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Abstract: Formulation of the Lagrangian approach is presented for studying features of motions of
stellar bodies with non-zero rest mass in the vicinity of fast-spinning black holes. The structure of
Lagrangian is discussed. The general method is applied to description of body motion in the Kerr
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gravitational field.
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1. Introduction

In contrast to the well-known ray-method for describing (in non-flat space–time) motion of both
photon and “test body”—an idealized conceptualization of a material object with non-zero but small
mass (not perturbing space–time around it)—we formulate a step-by-step Lagrangian approach that
not only describes the motion of the test body with non-zero rest mass (obviously, it must move along
a geodesic), but also describes interactions of test-like bodies in a multi-body system, for example,
a system of interacting bodies moving in a given strong gravitational field.

The need for the ability to conduct detailed examinations of such scenario is obvious. One vivid
example of its importance comes from the astronomical observations showing that at the center of
our galaxy a super-massive black hole significantly affects the dynamics of nearby stars (see Figure 1).
This black hole is apparently one of the closest such objects to us. It represents an extraordinary,
natural, laboratory not only for validating the general relativity theory overall, but also for testing
specific theoretical models by comparing them with direct observational data. Further improvements
in observational techniques combined with continuous (rather than periodic or ad hoc) collection of
data can generate invaluable material for fundamental research.

In view of this, the importance of the task of formulating the proper procedure for describing
motions of bodies, both non-deformable and such that can be torn apart by tidal forces, is apparent.
The framework of the Lagrangian Approach with the relativistically invariant Lagrangian is best-suited
for the task.

The structure of the articles is as follows. In Section 2, we lay out the essentials for working with
the space–time metrics near a rotating black hole. This section may be skipped by an experienced reader,
but it is essential for the completeness of the presentation. In Section 3, we recall the essence of the
principle of least action and set up the model of the relativistically invariant Lagrangian for describing
motions of bodies near fast-rotating black holes. Section 4 discusses the Euler–Lagrange motion
equations for bodies with non-zero mass, that are derived from this principle. The special case of planar
parabolic motion of bodies is considered in Section 5. In Section 6, we discuss the obtained expression
for Lagrangian in the post-Newtonian approximation, which serves as the (complexity-reducing) basis
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for numerical simulations of tidal disruptions of elastic, plasma, “droplet-like”, and so on, bodies,
when they enter the close vicinity of a fast-rotating black hole. Section 7 presents the conclusions.

Figure 1. There exist indications that the central zone of our galaxy contains a compact, possibly
rotating, object with mass ∼4 × 106 M�. This super-massive object, thought to be a black hole, exerts
strong influence on the dynamics of nearby stars. (See, for example, [1,2], as well as [3].) The image
(from [1] These images/animations were created by Prof. Andrea Ghez and her research team at UCLA
and are from data sets obtained with the W. M. Keck Telescopes) shows tracks of the brightest stars
near the center of the Milky Way. The image presented here was obtained by the UCLA research team
based on data obtained by the teams at the W.M. Keck Observatory over the span of two decades. The
orbits plot as dots the star positions at one-year intervals. The central arrow (added by us) points to the
presumed location of the super-massive black hole.

2. Space–Time near Rotating Black Holes

Practicing any methodology for a long time carries a risk of forgetting the underlying assumptions
and choices made during derivation of core tenets. Therefore, once in a while, the entire framework
should be given a fresh review.

2.1. The Metric: A Refresher

The geometry of space–time in the vicinity of mass M rotating with angular momentum Jh is
described by the Kerr metric (see, for example [4–9], or any other textbook on the physics of black
holes). The Kerr metric describes the gravitational field of a non-charged rotating black hole, and
if the radius of the gravitating body is greater than the radius of the event horizon, then, in many
cases, it describes gravitational fields of other rotating astrophysical objects—galaxies, stars, and
neutron stars.

