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Abstract: Supersymmetry arises in certain theories of fermions coupled to gauge fields and gravity
in a spacetime of 11 dimensions. The dynamical brane background has mainly been studied for
the class of purely bosonic solutions only, but recent developments involving a time-dependent
brane solution have made it clear that one can get more information by asking what happens on
supersymmetric systems. In this proceeding, we construct an exact supersymmetric solution of a
dynamical M-brane background in the 11-dimensional supergravity and investigate supersymmetry
breaking, the geometric features near the singularity and the black hole horizon.
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1. Introduction

The dynamical p-brane solutions in a higher-dimensional gravity theory were studied by [1–32]
and have been widely discussed ever since. However, some aspects of the physical properties, such as
supersymmetry and its breaking in the context of string theory, have remained slightly unclear.
The motivation for this work is to improve this situation. For this purpose, it is first necessary to
construct supersymmetric brane solutions depending on the time, as well as the space coordinates.

In the static background, an M-brane solution in the 11-dimensional supergravity has been
constructed, and the properties have been discussed [33]. In the dynamical background, it is well
known that there are p-brane solutions with dynamical several p-brane objects in the expanding
universe. The first example was found for a D3-brane in the ten-dimensional Type IIB string theory [1],
which was generalized for complicated field configurations [6,9]. There has been, however, little
success at constructing the dynamical p-brane solution preserving supersymmetry, nor has there been
much insight about what kind of geometrical structure might be expected.

The dynamical M2-brane background preserving supersymmetry is a kind of natural extension of
the static M2-brane system, which can be described by an analogous Reissner–Nordström solution
in the four-dimensional Einstein–Maxwell theory. The existence of supersymmetry in a dynamical
background should not come as a surprise, since several analytic solutions in string theories are already
known [3,34–36]. In this proceeding, we will find the supersymmetric dynamical M-brane as an exact
solution of the supergravity field equations. What we will construct is a time-dependent M2-brane
solution preserving supersymmetry in the 11-dimensional supergravity theory. Depending on which
ansatz we take, we thus obtain a black hole in the expanding universe. Although it is not necessarily
easy, the supersymmetric black hole models governing the dynamics of the universe can be constructed
analytically because these are given by the classical solution of field equations.
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Different forms of the dynamical brane solution we will be discussing have been obtained by [3]
as a supersymmetric solution in a ten-dimensional Type IIB string theory and by [6,9] as a cosmological
solution without supersymmetry for an 11-dimensional supergravity model. A class of classical black
hole solutions in the expanding universe was found by [13,18]. Time-dependent black hole solutions
in lower dimensional effective field theories derived from string theory have been analyzed in [9,20].

Although we will consider in this proceeding the 11-dimensional supergravities, there is also
a ten-dimensional version of the supersymmetric dynamical D-brane solutions. It can be obtained
by compactifying an internal space. In terms of the dimensional reduction of a dynamical M-brane
background to the string in ten dimensions, the solution leads to the dynamical D-brane systems.
One starts with an 11-dimensional model, but the resulting ten-dimensional model turns out to have a
dynamical D-brane, as in the construction of [16].

This proceeding is organized as follows. We present an exact solution having a quarter of a full
supersymmetry for a dynamical M-brane in an 11-dimensional supergravity and discuss how to break
supersymmetries in Section 2. In the remainder of the proceeding, we describe some applications of
the result, which are the behavior of the geodesic, the analysis of the geometrical structure and the
evolution of a time-dependent black hole in the dynamical M2-brane background. In Section 3,
we start our discussion of the supersymmetric M2-brane solution by examining the basic features of
the background geometry. By solving the radial null geodesic equations, we show that the naked strong
curvature singularity appears. Then, we investigate extensions of the solutions inside the horizon and
discuss the smoothness at the horizon. In Section 4, we present that the M2-brane background gives a
black hole solution in a time-dependent universe and discuss the implications for lower-dimensional
effective theories. Section 5 contains some discussions and concluding remarks.

2. Dynamical M-brane Backgrounds

In this section, we will construct the exact solution to the field equations of an 11-dimensional
supergravity corresponding to a dynamical M2-brane configuration. The 11-dimensional gravitino
(Killing spinor field) equation gives the time-dependent solution with the particular ansatz of fields.
We find that the supersymmetric solution depends on the null coordinate along the M2-brane world
volume, as well as the coordinates of the transverse space to the M2-brane.

2.1. Supersymmetry in a Dynamical M2-brane

We will start by making an ansatz for an 11-dimensional metric gMN and three-form gauge
potential A(3). The 11-dimensional metric and gauge potential are assumed to be

ds2 = A2(x, y)ηµν(X)dxµdxν + B2(x, y)δij(Y)dyidyj, (1a)

A(3) = χC(x, y)Ω(X), (1b)

where µ, ν = 0, 1, 2 and i, j = 3, 4, · · · , 10, χ = ±1, and Ω(X) denotes the volume form of
the three-dimensional Minkowski space (X space). All components of the gravitino ψM are zero.
The arbitrary functions A, B and C depend on the M2-brane world volume coordinates xµ, as well as
the radial coordinate of the eight-dimensional Euclidean space (Y space)

r2 = δijyiyj. (2)

