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Abstract: One of the cornerstones of inflationary cosmology is that primordial density fluctuations
have a quantum mechanical origin. However, most physicists consider that such quantum mechanical
effects disappear in CMB data due to decoherence. In this conference report, we show that the
violation of Bell inequalities in an initial state of our universe increases exponentially with the number
of modes to measure in inflation. This indicates that some evidence that our universe has a quantum
mechanical origin may survive in CMB data, even if quantum entanglement decays exponentially
afterward due to decoherence.
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1. Introduction

Quantum entanglement has fascinated many physicists because of its counterintuitive nature that
one particle of an entangled pair instantaneously knows what measurement has been performed on
the other, irrespective of their separation—even beyond the lightcone [1]. After Aspect et al. succeeded
in showing experimental evidence of the quantum nature of entanglement by measuring correlations
of linear polarizations of pairs of photons [2,3], much attention has been paid to this genuine quantum
property in various research areas in quantum information theory.

Quantum entanglement should play an important role in cosmology. One of the cornerstones
of inflationary cosmology is that primordial density fluctuations have a quantum mechanical origin.
Hence, the initial state of the universe produced by inflation is highly entangled. It is desired to
find compelling evidence for their quantum nature. Recently, Maldacena considered an inflationary
scenario where one can prove the quantum origin of density fluctuations by performing the Bell
inequality violating experiment during inflation [4].

In inflationary cosmology, the Bunch–Davies vacuum which is a two-mode squeezed state is
usually assumed as the simplest initial state of quantum fluctuations of the universe. This is because
spacetime looks flat at short distances, and then quantum fluctuations are expected to start in a
minimum energy state. However, the latest Planck data show the possibility of deviation from
the Bunch–Davies vacuum [5]. Motivated by this, there have been several attempts to find some
observational signatures on the CMB when the initial state is a non-Bunch–Davies vacuum due to
entanglement between two scalar fields [6,7] and between two universes [8]. If we apply the Bell
inequalities violating experiment to cosmology, we may be able to prove the quantum origin of density
fluctuations and find the nature of the initial state of the universe.

In this conference report based on our paper [9], we evaluate the Bell inequalities for the
Bunch–Davies vacuum and a non-Bunch–Davies vacuum in inflation. We find that both vacua
violate the Bell inequalities. Remarkably, as for the non-Bunch–Davies vacuum, the violation increases
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exponentially with the number of modes to measure. This implies that the Bell inequalities are useful
to classify the initial quantum state of the universe.

The paper is organized as follows. In Section 2, we review Bell and Mermin–Klyshko inequalities.
In Section 3, as cosmological initial states, we explain the Bunch–Davies vacuum expressed by a
two-mode squeezed state and the non-Bunch–Davies vacuum expressed by a four-mode squeezed
state. In Section 4, we present the result of the Bell inequalities for those cosmological initial states.
Finally we summarize our result in Section 5.

2. Bell Inequalities

In this section, we review the Bell inequality with the simplest example of a pair of spins (a
two-partite system) and Mermin–Klyshko inequalities for a multipartite system [10,11]. We call
them Bell inequalities here and below. The Bell inequalities are violated by quantum entanglement
and provide a criterion for discriminating the quantum entanglement from any local classical hidden
variable theories [12,13]. The upper bound of the violation increases with the number of partite
states [14,15].

2.1. Bell Inequality

We consider two sets of non-commuting operators A, A′ and B, B′. Those operators correspond
to measuring the spin along various axes, and have eigenvalues ±1. They are expressed by the Pauli
matrices σi and unit vectors ni such as A = niσi. The Bell operator B is defined as

B =
1
2
(

A⊗ B + A′ ⊗ B + A⊗ B′ − A′ ⊗ B′
)

, (1)

where the variables A, A′ and B, B′ are represented by Hermitian operators which act on the Hilbert
spacesHA andHB, respectively. If we rewrite it as a factorized form

B =
1
2

A⊗
(

B + B′
)
+

1
2

A′ ⊗
(

B− B′
)

, (2)

then we see that the first (second) term becomes ±1 while the second (first) one vanishes because we
can have either B = B′ or B = −B′. In local classical hidden variable theories, the expectation value of
B then gives |〈B〉| ≤ 1. In quantum mechanics, however, this Bell inequality can be violated for the
expectation value of the quantum operator. It is easy to check that its square becomes1

B2 = I − 1
4
[
A, A′

] [
B, B′

]
, (3)

where we used the fact that the square of each operator is one, A2 = I, A′2 = I, etc., and I is the
identity operator. Since the commutators of the Pauli matrices are non-zero and each gives 2i, we find
that 〈B2〉 ≤ 2 or |〈B〉| ≤

√
2. Thus, the maximal violation of Bell inequality in quantum mechanics

has the extra
√

2 factor in the case of a pair of spins [16]. This violation was convincingly tested by
Aspect et al. [2,3] (see Figure 1) and the quantum entanglement was confirmed as a fundamental aspect
of quantum mechanics.