The interval ds for the Kerr metric in Boyer–Lindquist presentation is found from expression

ds̃2 = g̃αβdqαdqβ →
ds̃2 = (1− rgr

Σ )c2dt2 +
2rgrā

Σ sin2 θcdtdφ− Σ
∆ dr2 + Σdθ2 − (r2 + ā2 − rrg ā2

Σ sin2 θ) sin2 θdφ2.
(1)

Further on in this article, we employ metric signature diag(+−−−) and geometric units G = 1
and c = 1, where G is the gravitational constant and c is the speed of light in vacuum. Parameters
qα specify the 4-coordinate location of a world point in the space–time, where indices α take values
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α = 0, 1, 2, 3. Coordinates qα are defined from the perspective of the observer located at infinity and
characterize any event by a space–time point qα = (t, r, θ, φ). Space coordinates r, θ, φ are the standard
spherical coordinates; this can be easily seen by taking the limit r → ∞, i.e., r � rg and r � ā.
In this limit case, the metric is determined by ds̃2 → c2dt2 − dr2 − r2(dθ2 + sin2 θdφ2). In other words,
parameters (r, θ, φ) coincide at infinity with the standard spherical coordinates in a flat space–time.

For the region of the space–time where the principle of causality holds, the metric must be ds̃2 > 0.
Let us note that r is not the "distance" from the black hole because in this space–time there exists

no central point r = 0 in the sense of a particular space–time point (as an event on a valid world-line
of a material object).

Coordinates of Boyer–Lindquist merely represent one method of specifying locations of
space–time points.

In the proposed Boyer–Lindquist parametrization, the z-axis is co–linear to the angular moment
Jh. The other parameters in Equation (1) are: rg is the Schwarzschild radius, rg = 2GM/c2, c is the
light speed, G is the gravity constant. In addition, for brevity, the following length–scales ā, Σ, and ∆,
have been introduced in Equation (1):

ā =
J

Mc
, Σ = r2 + ā2 cos2 θ, ∆ = r2 − rgr + ā2. (2)

Parameter ā characterizes the rapidity of rotation of the black hole, ā/rg = Jhc/2GM2
h; however,

calling the parameter the angular velocity of the black hole won’t be accurate. In some publications,
parameter Ω = 2ā/rg has been used.1

A key feature of the space–time metric in the vicinity of a rotating black hole is the cross-product
term ∼ Jhdtdφ. There exists coupling between time and space that disappears when the black hole’s
angular momentum goes to zero.2

In units of length rg = 2GMh/c2 and time rg/c (when r = rgx, ā = rga, and ds̃2 is replaced with
r2

gds2), the square of dimensionless interval in the vicinity of the rotating black hole in the Kerr metric
can be written as

ds2 = gαβdqαdqβ =[
(1− x

ζ2 )dt2 + 2a
x
ζ2 sin2 θdφdt− ζ2

χ
dx2 − ζ2dθ2 − Λ

ζ2 sin2 θdφ2
]

, (3)

where

ζ2 = x2 + a2 cos2 θ, χ = x2 − x + a2, Λ = (x2 + a2)2 − (x2 − x + a2)a2 sin2 θ. (4)

Setting a = 0 in Equations (3) and (4) gives the Schwarzschild metric.3

Equations (3) and (4) show that the Kerr metric has two physically relevant surfaces in the chosen
coordinate representation (Figure 2). (In fact, there are four of them, but the ones “beneath” the event
horizon are not considered here.)

1 In general, parameter ā is not small in value for many physically interesting situations. For example, J of the Sun (assuming
uniform rotation) is of order J ' 2× 1048 g cm2/s resulting in Ω ' 0.185—not negligibly small.

2 To not revisit this topic, let us note that more complicated solutions of Hilbert–Einstein equations exist (see for example [10,11]
for references).

3 From the definition of interval ds2, it follows that when x = Const → ∞, θ = Const and φ = Const (i.e., the non-moving
observer is at the infinity), the interval ds2 = dt2

(∞] > 0. For a clock located at the point x = Const 6= ∞, θ = Const and

φ = Const, the same interval is ds2 = (1− x
ζ2 )dt2

(x)). It follows then that ∆t(x)/∆t(∞] = (1− x/ζ2)−1/2 > 1. This simply
shows the well–known red–shift for a clock in the gravitational field compared with a clock at infinity where the gravitational
field is absent, is ∆t(∞] < ∆t(x).
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Figure 2. Schematic depiction of the black hole structure.