Then, the metric of Y space becomes

δij(Y)dyidyj = dr2 + r2uab(Z)dzadzb, (3)
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where uab(Z) denotes the metric of the seven-sphere. We will find that three functions A, B and C are
reduced to one by the requirement that the metric and gauge field preserve supersymmetry. Then,
we find a 11-dimensional Killing spinor ε satisfying

∇̄Mε = 0. (4)

Here, ∇̄M is the supercovariant derivative appearing in the supersymmetry transformation rule
of the gravitino

∇̄M = ∂M +
1
4

ωM
PQΓPQ +

1
12

(ΓM F− 3FM) , (5)

in terms of the 11-dimensional γ-matrices ΓM satisfying

ΓMΓN + ΓNΓM = 2gMN . (6)

F and FM are defined by

F =
1
4!

FMNPQΓMNPQ, (7a)

FM =
1
3!

FMNPQΓNPQ, (7b)

and F(4) is the field strength defined by the three-form gauge potential A(3),

F(4) = dA(3). (8)

The notation that has been used here is

ΓMN...P = Γ[M ΓN · · · Γ P]. (9)

For the background (1a) and (3), it is convenient to introduce γµ (µ = 0, 1, 2), γr and
γa (a = 4, · · · , 10) by

Γµ = A−1γµ, Γr = B−1γr, Γa =
1

rB
γa. (10)

Then, γµ gives the SO (2, 1) γ-matrices; γa provides the γ matrices of Z; and (γr)2 = 1. We also
define γ(3) as

γ(3) := γ0γ1γ2. (11)

We take an ansatz for the 11-dimensional metric (1a)

A = C1/3, B = C−1/6, C ≡ h−1(x, r). (12)

Then, in terms of these γ matrices, the supercovariant derivative in the background with the
metric (1a), (3) and field (1b) is expressed as

∇̄µ = ∂µ +
1
6

∂ν ln hγν
µ −

1
6

h−3/2∂rhγµγr
(

1− χγ(3)

)
, (13a)

∇̄r = ∂r −
1

12
h−1/2∂νhγνγr +

1
6

χh−1∂rhγ(3), (13b)

∇̄a = Z∇a −
r

12
h−1/2∂νhγνγa −

r
12

h−1∂rhγrγa

(
1− χγ(3)

)
, (13c)
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where Z∇a is the covariant derivative with respect to the metric uab(Z). The number of unbroken
supersymmetries is given by the number of Killing spinors ε. The Killing spinor Equation (4) is
automatically satisfied provided that the following three conditions are satisfied

ε = h−1/6ε0, ∂µhγµ ε = 0,
(

1− χγ(3)

)
ε = 0, (14)

where the sign χ comes from the ansatz of the three-form gauge potential (1b) and ε0 denotes a constant
Killing spinor.

2.2. Einstein Equations

Now, we determine a form of the function h(x, r) in an 11-dimensional supergravity theory, which
is composed of the metric gMN and the four-form field strength F(4). The action in 11 dimensions is
given by

S =
1

2κ2

∫ [
R ∗ 1− 1

2 · 4!
∗ F(4) ∧ F(4)

]
− 1

12κ2

∫
A(3) ∧ F(4) ∧ F(4), (15)

where R denotes the Ricci scalar with respect to the 11-dimensional metric gMN , κ2 is the
11-dimensional gravitational constant, ∗ denotes the Hodge operator in the 11-dimensional spacetime
and F(4) is the four-form field strength defined by (8), respectively.

Let us first consider the gauge field equation

d
(
∗F(4)

)
+

1
2

F(4) ∧ F(4) = 0. (16)

Using the ansatz of fields (1a) and (12), the above equation is reduced to

∂µ∂rh = 0,
(

∂2
r +

7
r

∂r

)
h = 0. (17)

From Equation (17), the function h and the field equation can be expressed as

h(x, r) = h0(x) + h1(r),
(

∂2
r +

7
r

∂r

)
h1 = 0. (18)

Then, imposing the boundary condition that the 11-dimensional metric is asymptotically vacuum
spacetime, we find

h1(r) = c̃ +
M
r6 , (19)

where c̃ is constant.
Next, we show that Equation (19) is consistent with the Einstein equations and derive the equation

for the function h0.
The Einstein equations are given by

RMN =
1

2 · 4!

[
4FMABCFN

ABC − 1
3

gMN F2
(4)

]
. (20)
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Using the assumptions (1) and (12), the Einstein equations become

−h−1∂µ∂νh +
1
3

h−1ηµν

[
4Xh + h−1

(
∂2

r +
7
r

∂r

)
h
]
= 0, (21a)

4Xh + h−1
(

∂2
r +

7
r

∂r

)
h = 0, (21b)

Rab(Z)− 6uab(Z)−
1
6

r2uab(Z)
[
4Xh + h−1

(
∂2

r +
7
r

∂r

)
h
]
= 0, (21c)

∂µ∂rh = 0, (21d)

where4X is the Laplace operator on the space of X and Rab(Z) is the Ricci tensor of the metric uab(Z).
From Equation (21d), the function h must be in the form

h(x, r) = h0(x) + h1(r). (22)

With this form of h, the Einstein equations reduce to

Rab(Z) = 6uab(Z), (23a)

∂µ∂νh0 = 0. (23b)

In this case, the first equation is automatically satisfied, and the solution for h can be written
explicitly as

h(x, r) = cµxµ + c̄ +
M
r6 , (24)

where cµ, c̄ and M are constant parameters. As seen from supersymmetric Equation (14), the parameters
cµ have to obey the relation (14), which is given by cµγµε0 = 0. Therefore, without loss of generality,
we shall impose that c̄ = 0 and cµxµ = c(t− x)/

√
2, where c is a constant.