1 To avoid confusion, the tensor product ⊗ is omitted below for simplicity.
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Figure 1. The result of the Bell experiment.

2.2. Mermin–Klyshko Inequalities

The Bell inequality is generalized for a multipartite system, which is called Mermin–Klyshko
inequalities. We write the operators {A, B, C, · · · } by {O1,O2,O3, · · · } below for later convenience.
Defining B1 = O1 and B′1 = O′1, the Mermin–Klyshko operator is defined recursively as

Bn =
1
2
Bn−1

(
On +O′n

)
+

1
2
B′n−1

(
On −O′n

)
, n = 2, 3, 4, · · · (4)

where B′n−1 is obtained from Bn−1 by interchanging primed and nonprimed operatorsOn. Thus, given
the initial terms B1 = O1 and B′1 = O′1, each subsequent term is determined by this relation. In local
classical hidden variable theories, the Mermin–Klyshko inequalities read

|〈Bn〉| ≤ 1 , n = 1, 2, 3, · · · , (5)

because we can have On = O′n or On = −O′n. In quantum mechanics, this inequality is violated and
the expectation value of Bn can be larger. In fact, the Mermin–Klyshko inequalities state [14,15]:

|〈Bn〉| ≤ 2
n−1

2 , n = 1, 2, 3, · · · . (6)

Thus, in quantum mechanics, the upper bound can be exponentially larger for multipartite states
(n > 2). In quantum field theory, the Bunch–Davies vacuum consists of many kinds of wavenumber
(mode) k of a scalar field. Then, the quantum upper bound could be increased exponentially as we
increase the number of modes to measure according to Equation (6).

For later purposes, it is useful to note that the Mermin–Klyshko operators have the following
relation [17]:

Bn =
1
2
Bn−p

(
Bp + B′p

)
+

1
2
B′n−p

(
Bp −B′p

)
, n = 2, 3, 4, · · · , (7)

where p is an integer in the range 1 ≤ p ≤ n − 1. This can be proved by induction from the
definition (4).

3. Cosmological Initial States and Particle Creation

In cosmology, people naively believe that the entanglement would decay exponentially in the
course of the evolution of the Universe. However, if the initial entanglement was exponentially large
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enough, the entanglement may survive against the exponential decay afterward and we may observe
the quantum origin of the Universe. In this section, we consider the Bunch–Davies vacuum expressed
by a two-mode squeezed state and a non-Bunch–Davies vacuum expressed by a four-mode squeezed
state as cosmological initial states.

3.1. The Bunch–Davies Vacuum

In quantum field theory, vacuum is not empty and in fact is full of virtual particles, which are
created and annihilated continuously in entangled pairs. As the Universe expands, those virtual
particles are released as ordinary particles. This process is calculated by the Bogoliubov transformation
between different vacua. To see how particle creation can occur in this process, we consider a simple
example with a free massless scalar field in an expanding universe. The metric is

ds2 = a2(η)
[
−dη2 + δijdxidxj

]
, (8)

where η is the conformal time, xi are spatial coordinates, a(η) is the scale factor, and δij is the Kronecker
delta. The indices (i, j) run from 1 to 3. If we decompose the scalar field φ(η, xi) in terms of the Fourier
modes as φ(η, xi) = ∑k φk(η) eik·x, the scalar field is expanded as

φk(η) = akuk(η) + a†
−ku∗k (η) ,

[
ak, a†

p

]
= δk,p , (9)

where k is the magnitude of the wave number k and ∗ denotes complex conjugation. The mode
function uk satisfies

u′′k +

(
k2 − a′′

a

)
uk = 0 , (10)

where a prime denotes the derivative with respect to the conformal time. As the universe expands,
it goes through a transition from de Sitter space to a radiation-dominated era. Suppose that the
transition occurs at η = ηr > 0, then the scale factor changes as

a(η) =

{
− 1

H(η−2ηr)
, for −∞ < η < ηr ,

η

Hη2
r

, for ηr < η .
(11)

Note that a′′ = 0 for the radiation-dominated era. Equation (10) gives the normalized modes
which behave like the positive frequency modes in the remote past uin

k and in the radiation-dominated
era uout

k , respectively, of the form uin
k (η) ≡ 1√

2k

(
1− i

k(η−2ηr)

)
e−ik(η−2ηr) , for −∞ < η < ηr ,

uout
k (η) ≡ 1√

2k
e−ikη , for ηr < η .

(12)

Then, the scalar field is expanded as follows:

φ(η , xi) =


∫ d3k√

(2π)3

[
ain

k uin
k + ain †

−k u∗ in
k
]

eik·x ,∫ d3k√
(2π)3

[
aout

k uout
k + aout †

−k u∗ out
k

]
eik·x .