The inner surface corresponds to an event horizon similar to the one observed in the Schwarzschild
metric—this occurs where the purely radial component of the metric goes to infinity. Solving
equation g−1

11 = 0 yields two solutions, one of which is xH = (1 +
√

1− 4a2)/2 ≤ 1.4 Another
singularity occurs where the purely temporal component of the metric tensor changes sign
from positive to negative. Again, solving equation g00 = 0 (which has two solutions) yields
solution xE = (1 +

√
1− 4a2 cos2 θ)/2. Due to the presence of the term with cos2θ underneath the

radical sign, the outer surface (static limit) resembles a flattened sphere that touches the inner surface
at the poles of the rotation axis, where the latitude θ equals 0 or π.

The domain between these two hyper-surfaces is called the ergosphere. Within this domain, the
purely temporal component of metric tensor is negative, i.e., the time acts as a purely spatial coordinate.

The main property of the ergosphere is that, in view of g00 < 0, no object can remain at rest
with respect to the frame of reference of the remote observer (see [12]) because, when x, θ, φ = Const,
Equation (3) yields ds2 < 0. In other words, in this case, the interval is not time-like, as it should
be for a world-line of a material point-body. Variable q0 = t, therefore, loses its time-like property.
In the ergosphere, an object cannot possess φ = Const because then the cross-term turns to zero
since gtφ ≡ g03, and no circumstances can produce ds2 > 0 and thus assure the causal linkage along
the world-line. Therefore, a particle must necessarily rotate around the axis of symmetry of the
gravitational field, wherein, changing of radial coordinate x is possible, i.e., dx 6= 0. This means that
particles may penetrate the ergosphere from the outside and may exit into the outer space. Naturally,
for the remote observer, the duration of the process of "falling onto" the static limit may seem infinitely
long, as if “frozen”. With respect to his own clock, the observer in the vicinity of the black hole crosses
the boundaries in a finite time.

4 Let us remind that the location of the event horizon rH is determined by the larger of the two roots of g−1
11 = 0. When

ā > rg/2 (i.e., in the usual units, Jc > GM2), there are no real-value solutions to this equation, and there is no event horizon.
With no event horizons to hide it from the rest of the universe, the black hole ceases to be a black hole and will instead be a
“naked” singularity.
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In view of the unavoidable co-rotation of bodies in the ergosphere, it is natural to rewrite the
metric ds2 in this domain as follows:

ds2 = g00(dt +
g03

g00
dφ)2 + g11(dr)2 + g22(dθ)2 −

(
g2

03 − gφφg00

g00

)
(dφ)2. (5)

This expression clearly reveals that time–coordinate ξ, determined by the relationship
dξ = dt + (g03/g00)dφ, behaves in the ergosphere where g00 < 0, as a space-coordinate, while
coordinate φ starts playing the role of the time-coordinate.

This “switching” of the notions/concepts–(time-t, space-φ) being replaced by (time-φ,
space-t)–indicates (in full agreement with the spirit of the principle of relativity) that a “rigid coordinate
grid” (for example, Boyer–Lindquist parametrization) cannot span everywhere, from the infinity and
into the ergosphere. The meaning of parameters defining the world-point for a body can change when
transitioning from one domain of space–time into the other.

Furthermore, singularities of both the event horizon SH and the static limit SE are illusory. They
become singularities only within the “unfortunate” choice of coordinates. Just like Boyer–Lindquist
coordinates conveniently turn into normal spherical coordinates at the infinity (far away from the
black hole), the space–time near the black hole can be smoothly described (without singularities)
by an appropriate choice of coordinates (see, for example, Kruskal–Szekeres, or Lemaitre, or
Eddington–Finkelstein, coordinates).5

Pathological appearance of singularities in “poorly”-chosen systems of coordinates can be easily
understood by considering the spherical coordinate system when θ = 0 (think of the North Pole on
the globe). For θ = 0, the contribution to the interval ds2 from the term r2 sin2 θdφ2 always equals
zero–any value of φ describes the same world-point. The φ-coordinate appears to "fold" thus creating
an illusory singularity, which is clearly a product of the "unfortunate" choice of coordinates, and which
“disappears” in another coordinate system.

Finally, for a black hole, a ≤ 1/2 always. The rapidity of rotation has its extremum at a = 1/2.
A quickly rotating object (QRO) with Ω = 2a = 1 is a maximally rotating QRO. Some numerical
studies (see, for example, [4]) have modeled the effects even with Ω→ 1.