We comment about the contribution of the source term coming from M2-brane. Let us consider
the field equations, which follow from the action

S′ = S + SM2, (25)

where S is the supergravity action (15) and SM2 denotes the M2-brane action whose bosonic sector is
given by

SM2 = −TM2

2

∫
d3ξ
√
−q
[

qij∂iXM∂jXN gMN − 1± 1
3

εijk∂iXM∂jXN∂kXP AMNP

]
. (26)

Here, TM2 denotes the tension of M2-brane. The M2-brane world volume with the coordinates
τ, σα (α = 1, 2) is embedded into an 11-dimensional target spacetime using the functions
xM (τ, σα) (M = 0, · · · , 11).

The energy-momentum in the Einstein equations receives a contribution from the source term
of M2-brane, as well as four-form gauge field strength. If we use a static configuration of the
M2-brane [28],

t = τ, xα = σα, xa = const, (27)

the Einstein equations give

M =
κ2TM2

3VS7
, (28)

where VS7 is the volume of the seven-sphere and M is M2-brane charge found in (24).



Galaxies 2018, 6, 11 6 of 17

The dynamics of the background does not modify at all with a particular gauge even if we add
the source (Wess–Zumino) term. Although the charge of the M2-brane is given by the volume of the
seven-sphere, M2-brane tension, the metric is almost the same form as our solution (24).

Moreover, upon setting the configuration (27), the dynamical solution with the source term
shares the same supersymmetric property as the solution without the Wess–Zumino term such as
supersymmetric breaking, preserving a quarter of maximal supersymmetry. This is a similar result to
the static M2-brane system [37].

2.3. Number of Supersymmetry and Supersymmetry Breaking

In this section, we count the number of preserving supersymmetry in the dynamical M2-brane
background. An unbroken supersymmetry with respect to each Killing spinor ε has to obey the
integrability condition

[∇̄M, ∇̄N ]ε = 0. (29)

From the relation

∇M = ∂M +
1
4

ωM
PQΓPQ, [∇M, ∇N ] =

1
4

RMNPQΓPQ, (30)

the commutator of the covariant derivatives in the integrability condition (29) becomes

[∇̄M, ∇̄N ] =
1
4

RMNPQΓPQ +
1
6

(
∇[M ΓN] F− 3∇[M FN]

)
+

1
144

[(ΓM F− 3FM) , (ΓN F− 3FN)] . (31)

In terms of the condition, we count how many supersymmetries exist. We first briefly review
the results for the well-known case of the 11-dimensional static background [33,38–40]. For the case
in which h = const or h = M/r6 in the 11-dimensional metric (12), the number of supersymmetries
reduces to the number of solutions to the spinor equation, ∇̄aε = 0. In particular, for the
11-dimensional Minkowski spacetime [38,39] and for AdS4 × S7, AdS7 × S4 [40], the background
has the full supersymmetry.

Next, we consider the static M2-brane background with h(r) = c̃ + M/r6 (c̃M 6= 0) [33], where c̃
is constant. Then, the µr component of the integrability condition gives

0 = [∇̄µ, ∇̄r]ε = −h−1/3 d2

dr2

(
h−1/6

)
γµ γr

(
1− χγ(3)

)
ε. (32)

Hence, ε have to obey (
1− χγ(3)

)
ε = 0. (33)

Since we can show that this condition and (32) are the only nontrivial integrability conditions,
one half of the supersymmetries in the case c̃M 6= 0 is broken in the M2-brane background [33].

Now, we consider the background with ∂µh 6= 0. The [µ, ν] components of the integrability
condition give

0 = ξµζν[∇̄µ, ∇̄ν]ε = −
ηµν∂µh0∂νh0

18h2 ξργρζσγσε, (34)

where ξµ and ζν are linearly independent vectors satisfying the conditions, ξµ∂µh = ζµ∂µh = 0, and we
assume that the function h(x, r) obeys

h(x, r) = h0(x) + h1(r), ∂µ∂νh0 = 0. (35)
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Hence, it follows that if cµ = ∂µh0 is not null, there exists only a trivial solution to the Killing
spinor equation, and the supersymmetry is completely broken. On the other hand, when cµ is a null
vector, the Killing spinor equation leads to (14). For the case

h(x, r) = cµxµ + c̃ +
M
r6 , (36)

one quarter of the possible rigid supersymmetries in the maximal case survives.
Here, we check the degree of supersymmetry for the case of M = 0. An important simplification

occurs if we consider the following special case of vanishing M2-brane charge

ds2 = h−2/3(u)
[
−2dudv + (dy)2

]
+ h1/3(u) δmndzmdzn, (37a)

h(u) = c u, u =
1√
2
(t− x), v =

1√
2
(t + x), (37b)

from the dynamical M2-brane to the plane wave background. Here, c is constant, and δmn, zm denote
the metric and coordinates of eight-dimensional Euclidean space, respectively. The required change of
coordinates is (u, v, zm)→ (ū, v̄, z̄m), where

u =
1
c

(
ū
ū0

)3
, v = v̄ + f (ū) δmn z̄m z̄n, zm = h−1/6(ū)z̄m, (38)

which leads to the plane wave metric [35],

ds2 = −2dūdv̄ +

(
ū
ū0

)−2 [
− c2

36
δmn z̄m z̄n (dū)2 + (dy)2

]
+ δmndz̄mdz̄n. (39)

