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Abstract: We investigate gravitational lensing in the context of the MOG modified theory of gravity.
Using a formulation of the theory with no adjustable or fitted parameters, we present the MOG equations
of motion for slow, nonrelativistic test particles and for ultrarelativistic test particles, such as rays of
light. We demonstrate how the MOG prediction for the bending of light can be applied to astronomical
observations. Our investigation first focuses on a small set of strong lensing observations where the
properties of the lensing objects are found to be consistent with the predictions of the theory. We also
present an analysis of the colliding clusters 1E0657-558 (known also as the Bullet Cluster) and Abell 520;
in both cases, the predictions of the MOG theory are in good agreement with observation.
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1. Introduction

Ever since Einstein’s 1915 prediction of the angle by which a ray of light is bent by the eclipsed
Sun, and its spectacular (albeit now seen as somewhat controversial) confirmation by observations led by
Arthur Eddington during the 1919 solar eclipse [1], the effects of gravity on light have been viewed as a
mechanism by which the predictions of a gravity theory like general relativity can be tested directly.

This remains the case today. Indeed, gravitational lensing is viewed as a possible means to distinguish
between competing theories of gravitation and cosmology: in particular, between theories of modified
gravity versus the collisionless cold dark matter (CDM) that forms the basis of the ΛCDM “standard
model” of cosmology.

The discovery of the colliding clusters 1E0657-558, also known colloquially as the Bullet Cluster,
was initially viewed by many as a decisive case in favor of a CDM model [2], as the lensing associated with
cluster components depleted in gas (normally, the dominant baryonic component) seemed inconsistent
with theories of modified gravity. More recently, however, the colliding clusters Abell 520 [3,4] appeared
as a counterexample. The lensing associated with gas-rich core regions of this object that contain no visible
galaxies can only be understood if the presence of some dark matter is assumed, which is not consistent
with the collisionless nature of CDM in the standard model.

The gravitational lensing maps obtained from the observation of colliding clusters are examples of
weak lensing. There are also cases of strong lensing observed in the deep sky. These come in the form
of Einstein rings, a visually stunning phenomena where the image of a background object is heavily
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distorted, forming a partial or full ring around a foreground object as a result of the latter’s gravity.
Measuring the angular size of the ring can be compared to the observed distances (obtained from redshifts)
to the foreground and background objects, from which one can make deductions about the size of the
lensing mass.

Our Modified Gravity (MOG) theory, also known as Scalar-Tensor-Vector Gravity (STVG) [5,6],
is a classical theory of gravity based on a Lagrangian principle. Phenomenologically, the theory comprises
metric gravity with a variable gravitational constant greater than Newton’s, and a repulsive vector
field of finite range that partially cancels out the attractive force. The gravitational constant and the
mass of the vector field are themselves promoted to scalar fields. This theory is known to yield results
that are consistent with precision solar system experiments. It was applied successfully to a sample
of over 100 spiral galaxies, correctly modeling their detailed rotation curves without dark matter [7,8].
Furthermore, the theory was also used for cosmological investigations, successfully modeling the acoustic
power spectrum of the cosmic microwave background and the galaxy-galaxy power spectrum [6].

The MOG theory was also used to model the weak gravitational lensing of the Bullet Cluster [9,10].
The predictions of MOG were found to be consistent with observation, demonstrating that it is, in fact,
possible for a modified gravity theory to yield agreement with the Bullet Cluster.

In this paper, we first present a condensed review of the MOG theory, focusing on the development of
the weak field, low velocity equations motion on the one hand, and the equations governing ultrarelativistic
particles on the other. This material is presented in Section 2. In Section 3, we apply the theory to a small
set of strong lensing objects for which detailed observational data are available. In Section 4, we investigate
the Bullet Cluster and Abell 520. This section contains our main result, demonstrating that the behavior
of both clusters is consistent with the MOG theory. Finally, in Section 5 we present our conclusions
and outlook.

In this paper, we use the following conventions: the symbol ∇µ is used to denote covariant
differentiation with respect to the metric gµν, while the symbols R, Λ, and g represent the Ricci scalar,
the cosmological constant, and the determinant of the metric tensor, respectively. We define the Ricci
tensor as Rµν = ∂αΓα

µν − ∂νΓα
µα + Γα

µνΓβ
αβ − Γα

µβΓβ
αν. Unless otherwise noted, we set the speed of light, c = 1;

we use the metric signature (+,−,−,−).