2.2. The Carter Solution

The characteristic geodesics of the Kerr black-hole space–time have been extensively studied since
the pioneering work of Carter [14]. See also references and discussions in [12,15–24]. Carter suggested
deriving the motion equations for test-particles in the Kerr metric based on the obvious condition for
covariant 4-velocity uα

gαβuαuβ = 1. (6)

Index raising and lowering occur in accordance with standard rules.
After defining muβ as linear momentum, and thus introducing the relativistically-

invariant “Lagrangian”

L =
m
2

gαβuαuβ . (7)

5 This is already evident from the fact that the determinant of gαβ, g = −r4 sin2 θ 6= 0, has no singularity at r → rg. In
addition, making a transformation of the 4-coordinates (r, t) → (R, τ) of the form ct = ±cτ ±

∫
dr(rg/r)1/2(1− rg/r)−1

and R = cτ +
∫

dr(1− rg/r)−1(rg/r)−1/2, for which R− cτ = (2/3)r3/2/r1/2
g , the element of interval at the Schwarzschild

metric becomes ds2 = c2dτ2 − [(3/2rg)(R− cτ)]−2/3dR2 − [(3/2)(R− cτ)]4/3(dθ2 + sin2 θdφ2). Thus, in the coordinates
(R, τ), the singularity at the Schwarzschild surface, where (3/2)(R− cτ) = rg, is absent, but the metric is nonstationary (see
[13], §102).



Galaxies 2018, 6, 61 6 of 25

Carter proposed introducing the scalar function S (“action”) to obtain (with
muβ ≡ ∂L/∂uβ = ∂S/∂xβ) the equations similar to the Hamilton–Jacoby equations in mechanics (and
eikonal in optics) in the form:

gαβ ∂S
∂xα

∂S
∂xβ

= m2. (8)

Since gαβ do not explicitly depend on t and φ, the scalar function S (here all variables, as well as
coordinates r and t, are measured in units [G] = [M] = [c] = 1) can be written in the form

S = −et + lφφ + Sr(r) + Sθ(θ), (9)

where e is interpreted as the energy of the test–particle, and lφ is the projection of the angular
momentum onto the axis of rotation. After substitution and redefinition of the time-coordinate,
quantities dependent only on θ and only on r separate. Subsequently, the resulting equations of
motion (which we do not list here, but which can be found in any review or textbook on the subject,
such as [15–19,22]), represent the first integrals of the equations for geodesic lines. These equations
contain m, the rest–mass of the particle. For photon, m = 0. In addition to the conservable quantities e
and lφ, Carter also noted the existence of one more conservable quantify—the separation constant Q,
whose meaning can be grasped by considering limit r → ∞ [18]

Q→ l2 − l2
φ − a2(E2¯m2) cos2 θ∞. (10)

Here, L2 is the constant defined as the square of the full initial momentum. Obviously, in the
case of non-rotating body, when a = 0 and the Kerr metric transitions into the Schwarzschild metric,
quantity Q is proportionate to the square of the full conservable angular momentum of the test-object.
Furthermore, integral Q is analogous to the Laplace vector in the Kepler problem of the Newtonian
theory of gravity.

Time-like geodesics in this geometry admit four conservable quantities: energy per unit mass of
the particle e, angular momentum per unit mass lz, Carter constant of separation6 C, and the norm of
the four velocity uα = dqα/dτ, given by

e = −u0 = −g00u0 − g0φuφ, (11)

lz = uφ = gφ0u0 + gφφuφ, (12)

C = ρ4(uθ)2 + sin−2 θ l2
z + a2 cos2 θ(1− E2), (13)

gαβuαβuβ = −1. (14)

The version of the Carter constant used in [24] has the property that, in the Schwarzschild limit
(a ∼ Jh → 0), the constant C → l2, where l is the total conservable angular momentum of the test body.
Solving Equations (11) and (12) for u0 and uφ, and Equation (13) for uθ , one obtains

u0 =
Egφφ + lzg0φ

∆ sin2 θ
, uφ = −

Eg0φ + lzg00

∆ sin2 θ
, (15)

uθ = ρ−2
[

C− sin−2θl2
z − a2 cos2 θ(1− E2)