Here, we used

ū0 =
3
c

, f (ū) = − c
12

(
ū
ū0

)−1
. (40)

Setting M = 0 in the solution (24), the integrability condition reduces to cµ γµε = 0. Then,
the dynamical M2-brane solution with cµ 6= 0, preserves a half of the maximal supersymmetries.
Since the number of unbroken spacetime supersymmetries in the present background must be a half of
the full supersymmetries, as in a generic plane wave, our solution is consistent with past results [35].

Next, we comment on the degree of the supersymmetry breaking for the dynamical M2-brane
background. The measure of the supersymmetry breaking for the dynamical background is obtained
from the consistency condition. The mass scale corresponds to h−2ηµν∂µh∂νh, which could be identified
with a kind of induced effective mass scale for the spinor field. The divergence at h = 0 means that
the degree of the supersymmetry breaking increases as the background approaches the curvature
singularity. On the other hand, the supersymmetry breaking becomes negligible near the M2-brane
region r → 0, as h diverges there.

Let us consider the relation between the dynamics of the background and supersymmetry breaking
in more detail. Introducing a new time coordinate τ, which is defined by τ/τ0 = (c0 t)2/3, with constant
τ0 = (3/2c0), we find the 11-dimensional metric (1a) as

ds2 = −
[

1 +
(

τ
τ0

)−3/2 (
cixi + M

r6

)]−2/3 [
−dτ2 +

(
τ
τ0

)−1
δijdxidxj

]
+

[
1 +

(
τ
τ0

)−3/2 (
cixi + M

r6

)]1/3 (
τ
τ0

)1/2 [
dr2 + r2dΩ2

(7)

]
,

(41)

where xi (i = 1, 2) denotes the space coordinates of the world volume spacetime and the metric δij is the
spatial part of the three-dimensional Minkowski metric ηµν. When we set c1 = c2 = 0, the spacetime
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is an isotropic and homogeneous universe with respect to the world volume coordinates, whose
supersymmetry is completely broken. On the other hand, the 11-dimensional spacetime becomes
inhomogeneous and preserves supersymmetry if parameters cµ satisfy cµcµ = 0 and cµγµε = 0.
Thus, in the limit when the terms cixi are negligible, which is realized in the limit (τ/τ0) → ∞,
for small r, we find an 11-dimensional universe without supersymmetry. For concreteness, we discuss
the dynamics in the region where the term cixi in the function h(τ, x, r) is smaller compared to the
contribution of the M2-brane charge M/r6. In the case of (τ/τ0) > 0, we have found that the domains
near the M2-brane have supersymmetry. As time increases, the background satisfies (τ/τ0)

3/2 � cixi,
Then, we find

1 +
(

τ

τ0

)−3/2 (
cixi +

M
r6

)
→ 1 +

(
τ

τ0

)−3/2 M
r6 . (42)

The contribution of the term cixi in the function h(τ, x, r) eventually becomes negligible in the
11-dimensional metric such that supersymmetries are completely broken, which is guaranteed by the
region cixi � M/r6. Then, the dynamical M2-brane solution also behaves as a non-supersymmetric
cosmological solution in the asymptotic future.

From the integrability condition (31), the spinor mass scale is given by ηµν∂µh∂νh/h2 ∼ cµcµ/h2.
This naturally measures for the scale of gravitino mass in our background. Hence, the gravitino mass
vanishes in the supersymmetric background because the solution satisfies the integrability condition,
cµcµ = 0. In contrast, the gravitino acquires the mass, cµcµ 6= 0, when the supersymmetry has
been broken. This describes the dynamics of supersymmetry breaking from the viewpoint of the
higher-dimensional theory.

Finally, we also comment about a relation between the M2-brane or black hole and plane wave
background. Now, we set

h(t, x, r) =
c√
2
(t− x) +

M
r6 . (43)

In the limit when the term M/r6 is negligible, corresponding to the far region from the
M2-brane, the background changes from the above description to a time-dependent plane wave
background (37). Hence, the supersymmetry will enhance from one quarter to a half of the possible
rigid supersymmetries in the maximal case when one moves in the transverse space in such a way
that (τ/τ0)

−3/2cixi remains approximately constant. For fixed xi, (τ/τ0)
−3/2cixi becomes gradually

small as time increases. Hence, the solution gives the transition from the plane wave geometry with
a half of maximal supersymmetries to the non-supersymmetric (Kasner) universe as time evolves,
for which supersymmetry breaking occurs at r → ∞ or in the case of vanishing M2-brane charge.
Although the solution itself is by no means realistic, its interesting behavior suggests an enhancement
of the supersymmetry or a possibility that the universe with a quarter of the preserved original
supersymmetry began to evolve toward a universe without supersymmetry.

