synchrotron
radiation originating from relativistic charged particles accelerated by B-fields. Synchrotron radiation is
intrinsically polarized and has a theoretical upper limit to its polarized fraction of ∼70% for a uniform
B-field and a random pitch-angle distribution for the radiating electrons [1]. The polarization angle, χ,
can be used to estimate the direction of the B-field projected on the plane of the sky. The line-of-sight
B-field however can also be investigated using Faraday rotation, the change in the angle of linear
polarization as the electromagnetic wave passes through a region with free electrons and magnetic
field. The ‘rotation’ is caused by a delay between the left and right circularly polarized components of
the electromagnetic wave. The rotation measure (RM) is defined as follows:

χobs = χ0 + RMλ2 (1a)

RM ∝
∫ d

0
ne~B · d~l (1b)
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where χ denotes the polarization angle, χ0 is the intrinsic polarization angle, ~B is the magnetic
field, d~l is a path element along the line of sight, ne is the electron density, and λ is the observing
wavelength; by fitting χ versus λ2 the fitted slope and intercept on the χ axis give the RM and
intrinsic polarization angle, χ0. A gradient in the RM transverse to the jet indicates a similar trend
in the line-of-sight magnetic field. Such a gradient is a strong indicator for a toroidal magnetic field
component, which may be confining the jet. The direction of this gradient also gives information
regarding the direction of the toroidal B-field component, which, in turn implies a direction for the
associated electrical current in the jet using the right hand rule from basic physics. This publication
focuses on the larger scale RM gradients using observations made with the VLA. Reliable transverse
RM gradients on kiloparsec scale have previously only been detected in 2 other extragalactic radio
sources [2,3]; our detection of significant RM gradients in Coma A and 3C 465 adds substantially to
these results. The method by which the gradients considered here were analysed is identical to the
method used in [2–5]. The significance of an RM gradient was calculated using its end point values
and associated errors. This is a conservative estimate as the error in the RM increases at the edges of
the jet as there is less polarized intensity. The significance was calculated by dividing the total change
in the RM by the errors at the end points of the gradients added in quadrature.

σ =
|RM1 − RM2|√
∆RM2

1 + ∆RM2
2

(2)

2. Results

2.1. Coma A

Coma A (3C 277.3) is a twin-lobed radio galaxy at redshift z = 0.0857 [6]. This AGN shows
an unusual jet structure with a bright hotspot in the northern lobe and a deflected jet and knots in the
southern lobe. The morphology of the jets is discussed in detail in [6,7]. Observations from 1–2 GHz
using the NRAO Karl Jansky Very Large Array (JVLA) were analysed. The observational setup is
outlined in Table 1 (project 13B-083). The data were calibrated in the CASA software package using
standard techniques. The flux calibrator and the polarization angle calibrator was 3C 286. The data
were imaged in 16 separate 64 MHz bandwidth intervals. The images were made using a uv taper to
ensure they shared a common resolution and were smoothed to have a common 7′′ beam. To calculate
the RM, χ versus λ2 fits were performed using the rmfit task in CASA. The Galactic contribution to
the RM is 2.3± 1.3 rad m−2 [8] and has been subtracted from the displayed RM maps to give a better
approximation to the true RM in the vicinity the radio source. A gradient in the RM is visible across
the southern jet. As can be seen in Figure 1, the significance of the gradient is '8σ.

To confirm the result seen in these 1–2 GHz data, archival VLA observations were analysed also.
The archival VLA data used in this study are outlined in Table 1. The data were calibrated using the
AIPS software package using standard techniques; 3C 286 was the flux calibrator and the polarization
angle calibrator for these observations. Images made using a multi-scale CLEAN in the CASA package.
As can be seen in Table 1, the VLA configurations are different for each observation; conveniently
this gives all observations well matched uv coverage. An RM map was constructed using a common
2′′ beam for each frequency and fitting χ versus λ2 using a weighted least squares fitting algorithm
written in python and implemented in CASA.
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Table 1. Table outlining the VLA observations of Coma A. ν is the observing frequency. The bandwidth
is ∆ν and t is the total integration time on Coma A. The single horizontal line separates the archival
VLA from the Jansky Very Large Array (JVLA) data.

Project ν ∆ν Configuration Approx Resolution Observing Date t
MHz MHz h

VANB a 1413 25 VLA A 1.2′′ 18 March 1981 4.7
VANB a 4885 50 VLA B 1.4′′ 1 June 1981 4.1
AB348 14940 100 b VLA C 2.0′′ 26 August 1985 6.2

13B-083 994–2006 1× 1024 c VLA B 6.4′′–3.2′′ 29 December 2013 1.8
a Data previously published in [7]; b Data consist of two channels 50 MHz apart each with 50 MHz bandwidth.
Central frequency is given; c For imaging data was binned into 16 separate bins with 64 MHz bandwidth.

Figure 1. Left panel shows a Faraday rotation image made using a wideband JVLA observation from
1–2 GHz, the beam is shown by the circle in the lower left corner of the image. The Stokes I contours
correspond to the 1.5 GHz and start at 1 mJy and increase in factors of 2. The data for 16 frequencies
in this range were fitted using the CASA rmfit task. Right panel shows the slice taken of the rotation
measure (RM) along the path taken by the black line in the right panel. The gray shading is the 1σ error
in the RM for each value.