]1/2

. (16)

6 In [20], the authors, citing [15], present another expression: Q = p2
θ + cos2 θ[−a2 p2

t + p2
φ/ sin2 θ], with pt = −E total energy

and pφ = Lz component of angular momentum parallel to the symmetry axis.
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Substituting these expressions into Equation (14) and solving it for ur, yields, after
some manipulations,

(ur)2 =
r4

ρ4

(
(1 +

a2

r2 +
2Ma2

r3 )E2 − ∆
r2(1 + Cr−2)

+
a2l2

z
r4 −

4MaElz
r3

)
. (17)

This equation is used to study the turning points of the radial motion.

3. Action, Lagrangian and Equations of Motion

Routine use of geodesic equations in numerical simulations may produce a habit so ingrained
that the technique’s theoretical foundation can become misremembered.

Indeed, just to refresh readers’ memory, the fact that non-zero-mass test particles move along
geodesic lines is a consequence of the Principle of Least Action, not its cause. The motion of test
particles in the given gravitational field results from, and must be found from, extremum for Action S,
not the other way around. Any thinking that bodies’ movement along geodesic lines has to lead to an
extremum of something is an erroneous confusion of the theoretical basics.

Consequently, the goal of the subsequent discussion is to structure a consistent technique
for calculating trajectories of interacting bodies that employs the “correct” relativistically-
invariant Lagrangian.

3.1. Principle of Least Action

For a conservative system, action is defined as an integral of Lagrangian L (which is a function of
4-coordinates and 4-velocities) over some affine parameter η, for example, over the proper time τ.

The choice of Lagrangian is the key point in the construction of the theory. This choice must be
grounded in common sense, and its validity must be confirmed by experimental observations.

The law of motion for any body, including the test particle, depends on the form of Lagrangian.
From this perspective, the trajectory of the body is model-dependent. Some works (besides the
above-mentioned work of Carter, see, for example, [22,25] and bibliography cited therein) have offered
to use as a Lagrangian, expression

L =
m
2

gαβqα
,τqβ

,τ ≡
m
2

s2
,τ , (18)

where, as is common, symbol f,τ denotes the derivative of function f with respect to the proper time τ.
For example, in [22] the authors stated that “the motion of a neutral particle can be illustrated by the
Lagrangian” Equation (18). However, such liberal choice of Lagrangian is not substantiated by physical
considerations, but is based on the resemblance with the Lagrangian of a free particle in the Newtonian
mechanics, where the usual velocity is substituted by the 4-velocity to assure relativistic invariance.

We posit that, for a Lagrangian, a “square root form” is more substantiated.
Indeed, following [12], the action S of a test particle must depend only on the interval between

two world-points, i.e., S ∼
∫

ds where ds is the “distance” between two infinitely close neighboring
world-points. Having in mind Equation (3), we can rewrite the action as

S = −m
∫

dη
ds
dη

= −m
∫

dη

√
gαβqα

,ηqβ
,η , (19)

where η is some scalar parameter, and where we added some dimensional factor m, the essence of
which is determined by making a limit transition to the flat space–time and the Newtonian classical
case. The principal reason for choosing the action in the form of Equation (19) is that it is invariant when
changing time–scales or when rescaling η → η(η′), i.e., η is an affine parameter and can be chosen
arbitrarily. For example, we can introduce (dimensionless) parameter τ: ds2 = r2

gdτ2. The meaning of
τ is that it represents the (dimensionless) time measured by a non-moving oberver (located at some
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fixed spatial coordinates in a moving frame) in a frame where gravitational field determined by g00 is
locally compensated, i.e., in the frame which travels along the geodesic. In other words, the observer
follows a time-like world-line, i.e., it is "falling freely". From Equation (3), we obtain that in this case

gαβqα
,τqβ

,τ = 1 → qα,τqα
,τ = 1. (20)

The integrand in Equation (19) multiplied by a constant, giving −m
√

gαβqα
,ηqβ

,η , is the Lagrangian
L. It is a scalar that depends on 4-coordinates qα and 4-velocities qα

,s = uα.