3. Geometry of the Supersymmetric Dynamical M2-brane Solution

As one may expect from the dynamical M2-brane solution, the spacetime with (24) has curvature
singularity. For a fixed x, the spacetime asymptotically approaches the anisotropic solution at a large r,
while the metric becomes approximately AdS4 × S7 near the M2-brane region (at r → 0), as we will
show in Section 3.3. Now, we investigate the geometric feature near the curvature singularity and
discuss the smoothness at the horizon.
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3.1. Property of the Solution

We consider the following time-dependent M2-brane solution with the 11-dimensional metric

ds2 = h−2/3(u, r)
(
−2du dv + dy2

)
+ h1/3(u, r)

[
dr2 + r2dΩ2

(7)

]
, (44a)

u =
1√
2
(t− x) , v =

1√
2
(t + x) , (44b)

h(u, r) = h0(u) + h1(r), h0(u) = cu, h1(r) =
M
r6 , (44c)

where c, M are constants. Since the function h1(r) dominates near r → 0, the background geometry
describes the extremal Reissner–Nordström solution with an infinite throat. The geometry of the
dynamical M2-brane is not asymptotically flat, while the extremal Reissner–Nordström solution gives
the asymptotically Minkowski spacetime. Near, the M2-brane, the metric becomes AdS4 × S7,

ds2 ≈ r4

M2/3

(
−2du dv + dy2)+ M1/3

r2 dr2 + M1/3dΩ2
(7),

= M1/3

4w2 (−2du dv + dy2 + dw2) + M1/3dΩ2
(7), w := M

1
2

2r2 ,
(45)

where dΩ2
(7) is the line element of the seven-sphere.

Since the square of the four-form field strength diverges at the zeros of the function h(u, r) = 0,

F2
(4) = −4! h−7/3 (∂rh)2 , (46)

the curvature of the metric (44) can be singular at h(u, r) = 0.
Now, we discuss the cosmological evolution of the spatial geometry in the region h > 0 and

assume c < 0, in the function h(u, r). For u < 0, the function h is positive everywhere, and the spatial
surfaces are nonsingular unless we treat the negative charge of the M2-brane M < 0. They are the
asymptotically anisotropic spacetime for a fixed x coordinate. The spatial metric is still regular for
u = 0 besides the region r → ∞. As time increases slightly, a singularity appears at r = ∞ and moves
in from spatial infinity. As u evolves further, the singularity eventually wraps the horizon completely.

3.2. Geodesic Motion

We start by solving radial null geodesic equations for the affine parameter s on the
background (44a). As found in [30], the geodesic equations are

du
ds = f h2/3, dv

ds = h1/3

2 f

(
dr
ds

)2
,

d2r
ds2 = − c

3 f h−1/3 dr
ds −

M
r7 h−1

(
dr
ds

)2
,

(47)

where f is a constant.

3.2.1. Geodesic Motion Near the M2-brane

Near the M2-brane, the null geodesic solution of Equation (47) is found analytically. Let us assume
that |u| � r−6 in the limit of r → 0. Then, the function h takes the simple form

h→ M
r6 . (48)

In this approximation, the asymptotic solution is given by

u ∼ (s0 − s)−1, r ∼
√

s0 − s, (49)
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near r = 0, where s0 is a positive constant. Note that the assumption |u| � r−6 is satisfied in this
asymptotic solution. Obviously, u becomes infinite as we approach the location of the M2-brane
r → 0 (s→ s0).

3.2.2. Geodesic Motion near the Timelike Singularity

We now discuss the radial null geodesic near the timelike singularity. For the supersymmetric
M2-brane background (44), h = 0 hypersurface corresponds to a timelike curvature singularity [30]
because gMN`M`N > 0 for `M = ∇Mh near the singularity. Let us then consider the past directed null
geodesics, which can hit the curvature singularity within a finite affine parameter length. Now, we set
that as h→ 0,

h(s) = (s0 − s)α , r(s) ' r0 + r1 (s0 − s)β , (50)

where s0 denotes the value of s at the singularity, α (> 0), β and r1 are constants determined later.
Near the singularity, the geodesic Equation (47) becomes

du
ds

= f (s0 − s)2α/3 ,
dv
ds

=
1

2 f
(s0 − s)α/3

(
dr
ds

)2
, (51a)

d2r
ds2 = − c

3
f h−1/3 dr

ds
− M

r7
0

h−1
(

dr
ds

)2
' −M

r7
0
(s0 − s)−α

(
dr
ds

)2
. (51b)

Here, in the second line, we assumed that the second term on the r.h.s. is dominant. Substituting
Equation (50) into Equation (51), we find

β = α, r1 = −
r7

0 (α− 1)
αM

. (52)

From Equation (51a), the form of u is given by

u(s) = u0 −
3 f

2α + 3
(s0 − s)1+ 2α

3 . (53)

For s→ s0, it follows that u→ u0, and r → r0. Then, expanding h in Equation (44c) around s = s0,
we have

h(s) = − 3c f
2α + 3

(s0 − s)1+ 2α
3 − 6Mr1

r7
0

(s0 − s)α , (54)

where we have used h(s0) = 0. From Equations (50), (52) and (54), the constant α becomes α = 6/5.
Note that this coefficient is consistent with the assumption that |h−1/3dr/ds| � |h−1(dr/ds)2|.