2. The MOG Theory

In this section, we summarize the main results of MOG as they apply to the bending of light.
The presentation here is a condensed version of that given by [11].

2.1. Lagrangian Formulation

Our modified gravity theory is based on postulating the existence of a massive vector field, φµ.
The choice of a massive vector field is motivated by our desire to introduce a repulsive modification of the
law of gravitation at short range. The vector field is coupled universally to matter. The theory, therefore,
has three constants: in addition to the gravitational constant G, a further constant µ arises as a result of
considering a vector field of non-zero mass, and controls the coupling range. The theory promotes G and
µ to scalar fields, hence they are allowed to run, resulting in the following action [5,6]:

S = SG + Sφ + SS + SM, (1)

where

SG =− 1
16π

∫ 1
G

(R + 2Λ)
√
−g d4x, (2)
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Sφ =−
∫ [1

4
BµνBµν −

1
2

µ2φµφµ + Vφ(φ)

]√
−g d4x, (3)

SS =−
∫ 1

G

[1
2

gµν

(∇µG∇νG
G2 +

∇µµ∇νµ

µ2

)
+

VG(G)

G2 +
Vµ(µ)

µ2

]√
−g d4x, (4)

where SM is the “matter” action, Bµν = ∂µφν − ∂νφµ, while Vφ(φ), VG(G) and Vµ(µ) denote the
self-interaction potentials associated with the vector field and the two scalar fields.

In the case of a spherically symmetric field in vacuum around a compact (point) source, we were able
to derive an exact numerical solution [6]. We found that the scalar fields G and µ remain constant except in
the immediate vicinity of the source. The spatial part of the vector field φµ is zero, while its t-component
obeys a simple exponential relationship. Meanwhile, the metric is approximately the Reissner-Nordström
metric of a source with a fifth-force charge.

Specifically, given a spherically symmetric, static metric in the standard form

dτ2 = Bdt2 − Adr2 − r2(dθ2 + sin2 θdφ2), (5)

we found [5,6] that, for a source mass M, the field equations yield a solution similar to the Reissner-Nordström
metric of a charged black hole, the charge in this case being the fifth-force charge associated with the
source mass:

A ' B−1, (6)

B ' 1− 2G0M
r

+
G0Q2

5
r2 , (7)

G ' G0 = GN + (G∞ − GN)
M

(
√

M + E)2
, (8)

µ ' µ0 =
D√
M

, (9)

φt ' −Q5
e−µr

r
, (10)

where GN is Newton’s constant of gravitation, Q5 = κM is the fifth force charge associated with the source
mass M, while G∞, D and E are constants of integration. Further, a comprehensive fit to a variety of
astronomical and cosmological data sets (including galaxy rotation curves, the large-scale distribution
of matter, and peaks of the microwave background angular power spectrum) yielded the following
approximate values [6]:

κ =
√

GN , (11)

D ' 6250 M1/2
� kpc−1, (12)

E ' 25, 000 M1/2
� , (13)

G∞ ' 20GN . (14)

When r is large (that is, large relative to the Schwarzschild-radius rS = 2G0M for a source mass M),
the metric coefficients become

A ' B−1, (15)

B ' 1− 2G0M
r

. (16)
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This is a standard result of MOG which is obtained from the MOG field equations, solved in the
presence of appropriately chosen, physically motivated initial conditions [6].

2.2. Motion in a Spherically Symmetric Field

To develop an equation of motion for a point particle and use it to derive a formula for light bending,
we follow the approach presented by [12]. In particular, treating the photon as an ultrarelativistic point
particle allows us to avoid postulating an action for the electromagnetic field that works in conjunction
with the MOG gravitational action; this topic is the subject of on-going research.