A transverse RM gradient can be seen in Figure 2 in the same location it was detected in the
JVLA image in Figure 1. A slice of RM values along the black line in the left panel is given on the
right panel in Figure 2. The significance of this gradient is 7σ. The gradient is not as smooth as the
gradient in Figure 1 and not strictly monotonic; this is an inevitable result, considering the large
distances covered, turbulence in the jet, and any random magnetic field components that may be
present. In both the archival VLA and JVLA images the observed RM gradient changes from positive
to negative; such a change in the rotation measure can only be explained by a change in direction for
the line-of-sight magnetic field, and not a change in electron density. The direction of the transverse
RM gradient in Coma A implies that the toroidal B field is oriented toward/away from the observer
on the western/eastern side of the southern lobe, corresponding to an outward current in the jet,
from basic physics (the right-hand rule).
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Figure 2. Left panel shows a Faraday rotation measure image made using archival VLA observations
at 1.4 GHz, 4.9 GHz and 15 GHz. The VLA configurations used ensured the uv coverage was matched.
The total intensity contours start at 0.6 mJy and increase by factors of

√
2. The beam is shown by the

circle in the lower left corner of the image. Right panel shows the slice taken along the RM along
the path taken by the black line in the right panel. The gray shading is the 1σ error in the RM for
each value.

2.2. 3C 465

The radio galaxy 3C 465, at redshift z = 0.0302, was also investigated [9]. The data we used were
originally analysed and published in [10]. An RM map presented in [10] seems to show a possible
transverse RM gradient, and we wished to verify this. The raw data were downloaded from the NRAO
VLA archive and calibrated in AIPS using standard techniques, the images were also made in AIPS.
The multifrequency data were observed at 4.5–5 GHz and at 8–8.9 GHz in the VLA C configuration.
The RM image was constructed using a 7′′ beam and the χ vs λ2 fits to calculate the RM were
made using a weighted least squares fitting algorithm written in python and implemented in CASA.
The Galactic contribution to the RM of −47.5 rad m−2 [8] was subtracted from the RM images.
The left panel of Figure 3 shows a close up of the southern jet and its RM distribution; a clear tendency
for less negative or even positive RM values along the western side of the jet can be seen. The change
from positive to negative RM is suggestive of a toroidal magnetic field component due to the implied
change in direction of the line-of-sight B-field component. A plot showing the results of taking a series
of RM slices across the jet at different distances along the jet is shown in the right panel: the horizontal
axis shows the distance along the jet where a slice was taken and the vertical axis the significance of
the corresponding RM gradient. A positive/negative significance indicates a gradient corresponding
to an outward/inward current along the jet. The plot shows that the vast majority of the gradients
above the 2 and 3 σ markings are positive and imply an outward current. The only region where there
are briefly gradients with a significance of less than −3σ is in the region of the jet where the direction
changes, at a declination of approximately +27◦0′30′′. The morphology of the jet in this region may be
a cause for the unusual RM structure here.
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Figure 3. Left panel shows a Faraday rotation measure image of the southern jet of 3C 465 made
using archival VLA observations at 4.5–5 GHz and 8–8.9 GHz. The contours show the total intensity
at 4.534 GHz starting at 0.3 mJy and increasing by factors of

√
2. The beam is shown by the circle in

the bottom left hand corner of the left panel. Right panel shows the significance of transverse RM
gradients along the jet, starting at the northern end of the hotspot. The estimated jet direction is given
by the thick, dark-grey line superposed on the RM image in the left panel. The significance of the RM
gradients is measured every 1.5′′ along the jet. The levels of ±2σ and ±3σ are given as blue and red
dashed lines respectively.

3. Discussion

The two AGN considered here both show transverse rotation measure gradients across their
kiloparsec scale jets. The sign of the RM also changes along these transverse RM gradients, which can
only be explained by a change in direction of the magnetic field along the line of sight and not by
a change in electron density. The toroidal B-field that gives rise to the observed RM gradients may be
a component of a helical jet B-field. The direction of the gradient plays an important role in supporting
models for the generation of such a helical field. The ‘Cosmic Battery’ model discussed in [3,11] predicts
that, on smaller scales observable using VLBI a helical field corresponding to an inward current will
dominate, while on larger scales, a magnetic field configuration corresponding to an outward current
is expected to dominate. This is because the ‘Cosmic Battery’ predicts a nested helix structure with
different helices dominating the observed Faraday rotation on different scales. Using the VLBA many
significant RM gradients have been found on parsec scales with directions implying mostly inward
currents [4,5]. Christodoulou et al. [3] show that all observed significant RM gradients on larger scales
imply outward currents, consistent with the ‘Cosmic Battery’; the results presented here lend further
support to this picture. Using Table 1 from [3] and the results from this study a total of 11 out of 11
firm gradients on larger scales imply outward currents. The likelihood of this preference in current
direction being completely random can be calculated using a binomial probability distribution, this is
simply a probability of 2−11 which is about a 0.05% chance of being a random result.

Further investigation is required of a larger sample of AGN at different frequency ranges to
further test this “Cosmic Battery” model, however these early results are very promising.
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Abbreviations

The following abbreviations are used in this manuscript:

RM Rotation Measure
AGN Active Galactic Nucleus
VLBI Very Long Baseline Interferometry
VLBA Very Long Baseline Array
VLA Very Large Array
JVLA Jansky Very Large Array
NRAO National Radio Astronomy Observatory
AIPS Astronomical Image Processing System
CASA Common Astronomy Software Applications
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