We now turn our attention to calculate a geometrical quantity in a parallelly-propagated frame
along the null geodesic

Γ ≡ CMPNQE2
ME2

NkPkQ, (55)

where CMNPQ is the Weyl tensor, kM denotes the tangent vector of null geodesic and E2
M is a

parallelly-propagated spacelike unit vector orthogonal to kM. These are defined by

k =
du
ds

∂u +
dv
ds

∂v +
dr
ds

∂r, E2 = h1/3∂y. (56)

In terms of the metric (44) and 11-dimensional null vectors (51) with α = 6/5, we find

Γ ∼ (s0 − s)−2 . (57)
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The shear σ and the expansion rate dθ/ds of the congruence along the null vector kM diverge near
the singularity as

σ ∼
∫ s

Γds ∼ (s0 − s)−1 ,
dθ

ds
∼ −σ2 ∼ − (s0 − s)−2 . (58)

Then, we obtain ∫ s
θ ds =

∫ s ( d
ds

ln A
)

ds ∼ ln (s0 − s) , (59)

where A is the volume element of the null geodesic congruence. This implies that the timelike
singularity is a strong type of curvature singularity [41], as the volume element of any congruence
along the radial null geodesic vanishes there.

3.3. Analytic Extension across the Event Horizon

As shown in the previous section, there are null geodesics that terminate a coordinate singularity,
r = 0, t = ∞ in the metric (44a) within a finite affine parameter distance. Here, we consider an analytic
extension across the (r = 0, t = ∞) surface and show that this surface corresponds to a regular null
hypersurface (horizon) generated by a null Killing vector field.

In the c = 0 case, the metric is static and r = 0; the t = ∞ surface corresponds to a Poincare
horizon in AdS4 × S7. Thus, the near-horizon geometry is clearly regular, and the regular metric in the
AdS4 part is given by

ds2
AdS4

' − cosh2 ρdτ2 + dρ2 + sinh2 ρdΩ2
(2), (60)

by adapting a global coordinate system defined by

w =
1

cosh ρ cos τ + sinh ρ sin θ sin ϕ
,

t =
cosh ρ sin τ

cosh ρ cos τ + sinh ρ sin θ sin ϕ
,

x =
sinh ρ cos θ

cosh ρ cos τ + sinh ρ sin θ sin ϕ
,

y =
sinh ρ sin θ cos ϕ

cosh ρ cos τ + sinh ρ sin θ sin ϕ
.

(61)

Therefore, we expect that this coordinate system also works even in the c 6= 0. For simplicity,
we consider the case that c becomes small. Then, expanding the function h with respect to the parameter
c and transforming the metric (44a) in terms of the global coordinate (61), we obtain

ds2 =
M

1
3

4
ds2

AdS4
+ chABdxAdxB + M

1
3

(
1 +

cM
1
2 u

24w3

)
dΩ(7) + O(c2), (62)

where ds2
AdS4

is the AdS4 spacetime in the global coordinate (60), and hAB (A, B = 0, · · · , 3) denotes
the four-dimensional metric, which describes the deviation from the AdS4 geometry in terms of global
coordinates. The metric hAB is a complicated function of the global coordinate (τ, ρ, θ, φ), but each
component is regular everywhere. Therefore, the r = 0 (w = ∞) surface is regular, up to O(c). One can
check that the r = 0 (w = ∞) surface is a null hypersurface since

gAB(dξ)A(dξ)B

∣∣∣∣
ξ=0

= 0, ξ := 1/w = cosh ρ cos τ + sinh ρ sin θ sin ϕ, (63)

up to O(c).
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Next, we consider two vectors N = ∂t, X = ∂x near the horizon. In terms of the global
coordinate (61), we obtain

N =
cosh ρ + sinh ρ cos τ sin θ sin φ

cosh ρ
∂τ + sin θ sin τ sin φ∂ρ

+
cosh ρ sin τ cos θ sin φ

sinh ρ
∂θ +

cosh ρ sin τ cos φ

sinh ρ sin θ
∂φ, (64a)

X = − cos θ sin τ tanh ρ∂τ + cos θ cos τ∂ρ

−
(

cosh ρ cos τ sin θ

sinh ρ
+ sin φ

)
∂θ −

cos θ cos φ

sin θ
∂φ. (64b)

Since the vector N is proportional to X and g(N, N) = g(X, X) = 0 on the null hypersurface
ξ = 0, these vectors become null and degenerate on the horizon. Therefore,

∂v :=
1√
2
(N + X) , (65)

is also null on the horizon (r = 0). Thus, the null Killing vector field ∂v is also the generator of
the horizon, even though the bulk metric is the asymptotically-anisotropic geometry at constant x
coordinate.