We begin with the point particle action in MOG, which is written in the form

STP = −
∫
(m + αq5φµuµ) dτ

= −
∫
(m
√

gαβuαuβ + αq5φµuµ) dτ,
(17)

where m is the point particle mass, q5 is its fifth force charge, and uα = dxα/dτ is its four-velocity.
The dimensionless coefficient α is given by

α =
G0 − GN

GN
=

(
G∞

GN
− 1
)

M
(
√

M + E)2
. (18)

The fifth force charge is assumed to be proportional to m, such that q5 = κm. Using the variational
principle, we obtain the equations of motion in the form

m
(

duν

dτ
+ Γν

αβuαuβ

)
= αq5uβgναBαβ. (19)

Integration yields

r2 dφ

dτ
= J, (20)

and

A
(

dr
dτ

)2
+

J2

r2 −
(1− ακφt)2

B
= −E , (21)

where E is another constant of integration.
From (21), taking the large-r limit, we get

E = 1− v2, (22)

where v = dr/dτ ' dr/dt is the velocity of the particle at infinity. For ultrarelativistic particles, E → 0.
For a non-relativistic particle, v2 � 1. Further, in the weak field limit, 1− 2GM/r ' 1, which leads to

d2r
dt2 −

J2

r3 = ακφ′t −
GM
r2 . (23)

This equation of motion is a direct consequence of the solution of the field equations presented in
Section 2.1, used in combination with the postulated test particle action (17).

The nonrelativistic equation of motion (23) can be further simplified when only radial motion is
considered, such that J = 0:

r̈ = −
[
1 + α− α(1 + µr)e−µr] GN M

r2 . (24)
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This equation formed the basis of much of our investigation to date, including our successful modeling
of the detailed rotation curves of spiral galaxies [7,8].

2.3. Flat Rotation Curves and Velocity Dispersion

MOG yields a regime of rotation curves significantly flatter than the Keplerian values in the spherically
symmetric field of a point source at distances of r ∼ µ−1. This effect arises as the weakening of the
gravitational field with increasing radial distance is partially canceled out by the exponential vanishing of
the repulsive Yukawa component. The rotational velocity v for a circular orbit can be calculated using
basic kinematics: v2/r = −r̈, where r̈ is the radial acceleration given by Equation (24). Thus we have

v =

√
[1 + α− α(1 + µr)e−µr]

GN M
r

. (25)

At r = µ−1, we obtain

v =
√
[1 + α(1− 2e−1)]GN Mµ. (26)

From Equation (9), we have µ = D/
√

M and we get

v =
√
[1 + α(1− 2e−1)]DGN

4
√

M, (27)

in agreement with the observationally established Tully-Fisher relation [13], v4 ∝∼ M.
We expect the line-of-sight velocity dispersion σ|| of an observed galaxy to be proportional to its

typical rotational velocity. This justifies the use of the empirical Faber-Jackson relation [14] for elliptical
galaxies, which can be written as [15]:

σ|| ' 150
(

L
1010L�

)1/4
km/s, (28)

where L ∝ M is the luminosity of the galaxy.
If Equation (28) represents the typical velocity dispersion of a spherically symmetric elliptical galaxy,

it can also be viewed as the typical velocity dispersion of a randomly oriented disk galaxy. For a disk
galaxy that is viewed edge-on, the velocity dispersion will be

√
3/2 times this value. This also represents a

limiting case: the observed line-of-sight velocity dispersion cannot be larger for a virialized galaxy that is
not disturbed by external (e.g., tidal) gravitational forces or non-gravitational interactions.

2.4. The Bending of Light

To calculate light bending, we return to the exact result in Equation (21). We eliminate dτ using
Equation (20):

A
r4

(
dr
dφ

)2
+

1
r2 = − E

J2 +
(1− ακφt)2

J2B
. (29)

For an extreme astronomical lensing scenario, we consider lensing by a 1012 M� object with an impact
parameter of only 10 kpc. In this case, ακφt ' −8× 10−5, which is negligible. (For comparison, for starlight
grazing the Sun, ακφt ' −6.4× 10−14.) This justifies taking, in the weak field limit, 1− ακφt ' 1 for an
ultrarelativistic particle.
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Solving for ∆φγ = 2|φ− φ∞| − π for photons in the weak field limit, we get

∆φγ = 2

∣∣∣∣∣∣
∫ ∞

r0

1
r

[
r2

r2
0

B(r0)

AB
− 1

A

]−1/2

dr

∣∣∣∣∣∣− π. (30)

This formula is formally identical to the light bending formula in the weak field limit of general relativity,
with one notable difference: instead of G = GN, we are using G = G0 = (1 + α)GN in the Schwarzschild
coefficients A and B. From this formula, the approximate deflection can be calculated as [5,11,12]:

∆φγ =
4GM

r0
=

4(1 + α)GN M
r0

. (31)

Thus, the bending of light under MOG is equal to the bending of light under general relativity using
an effective (lensing) mass

ML = (1 + α)M. (32)

As α is given as a function of M, this equation can be solved for M. Specifically:

ML =

(
1 +

G∞ − GN
GN

M
(
√

M + E)2

)
M. (33)

When no dark matter is present, M = Mb, where Mb is the baryonic mass. Using the value of ML
determined from lensing observations, Equation (33) can be used to solve for Mb.