(13)

Since the positive frequency modes uin
k and uout

k are different, the creation and annihilation
operators are different. Then, the Bunch–Davies vacuum (in-vacuum) |0in〉 and a vacuum (out-vacuum)
|0out〉 are defined as

ain
k |0in〉 = 0 , aout

k |0out〉 = 0 . (14)
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The initial Bunch–Davies vacuum looks different from the point of view of the out-vacuum.
The relation between these different vacua is expressed by a Bogoliubov transformation:

uin
k = αk uout

k + β∗k uout †
−k , (15)

or equivalently

ain
k = α∗k aout

k − βkaout †
−k , (16)

where αk and βk are Bogoliubov coefficients with |αk|2 − |βk|2 = 1. The Bogoliubov coefficients are
calculated as

αk =
(

uout
k , uin

k

) ∣∣∣
η=ηr

= − 1
2k2η2

r
e2ikηr

(
1− 2k2η2

r − 2ikηr

)
, (17)

β∗k = −
(

u∗ out
k , uin

k

) ∣∣∣
η=ηr

= − 1
2k2η2

r
, (18)

where the Klein-Gordon inner product is defined by ( f , g) = i
{

f ∗g′ − g f ∗′
}

. An observer in the
out-vacuum will observe particles defined by the operators aout

k . The expected number of such
particles is given by

〈0in|aout †
k aout

k |0in〉 = |βk|2 . (19)

This is the creation of particles as a consequence of the cosmic expansion. Plugging the ain
k in

Equation (16) into the definition of |0in〉 in Equation (14) and by using [aout
k , aout †

p ] = δk,p, then the
Bunch–Davies vacuum |0in〉 can be written in terms of aout †

k , aout †
−k and the vacua associated to each

mode, |0out
k 〉 and |0out

−k〉

|0in〉 = N̄ exp

[
∑
k

βk
α∗k

aout †
k aout †

−k

]
|0out〉 , (20)

where N̄ is the normalization factor, and |0out〉 = |0out
k 〉 ⊗ |0

out
−k〉. This describes a two-mode squeezed

state of n pairs of particles, which means that the momenta k and −k of the scalar field are entangled.
We see that the Bunch–Davies vacuum is expressed by the two-mode squeezed state of the modes k
and −k.

3.2. A Non-Bunch–Davies Vacuum

The Bunch–Davies vacuum is usually assumed as the simplest initial state of quantum fluctuations
of the universe. This is because spacetime looks flat at short distances and then quantum fluctuations
are expected to start in a minimum energy state. However, the latest Planck data show the possibility
of deviation from the Bunch–Davies vacuum [5]. Here, we discuss a four-mode squeezed state as a
simple example of non-Bunch–Davies vacua. This state is discussed in [6,7] with two scalar fields, and
is also discussed in the context of the multiverse [8].

We consider two free massive scalar fields φ(xµ) and χ(xµ) in de Sitter space. In Fourier space,
they are expanded as

φk = ain
k uin

k (η) + ain †
−k u∗ in

k (η) , (21)

χk = bin
k vin

k (η) + bin †
−k v∗ in

k (η) . (22)

The Bunch–Davies vacuum state is annihilated by both ak and bk

ain
k |0in〉 = bin

k |0in〉 = 0 . (23)
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If we denote the vacuum for φk by |0in〉φ and for χk by |0in〉χ, then the Bunch–Davies vacuum
for the total system is expressed as |0in〉 = |0in〉φ ⊗ |0in〉χ, where each |0in〉φ and |0in〉χ is also the
Bunch–Davies vacuum.

Now we consider a state |ψ〉 defined by Bogoliubov transformations that make a correlation
between the two scalar fields by mixing the operator ak with bk,

ãk = Γk ain
k + ∆k bin †

−k , b̃k = Γk bin
k + ∆k ain †

−k , (24)

where Γk and ∆k are Bogoliubov coefficients with |Γk|2 − |∆k|2 = 1 and

ãk|ψ〉 = b̃k|ψ〉 = 0 . (25)

This state |ψ〉 is a non-Bunch–Davies vacuum expressed by a four-mode squeezed state:

|ψ〉 = Ñ exp

[
−∑

k

∆k
Γk

(
ain †

k bin †
−k + ain †

−k bin †
k

)]
|0in〉 , (26)

where Ñ is the normalization factor, |0in〉 = |0in〉φ ⊗ |0in〉χ, and each Bunch–Davies vacuum state
|0in〉φ and |0in〉χ is written by a two-mode squeezed state. This state shows that the momentum k of φ

and the momentum −k of χ are entangled or the momentum −k of φ and the momentum k of χ are
entangled. We see that the non-Bunch–Davies vacuum is expressed by the four-mode squeezed state
of the modes k and −k between two scalar fields.