4. Supersymmetric Black Hole in an Expanding Universe

We can find all sorts of black holes, of any spacetime dimension in the context of the low-energy
effective supergravity theories. In fact, solitonic solutions, as well as M2-brane can be seen as black
holes in the space transverse to its world-volume. The static M2-brane system describes the microstate
of a black hole [42]. Then, it may be natural to apply the present solutions to a time-dependent
spacetime with a black hole. As we have presented in the previous section, there is a null Killing
vector at the horizon where the M2-brane is located. In the limit r → 0, the background geometry thus
becomes AdS4 × S7. In this section, we discuss the dynamics of a black hole, which is the so-called
“black M2-brane” [37,42–44], in the expanding universe on the basis of the results we have obtained in
the previous section.

4.1. Black Hole in an 11-Dimensional Background

Here, we give an explicit example of a black hole in the dynamical M2-brane system.
The 11-dimensional metric of the supersymmetric M2-brane depends on time,

ds2 = h−2/3(u, r)
[
−2dudv + (dy)2 + h(u, r)

(
dr2 + r2dΩ(7)

)]
, (66)

where
h(u, r) = cu +

M
r6 , (67)

with constants c and M. If we introduce a new coordinate ū, this metric is rewritten as

ds2 = H−2/3(ū, r)
[
−2dūdv + a−

4
3

M2 (ū) (dy)2 + a2
M2(ū)H(ū, r)

(
dr2 + r2dΩ(7)

)]
, (68)

where M̄(ū), aM2(ū) denote the effective M2-brane charge depending on ū and the scale factor, respectively,

H(ū, r) = 1 +
M̄(ū)

r6 , aM2(ū) =
(

ū
ū0

)3/2
, (69)
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with

M̄ (ū) ≡
(

ū
ū0

)−3
M, (70a)

cu =

(
ū
ū0

)3
, ū0 ≡

3
c

. (70b)

The near M2-brane geometry is the same as the static one because there is a null Killing vector at
the horizon, and then, the geometry approaches the static solution. Since it has a horizon geometry,
we can regard the present dynamical solution as a black hole. The dynamical M2-brane gives the
black hole spacetime while the asymptotic structure in the dynamical M2-brane is completely different
from that of a static one. Although the static M2-brane solution has an asymptotically-flat geometry,
the dynamical M2-brane solution is a time-dependent anisotropic spacetime at a constant x coordinate.

4.2. Black Hole in the Ten-Dimensional Effective Theory

In this section, we study the dynamics of the M2-brane black hole in the lower-dimensional
background after compactifying the internal space. Now, we compactify a one-dimensional M2-brane
world volume just as the case of a static black hole and consider the ten-dimensional effective theory.
In this case, we find the 11-dimensional metric

ds2 = ds2
10 + ds2

1, (71)

where

ds2
10 = h−2/3(u, r)

[
−2dudv + h(u, r)

(
dr2 + r2dΩ(7)

)]
, (72a)

ds2
1 = h−2/3(u, r)(dy)2. (72b)

The compactification of ds2
1 gives the effective ten-dimensional spacetime, whose metric in the

Einstein frame ds̄2
10 is given by

ds̄2
10 = h−3/4(u, r)

[
−2dudv + h(u, r)

(
dr2 + r2dΩ(7)

)]
. (73)

If we use a new coordinate ũ

cu =

(
ũ
ũ0

)4
, ũ0 =

4
c

, (74)

the ten-dimensional metric (73) can be rewritten explicitly as

ds̄2
10 = H̃−3/4(ũ, r)

[
−2dũdv + a2

eff(ũ) H̃(ũ, r)
(

dr2 + r2dΩ(7)

)]
, (75)

where the function H̃(ũ, r) is given by

H̃(ũ, r) = 1 +
M̃(ũ)

r6 , (76)

with the effective M2-brane charge M̃(ũ), and the scale factor aeff(ũ),

M̃(ũ) ≡
(

ũ
ũ0

)−4
M, (77a)

aeff(ũ) =

(
ũ
ũ0

)2
. (77b)
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From Equations (73) and (75) in the limit of r → ∞, we find

ds̄2
10 = (cu)−3/4

[
−2dudv + cu

(
dr2 + r2dΩ(7)

)]
= −2dũdv + a2

eff(ũ)
(

dr2 + r2dΩ(7)

)
.

(78)

Since our solution approaches an asymptotically time-dependent universe with the scale factor
aeff(ũ), we can regard again the time-dependent M2-brane solution as a black hole in the expanding
Universe. If we compactify the direction of the world volume coordinate, we find the different power
exponent of time in the scale factor, which is also shown in the original 11-dimensional background.