3. Einstein Rings

When light from a distant source is deflected by a massive object, an observer aligned with the distant
source and the massive object may see a ring-like image of the distant source. Such images are often
referred to as Einstein rings.

If the distances to the remote source and to the massive object are known, the apparent size of the
Einstein ring provides a direct means to estimate the effective gravitational mass of the massive object.
In the case of the dark matter model, this effective gravitational mass is the sum of the masses of baryonic
matter and exotic dark matter. In the case of a modified gravity such as MOG, in the absence of exotic dark
matter, the effective gravitational (lensing) mass is the mass of baryonic matter, enhanced by modified
gravity effects.

Specifically, the apparent radius θE of an Einstein ring is given by, in radians [16]:

θE =

√
4GN ML

c2
dLS

dLdS
, (34)

where dL, dS, and dLS are the angular diameter distances (related to the comoving distance ξ by
d = ξ/(1 + z) in the case of a flat, Ω = 1 cosmology) to the lensing object, the source, and between
the lensing object and the source, respectively. For the dark matter theory, the lensing mass is the sum
of baryonic and dark matter masses: ML = M = Mb + MDM. For MOG, the lensing mass is given by
Equation (32), with M = Mb. Given θE, dS, dL, and dLS, Equations (33) and (34) allow us to solve for Mb.

Together, Equations (28) and (33) provide a testable relationship between the velocity dispersion
σ|| and the lensing mass ML. The lensing mass can be estimated using Equation (34) from Einstein ring
observations, whereas the velocity dispersion of the lensing object can be observed directly.
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3.1. Some Strong Lensing Candidates

For a small set of lensing galaxies, observational data for both ML and σ|| are available. Ref. [17]
studied 21 strong lensing candidates, for which they estimated ML from the size of the lensed images.
The velocity dispersion of six of these galaxies has been measured [18–23]. The lensing masses and velocity
dispersions for these six objects are included in Table 1, and plotted in Figure 1.

It appears that these six lensing objects do not follow any clearly discernible trend. This is perhaps to
be expected, given the difficulty of measuring the velocity dispersions of such very distant objects. On the
other hand, none of the six lenses have velocity dispersions that would place them more than 1σ in the
“forbidden region” (shaded area in Figure 1), where the velocity dispersion would be excessive compared
to the lensing mass.

Table 1. Data for 21 strong lensing objects. Lensing mass and stellar luminosity estimates are from [17].
The value of the baryonic mass-to-light ratio under MOG, ΥMOG, is predicted, as described in the text.

Lens ML LV σ|| ΥMOG
(1010 M�) (1010L�) (km/s)