3.2. The Equivalence Principle

According to the special theory of relativity, the action of a free particle moving in a flat Minkowski
space–time, has the following form:

S = −m
∫

ds
√

ηαβxα
,sxβ

,s. (21)

Here, xα = (t, xk) are Cartesian coordinates, ηαβ is Minkowski diagonal tensor with signature
(+,−−−), s is the affine parameter, which may be, for example, interval s or proper time τ (here
ds2 = c2dτ2).

When transitioning to curvelinear coordinates or into a non-inertial system of coordinates, xα →
qα, the action takes form

S = −m
∫

dη

√
gαβqα

,ηqβ
,η , (22)

where

gαβ = ηµν
∂xµ

∂qα

∂xµ

∂qα
. (23)

Trajectories corresponding to the extremum of the action, are called geodesics for metric gαβ.
According to the principle of equivalence, gravity must act in exactly the same way onto a test

particle with mass m. However, in contrast with the previously discussed case in which the reference
system is inertial, the metric of the non-flat space–time cannot be presumed to converge globally as
gαβ → ηµν. It is the presence of the space–time curvature that distinguishes gravitational forces from
the inertia forces.

4. Euler–Lagrange Equations of Motion

4.1. Extremum of Action

In view of the discussion above, the Euler–Lagrange equations of motion follow from the Principle
of Least Action7

δS = −m
∫

dηδ

√
gαβqα

,ηqβ
,η = 0, i.e., −m

2

∫
dη

1√
gαβqα

,ηqβ
,η

δ(gαβqα
,ηqβ

,η) = 0. (24)

7 Geometrically, geodesics are the curves of extremal length between two points in space–time. The geodesics of Minkowski
space–time governed by the special theory of relativity, are 4–dimensional straight lines. The case with ds2 > 0 describes
time-like geodesics, the world–lines of free material particles. Photons-massless particles-travel at the speed of light along the
null geodesics (ds2 = 0). Within the general relativity theory, free particles travel along geodesics of the curved space–time.
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Having in mind Equation (20) on the geodesic line, we find that equation δS = 0 is reduced to
equation δ(gαβqα

,τqβ
,τ) = 0, which permits formal finding of geodesics from “Lagrangian” (18).8

Lagrangian (18) may be used instead of the “correct” Lagrangian

L = −m
√

gαβqα
,ηqβ

,η (25)

only for finding geodesic lines, but Equation (18) does not yield the correct expression for the particle’s
full energy.

The choice of Lagrangian in form (25) is natural because it produces affine invariance and correct
limit for the particle’s full energy in the case when the field is absent. Indeed, in limits x → ∞, i.e.,
x � 1, the Lagrangian-the explicit form of which for the Kerr model is

L = −m
(
(1− x

ζ2 )t
2
,τ + 2a

x
ζ2 sin2 θφ,τt,τ −

ζ2

χ
x2

,τ − ζ2θ2
,τ −

Λ
ζ2 sin2 θφ2

,τ

)1/2

, (26)

and where for brevity ζ2, χ, Λ are defined by expressions (4)–becomes

L = −m
√

t2
,τ − (x2

,τ + x2θ2
,τ + x2 sin2 θφ2

,τ) + ... (27)

Selecting time t measured by the clock of a remote non-moving observer as the affine parameter
τ, we obtain t,τ = 1, and since now x2

,t + x2θ2
,t + x2 sin2 θφ2

,t = v2—the square of 3-velocity (in the
spherical coordinates) of a particle that travels relative to the remote stationary observer—we obtain
the correct expression for Lagrangian of a relativistic free particle (see [13]) L = −m

√
1− v2 as seen by

the remote observer located in the reference frame relative to which the particle is moving. This follows
from dτL = inv.

Equation (25) also yields the correct expression for the energy of the relativistic particle.

4.2. Equations of Motion for Test Particle

The equations of motions are

δS = 0 → d
dτ

∂L
∂qα

,τ
− ∂L

∂qα
= 0. (28)

After substitution of general Equation (25) in Equations (28) and direct calculations of derivatives,
these equations take form

gαβqβ
,ττ + Γαβγqβ

,τqγ
,τ = 0, (29)

which obviously must coincide, and does indeed coincide, with geodesic equation for a test particle
trajectory. It is also obvious that by multiplying the inverse matrix of the metric tensor gµν, we
can obtain

qα
,ττ + Γα

βγqβ
,τqγ

,τ = 0. (30)

The Christoffel symbols are given by Γαβγ = 1
2 (gαβ,γ + gαγ,β − gγβ,α) and Γα

βγ = gαµΓµβγ (see any
textbook on relativistic physics).