As a result, we always find the different power of time ũ in the scale factor aeff(ũ) for a
D-dimensional black hole (d ≤ 10) if we smear the transverse space to the M2-brane. If ds-dimensions
of the transverse space to the M2-brane are smeared, which gives the different power of transverse
space coordinates to the M2-brane

ds2 = h−2/3(ũ, z)
[
−2dũdv + (dy)2 + h(ũ, z) δabdzadzb

]
, (79a)

h(ũ, z) = cũ + ∑
l

Ml

|za − za
l |6−ds

, (ds ≤ 7) (79b)

in terms of the multi-black-hole coordinates. Here, za (a = 1, 2, · · · , 8) denote the coordinates of the
transverse space to the M2-branes, Ml (l = 1, 2, · · · , N) are M2-brane charges and za

l (l = 1, 2, · · · , N)

are the positions of M2-branes. Suppose ds dimensions of the transverse space to M2-branes are
smeared and compactified, where ds ≤ 7. If one compactifies the ds-dimensional transverse space,
as well as the dM(=0 or 1)-dimensional M2-brane world volume, the d [= (11− dM − ds)]-dimensional
metric in the Einstein frame is given by

ds̄2
d = H

ds−6
d−2 (ũ, z)

[
−2dũdv + (1− dM) a

2(ds−6)
d−2

eff (dy)2 + a2
eff(ũ) H(ũ, z) δPQdzPdzQ

]
, (80a)

H(ũ, r) = 1 +
M̃(ũ)

r6 , (80b)

where δPQdzPdzQ is the metric of (8− ds)-dimensional Euclidean space. The effective M2-brane charge
M̃(ũ), the scale factor aeff(ũ) and a coordinate ũ are also given by

M̃(ũ) =
(

ũ
ũ0

)− d−2
3−dM

M, aeff(ũ) =
(

ũ
ũ0

) d−2
2(3−dM)

, (81a)

cu =

(
ũ
ũ0

) d−2
3−dM

, ũ0 =
d− 2

c(3− dM)
. (81b)

This power exponent is obtained for a universe filled by the four-form field strength satisfying
the field equation. We may regard the present D-dimensional solution as a time-dependent black hole.

5. Discussions

In the present proceeding, we have constructed the dynamical supersymmetric M2-brane solution
for the warped compactification of an 11-dimensional supergravity. The solution is given by an
extension of a static supersymmetric M2-branes solution. In the case of a dynamical M2-brane
background, a quarter of maximal supersymmetries exists. If the M2-brane charge vanishes,
our solution gives a plane wave background that preserves a half of the full supersymmetry. Therefore,
in the far region from the M2-brane, the background changes from the dynamical M2-brane to the
time-dependent plane wave background. This means that one quarter of the maximal supersymmetry
is enhanced to a half of the possible rigid supersymmetries in the maximal case when one moves
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in the transverse space to the M2-brane. Although we have mainly discussed the single M2-brane
solution in this proceeding, it is possible to generalize it to the solution that describes an arbitrary
number of extremal M2-branes in an expanding universe. We have found that the degree of the
supersymmetry breaking is strongly related to the dynamics of the background. Then, the time
evolution of the geometry is deeply connected with the hierarchy and supersymmetry breaking while
the inhomogeneity of the M2-brane world volume coordinates results in preserving the supersymmetry.
In the region where the effect of the inhomogeneity of the M2-brane world volume coordinates is
smaller compared to the contribution of the M2-brane charge, our supersymmetric solution describes
the breaking of the supersymmetry, which is the transition from the supersymmetric universe to a
non-supersymmetric one as time evolves.

The dynamical M2-brane solutions can always take a form in the function h(x, r) = h0(x) + h1(r),
where the function h(x, r) depends on the linear function of the M2-brane world volume coordinates
xµ, as well as the coordinates of the transverse space to the M2-brane. Since the existence of the
function h0(x) implies dynamical instability in the moduli of internal space [3], it would be useful to
study the stability of a solution.

Motivated by the construction of a new supersymmetric solution, we have studied the global
structure of the dynamical M2-brane background. We have found that the time dependence changes
the causal structure of a static M2-brane solution. Since the volume element of any congruence along
the radial null geodesic vanishes at the curvature singularity, it turns out that this is a strong version
of a timelike singularity. We have studied null geodesics that terminate a coordinate singularity
in terms of an analytic extension across there and showed that there is a regular null hypersurface
(or horizon) generated by a null Killing vector field. In particular, this null Killing vector field describes
the generator of the horizon even if the bulk metric is the asymptotically-anisotropic geometry at a
constant x coordinate. Hence, the near horizon geometry in this solution gives the regular spacetime
and thus becomes AdS4 × S7.

It is important to explore another analytic solution describing a supersymmetric M-brane or
D-brane in the expanding universe. One may present whether supersymmetric dynamical brane
solutions affect the formation of the naked singularity. Upon setting an appropriate initial condition,
these solutions may allow us to violate the cosmic censorship [30,45].

We can also discuss a dynamical black hole solution whose spacetime gives a time-dependent
universe. The near M2-brane region of this black hole in the expanding universe is the same as the static
solutions while the asymptotic structures are completely different, giving the anisotropic spacetime at
a fixed x coordinate with scale factors for a dynamical universe. The effective M2-brane charge for the
supersymmetric background depends on the world volume coordinates of the M2-brane.

The supersymmetric solutions can contain the function depending on null coordinates of the
M2-brane world volume direction. The results we have obtained are not unnatural because studies
of the supersymmetric plane wave background showed that it is possible to obtain time-dependent
supersymmetric solutions with a nontrivial dependence on spacetime coordinates [34,36]. Although
this may be a limitation on the applications of our solution, it is interesting to explore if similar more
general dynamical and supersymmetric solutions can be obtained by relaxing or extending some of
our assumptions for the 10-, 11-, or lower-dimensional backgrounds. We will study this subject in the
near future.
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