Q0047 33.27+3.80
−3.03 2.30+0.59

−0.47 250(30) 1 0.97+0.25
−0.20

Q0142 45.81+3.31
−5.50 4.59+2.32

−1.61 — 0.65+0.35
−0.22

MG0414 102.76+16.55
−19.04 3.54+2.01

−1.31 — 1.74+1.02
−0.63

B0712 16.13+2.55
−2.04 1.67+0.50

−0.40 — 0.71+0.22
−0.17

HS0818 36.88+3.69
−5.48 1.74+0.57

−0.44 — 1.40+0.48
−0.34

RXJ0911 73.04+1.15
−1.36 4.85+2.47

−1.69 — 0.93+0.50
−0.31

BRI0952 14.76+5.67
−5.87 1.79+0.57

−0.44 — 0.61+0.20
−0.15

Q0957 151.29+5.67
−6.58 8.29+2.51

−1.95 288(9) 2 1.06+0.33
−0.25

LBQS1009 64.73+11.97
−24.46 3.09+1.86

−1.20 — 1.31+0.83
−0.50

B1030 55.09+2.11
−3.52 4.61+2.24

−1.58 — 0.76+0.39
−0.25

HE1104 72.80+3.68
−3.22 4.11+1.82

−1.29 — 1.09+0.50
−0.33

PG1115 16.80+1.31
−1.23 1.52+0.94

−0.62 281(25) 3 0.81+0.55
−0.31

B1152 30.43+4.23
−5.86 3.02+0.92

−0.72 — 0.68+0.22
−0.16

B1422 5.72+0.39
−0.24 0.46+0.17

−0.13 — 1.11+0.44
−0.31

SBS1520 41.98+1.49
−1.82 4.37+2.64

−1.69 — 0.63+0.40
−0.24

B1600 16.38+0.82
−1.67 0.62+0.22

−0.16 — 1.94+0.69
−0.50

B1608 42.49+35.50
−26.52 11.5+3.40

−2.67 247(35) 4 0.24+0.07
−0.06

MG2016 52.05+14.23
−5.13 7.12+6.58

−3.75 304(27) 5 0.47+0.52
−0.22

B2045 173.07+21.02
−34.20 5.76+2.01

−1.50 — 1.74+0.60
−0.45

HE2149 26.82+2.07
−2.19 5.42+2.12

−1.57 — 0.34+0.14
−0.10

Q2237 2.76+0.85
−0.58 0.26+0.14

−0.10 215(30) 6 1.08+0.61
−0.39

1 [23]; 2 [22]; 3 [21]; 4 [20]; 5 [19]; 6 [18].
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Figure 1. The relationship between lensing masses and velocity dispersions. The six data points represent
the six galaxies from Table 1 for which velocity dispersion data are available. For these galaxies, the average
mass-to-light ratio, computed from the lensing mass using MOG, is Υavg = 0.77. The blue dashed line
shows the Faber-Jackson relationship for this value. The lowest mass-to-light ratio in this sample of six
galaxies is Υmin = 0.24. This case, calculated for an edge-on disk galaxy and indicated by the solid red line,
represents a limiting case. No galaxy that is virialized and unaffected by external fields should be located
in this region.

3.2. Predicting Mass-to-Light Ratios

The luminosity of a distant galaxy can be obtained by optical observation. On the other hand, the mass
of a distant galaxy usually cannot be measured: it must be inferred from the galaxy’s observable properties
using an applicable model of galaxy evolution. The predicted amount of baryonic matter in a galaxy,
therefore, depends strongly on the choice of model and may vary significantly between models.

On the other hand, when a galaxy is a strong lensing object, its effective mass can be calculated as per
our preceding discussion, by observing the size of the Einstein ring and using the redshifts of the lensing
and lens objects as proxies for distance.

Under the MOG theory, the effective lensing mass is due entirely to the baryonic content of the
galaxy and the variable gravitational constant that is associated with it; as such, the baryonic mass Mb
can be estimated using Equation (33). Given the known luminosities L of the lensing objects, the ratio
of ΥMOG = Mb/L can be then calculated. We present the predicted baryonic mass-to-light ratios for all
21 lensing objects listed in Table 1. The average for the 21 listed galaxies if Υavg = 0.96. In comparison,
the baryonic mass-to-light ratio in the disk of the Milky Way is ΥV = 1.5± 0.2 [24]. Our results from MOG
imply that at higher redshifts galaxies may have lower mass-to-light ratios. This is in agreement with the
evolution of the mass-to-light ratio in galaxies. At higher redshifts the mass function is dominated by
massive stars and the result is a lower Υ; this is confirmed by observation [25].

4. Abell 520 and the Bullet Cluster

Large clusters of galaxies and, in particular, collisions of such clusters have been observed in recent
years and formed the subject of much discussion concerning the validity of the standard ΛCDM model
of cosmology.
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In the CDM scenario, when two large clusters collide, much of the gas present in the galaxies slows
down and heats up. This was indeed observed using X-ray telescopy, which detected X-ray radiation from
large quantities of hot (∼107 K) gas at the locus of the collision. Stars and CDM halos of galaxies, on the
other hand, pass through each other in a collisionless manner and continue along the original trajectories
of the colliding clusters, their path modified only by gravitational interactions.

When background objects are viewed through colliding clusters, significant weak lensing should be
observable. The lensing is proportional to the gas mass at the locus of the collision. Lensing proportional
to the combined stellar and CDM mass (a sum that is dominated by the CDM mass) will be seen at the
locus of the visible galaxies.