3.3. Infinite Violation of Bell Inequalities

Let us now see the upper bound of the quadratic form of Bell inequalities when we increase the
number of modes k to measure.

If we plug the Mermin–Klyshko operators Equation (7) into the quadratic form of the Bell
inequality, we obtain

MN = 〈BN〉2 + 〈B′N〉2

=
1
2

(
〈BN−p〉2 + 〈B′N−p〉2

) (
〈Bp〉2 + 〈B′p〉2

)
=

1
2
MN−pMp , (27)

where we assumed that there is no correlation between BN and BN−p; that is, 〈BNBN−p〉2 =

〈BN〉2〈BN−p〉2.
For a four-mode squeezed state, we take N = 4k (k = 1, 2, 3 · · · ), where k corresponds to the

number of modes k to measure and p = 4, then we have

M4k =
1
2
M4k−4M4 =

(
1
2

)k−1
M4n−4(k−1)Mk−1

4 =

(
1
2

)k−1
Mk

4 , (28)

where we used the relation Equation (27) recursively. If we write the maximal violation ofM4 by q,
we have

M4k = 〈B4k〉2 + 〈B′4k〉
2 =

(
1
2

)k−1
qk = 2(log2 q−1)k+1 , (29)

where q = 〈B4〉2. We see thatM4k is finite for q = 2 and becomes infinite for q > 2. Thus, the violation
does not increase unless the expectation value of the Bell operator exceeds

q = 〈B4〉2 = 2 =⇒ 〈B4〉 =
√

2 ∼ 1.41 . (30)
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If 〈B4〉 exceeds the value 1.41, the violation increases exponentially as we increase the number of
modes to measure. Let us try to see if the Bunch–Davies vacuum or the non-Bunch–Davies vacuum
exceed the 1.41 next.

4. Results

In this section, we present the result of Bell inequalities for the Bunch–Davies vacuum (two-mode
squeezed state) and the non-Bunch–Davies vacuum (four-mode squeezed state). The detailed
calculation is given in [9], where in order to compute 〈B4〉 we introduced pseudospin operators
that behave in the same manner as the usual spin 1/2 operators, but the pseudospin operators can be
used for continuous quantum variables [18]. Then, we calculated the expectation value of B4 in both
the Bunch–Davies vacuum Equation (20) and non-Bunch–Davies vacuum Equation (26).

4.1. The Case of the Bunch–Davies (BD) Vacuum

The result is plotted in Figure 2. We see that 〈B4〉 is maximally violated but does not exceed 1.41.
Thus, the violation in the BD vacuum does not increase any more, even if we increase the number of
modes to measure. This result can be checked by computing

〈0in|B4|0in〉 =
√

1 + tanh2 2rk ≤
√

2 , (31)

where Equation (20) is used and rk is known as the squeezing parameter, defined as

tanh rk =

∣∣∣∣ βk
α∗k

∣∣∣∣ = ∣∣∣∣ 1
1− 2k2η2

r − 2ikηr

∣∣∣∣ . (32)

Note that rk � 1 corresponds to the end of inflation (kηr � 1) and we see that the maximal value
is obtained in the infinite squeezing limit rk → ∞. We also find that the violation does not increase any
more, even if we increase the number of modes to measure, say m-pairs (m = 2, 3, 4 · · · ). This is in fact
a natural consequence of a classification of Bell inequalities in [19,20]. See the details in [9].

θ

B4

1.41�

Violation�

Figure 2. The result of the Bunch–Davies vacuum.

4.2. The Case of a Non-Bunch–Davies Vacuum

In this case, we get the maximum value 〈B4〉 ∼ 1.45 (see Figure 3), then q ≥ (1.45)2 ' 2.1
and then log2 2.1 ' 1.07 > 1. Thus, we have shown that the violation of Bell inequalities increases
exponentially with the number of modes to measure k. This indicates that some evidence that our
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universe has a quantum mechanical origin may survive in CMB data, even if quantum entanglement
decays exponentially afterward due to decoherence.

θ

B4
1.45�

Violation�

Figure 3. The result of a non-Bunch–Davies vacuum.

5. Conclusions

We studied the violation of the Bell inequality in initial quantum state of a scalar field in inflation.
We showed that the Bell inequality is maximally violated by the Bunch–Davies vacuum. However,
it is found that the violation does not increase with the number of modes to measure. On the other
hand, we found that the violation increases exponentially with the number of modes to measure for a
non-Bunch–Davies vacuum expressed by a four-mode squeezed state of two scalar fields. Our result
would be useful to classify the cosmological initial state. These may give rise to the possibility that the
evidence that our universe has a quantum mechanical origin may survive in CMB data.
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