In particular, the case of the Bullet Cluster 1E0657-558 has been viewed by many as a strong indication
in favor of the CDM scenario, since the visual brightness of the post-collision galaxies, combined with
any sensible mass-to-light ratios, do not even come close to yielding the mass that would be necessary
to produce the observed lensing. In contrast, the colliding clusters Abell 520 indicate weak lensing that,
under the standard CDM scenario, can only be explained if significant quantities of CDM were present in
the object’s core. This is at odds with the standard assumption that the CDM medium is truly collisionless,
interacting only gravitationally. Cold dark matter, like stars, would have continued without collisions and
would be located where galaxies are currently visible. In actuality, no visible galaxies are observed near
the core of Abell 520 [3].

4.1. Applying MOG to Colliding Clusters

As we have seen in the previous sections, much of the phenomenology of the MOG theory is captured
by the concept of an effective lensing mass, as given by Equation (32). The lensing mass ML determines
both the bending of light and low-velocity, weak field dynamics far from a source (nearer the source,
the repulsive vector force of the theory must also be taken into account). The value of α, given by
Equation (18), ranges from near zero for small objects (e.g., a single star) all the way up to ∼19 for very
large, compact gravitational sources.

This phenomenology has been developed for single, isolated, point-like sources of gravity, and cannot
be applied trivially to extended distributions of matter, as the MOG theory is inherently nonlinear.
Nonetheless, we expect this phenomenology to remain valid, at least approximately and as an upper limit
for α, for extended objects such as large clusters of galaxies.

Assuming the validity of the MOG theory, the value of α can be estimated from observation. Consider
an object with known dynamical (lensing) mass ML and luminosity L. Assuming a stellar mass-to-light
ratio Υ? (which may be determined using standard galaxy evolution models) yields an estimated stellar
mass M? = Υ?L. The amount of gas present is characterized by the gas fraction, fg, which relates the
lensing mass to the mass of gas Mg deduced from direct observation, and is defined as

fg =
Mg

ML
. (35)

Together, the gas and stellar mass yield the baryonic (non-exotic) mass:

Mb = Mg + M? = fg ML + Υ?L. (36)

In the MOG theory, the effective mass is (1+ α) times the baryonic mass (stars and gas) with no exotic
dark matter present. This allows us to determine α as

α =
ML
Mb
− 1. (37)
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This determination of α can be contrasted with the values of α that we can calculate directly from
either the lensing mass ML or the baryonic mass Mb using Equations (32) and (33).

The Bullet Cluster 1E0657-558 has been studied in detail from the MOG perspective: it has been
shown [9] that the weak lensing map associated with this cluster is consistent with the MOG prediction in
the absence of exotic dark matter. In the following, we review the case of the Bullet Cluster and also apply
our reasoning to the case of Abell 520.

4.2. The Bullet Cluster 1E0657-558

The Bullet Cluster has been studied extensively by [26] and others. In particular, they determined
the dynamical mass of the two visible cluster components (“main cluster” and “subcluster”) from weak
lensing and compared these to the visual magnitudes of these components.

In the B-band, the mass-to-light ratio for the main cluster was found to be in the range 275–314 for
the main cluster and 271–297 for the subcluster, depending on the choice of observational methodology [2].
In combination with the lensing masses and gas fractions estimated by [26], these values allow us to
estimate the MOG α parameter, as shown in Table 2. For the purposes of this estimate, we used a stellar
mass-to-light ratio of Υ? = 1; however, the final value is not particularly sensitive to Υ? due to the relative
smallness of the stellar component in the overall mass.

We can compare these estimates of α with the values of α obtained from the lensing masses. For the
main cluster, subcluster, and main gas peak, we obtain the values of α(ML) that are given in Table 2.

Table 2. Lensing mass, gas fraction, stellar luminosity and the MOG α parameter (estimated assuming a
stellar mass-to-light ratio of Υ? = 1) and the same parameter computed from ML for components of the
Bullet Cluster. Using data from [2] and [26] (for the main gas peak).

Component ML fg
L? α α(ML)1013 M� 1011L�

Main cluster 9.5(1.5) 0.09(1) 3.5 9.7+1.3
−1.1 17.7

Subcluster 6.6(1.9) 0.04(1) 2.1 22.2+7.6
−4.8 17.5

Gas peak 10.8(6) 0.19(3) N/A 4.3+1.0
−0.8 18.6

These idealized values for α characterize point sources. As expected, the values of α obtained by
comparing observational estimates of the lensing mass versus baryonic mass are smaller. We attribute this
to the fact that the components of the Bullet Cluster are themselves extended objects spread over several
hundred kpc. By comparing the ideal values of α to the values obtained from observation, we find that
they come closest for the subcluster. This is consistent with the visual observation that the subcluster is
smaller, more compact than its main counterpart. Similarly, the fact that the value of α obtained from
observation is smallest for the gas peak is indicative of the fact that the gas peak corresponds to a relatively
diffuse cloud of gas, not compact galaxies of stars.

4.3. Applying MOG to Abell 520

We now turn our attention to the colliding clusters Abell 520. Weak lensing by the Abell 520 cluster
was recently explored using data from the Wide Field Planetary Camera of the Hubble Space Telescope [3].
The authors conclude that this cluster has a dark core that coincides with the peak X-ray luminosity
(see Figure 2) and that there are no visible galaxies in this central core.
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This cluster has a main structure labeled P3 and substructures labeled P1, P2, P4, P5 and P6. Visible
matter in the central main substructure is mainly gas while the other substructures have a mixture of gas
and galaxies.

Using the parameters of the lensing cluster as the projected mass, luminosity of galaxies in B-band,
mass to light ratio and the fraction of gas in each subcluster, we can find the MOG α parameter for each of
the substructures (see Table 3).

Figure 2. The Abell 520 cluster with distribution of galaxies, gas and contours from weak lensing [3].

Table 3. Lensing mass, gas fraction, stellar luminosity and the MOG α parameter (estimated assuming
a stellar mass-to-light ratio of 1) and the same parameter computed from ML for components of Abell 520 [3].
Note that P3 corresponds to the “dark core”.

Component ML fg
LB α α(ML)(1013 M�) (1011L�)

P1 2.63(48) <0.06 1.54 >13.8 18.2
P2 3.83(42) <0.08 3.58 >9.7 18.3
P3 4.00(38) <0.14 0.68 >6.0 18.4
P4 3.64(45) <0.08 2.95 >9.9 18.3
P5 3.02(40) <0.05 2.12 >15.5 18.3
P6 3.33(40) <0.06 1.23 >14.3 18.3

As in the case of the Bullet Cluster, we find that the values of α estimated this way are below the
values estimated from the lensing mass alone, treating the substructures as point sources. This is just
as expected: for extended objects like these substructures, the point source estimate should serve as an
upper limit.
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Furthermore, just as we would expect, the values of α computed from observation are lower for
substructures that have a higher gas content. This coincides with our interpretation that gas structures are
diffuse and extended, whereas galaxies are more compact.

5. Conclusions and Outlook

In this paper, we studied the predictions of the MOG modified theory of gravity as applied to weak
and strong gravitational lensing.

For strong lensing objects, MOG can be used to predict a relationship between velocity dispersions
and lensing masses. This is indeed the same derivation that allows us to use MOG to derive the Tully-Fisher
relationship. We found that given the small number of lensing objects for which reliable velocity dispersion
data are available in the literature, all are consistent with the predictions and constraints of the MOG theory.

We also applied MOG to the case of the merging clusters 1E0657-558 (the Bullet Cluster) and Abell 520.
For the former, a detailed study was conducted in the past [9], showing excellent agreement between
weak lensing observations and the MOG prediction. Here, we demonstrated why this is so: that the
effective lensing masses of specific regions of the Bullet Cluster are consistent with their luminosities
and mass-to-light ratios under the MOG theory, in the absence of dark matter. We then applied the same
reasoning to the merging clusters Abell 520. Under the standard cold dark matter scenario, weak lensing
of this cluster can only be explained by assuming the presence of a dark matter core, which is inconsistent
with the collisionless nature of the cold dark matter component and the lack of visible galaxies in this core
region. For MOG, no such difficulty exists: as in the case of the Bullet Cluster, the lensing masses and
luminosities are consistent with the predictions of the theory.

In these studies, we applied the MOG point source solution to the objects that were examined.
This necessarily introduced a degree of uncertainty in the predictions: due to the inherently nonlinear
nature of the MOG theory, the point source solution can only be considered as a limiting case when spatially
extended, diffuse objects are examined. An alternative is to use a density profile and the generalized
MOG Poisson equation, as it was done in [9,10]. Apart from a difference in the predicted value of α

(the point-source solution in the current paper yielded a larger value, as expected) both approaches yield
consistent results.
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