Let us note that the connection between symbols Γα
βγ and metric tensor gαβ arose as a consequence

of the Principle of Least Action with square root Lagrangian Equation (19). Since derivative qα
,ττ is

8 For example, in [26] (p. 106), manipulation analogous to Equation (24) was used for a radical-containing functional.
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the generalized 4-acceleration, then it is natural to call quantity −mΓα
βγqβ

,τqγ
,τ 4-force, and Γα

βγqβ
,τqγ

,τ as
gravitational field strength (see [13] §§85 and 87, [25], and [27] §1 Chapter 4).

4.3. Hidden Symmetry

The above–written machinery is useful because it readily produces the laws of conservation:
if Lagrangian L is independent of a generalized coordinate qν (the ignorable coordinate), then quantity
pν = ∂L/∂qν

,τ is a constant of motion. For Equation (26) with Lagrangian L(x, x,τ , θ, θ,τ , φ, φ,τ , t, t,τ),
the three ignorable coordinates are φ, t and proper time τ, thus producing laws whose physical
meanings are the conservation of momentum pφ = ∂L/∂φ,τ , the conservation of full energy
E = −∂L/∂t,τ , and the conservation of invariant Q = qν

,τ∂qν
,τ

L − L where ν = 0, 1, 2, 3, which for
Lagrangian (26) is identical to zero. Finally, the set should also include the invariant Equation (20).

4.4. Trajectory

The trajectory of the test particle can be found in a straightforward way by using the hidden
symmetry of the Lagrangian for the Kerr model Equation (26)

L = −m
(
(1− x

x2+a2 cos2 θ
)(t,τ)2 + 2a x

x2+a2 cos2 θ
sin2 θ (φ,τ)(t,τ)

− x2+a2 cos2 θ
x2−x+a2 (x,τ)2 − (x2 + a2 cos2 θ)(θ,τ)2 − (x2+a2)2−(x2−x+a2)a2 sin2 θ

x2+a2 cos2 θ
sin2 θ(φ,τ)2

)1/2

.
(31)

Two of the four Lagrange equations—the ones that correspond to the ignorable coordinates t and
φ–give conservation of full energy E ≡ mε and momentum pφ ≡ mj:

E(≡ mε) = − ∂L
∂t,τ
≡ (t,τ)

−1
(

qj
,τ

∂L

∂qj
,τ

− L
)
= −m2

L

(
(1− x

ζ2 )t,τ + a
x
ζ2 sin2 θ φ,τ

)
(32)

and

pφ(≡ mj) =
∂L

∂φ,τ
=

m2

L

(
ax(t,τ)−Λφ,τ

)
sin2 θ

ζ2 . (33)

Here, the exact form of Lagrangian L is defined above.
Starting from this point and proceeding further on, normalization of 4-velocity permits using the

fact that the Lagrangian L = −m (constant) on the trajectory.
Solutions of these equations with respect to φ,τ and t,τ take the form

φ,τ = − 4L
m∆

(
(x2 + a2 cos2 θ)(a2 j cot2 θ + x(aε + j(−1 + x) csc2 θ))

)
,

t,τ = − 4L
m∆

(
(x2 + a2 cos2 θ)(−ajx + a4ε + 2a2x2ε + x4ε− a2(a2 + (−1 + x)x)ε sin2 θ)

)
,

(34)

where ∆ = (a2 + (−1 + x)x)(a2 + 2x2 + a2 cos2 2θ), and L = −m (when 4-velocity is normalized).
For large x � 1, these derivatives become φ,τ ' j csc2 θ/x2 and t,τ ' ε + ε/x.

The remaining two nonlinear Lagrange equations for x(τ) and θ(τ) are

d
dτ

∂L
∂x,τ
− ∂L

∂x
= 0,

d
dτ

∂L
∂θ,τ
− ∂L

∂θ
= 0, (35)

into which Equations (34) should be substituted. Solutions of the system of these equations can come
only from numerical simulations (this article omits such exercise). The end product is certain to look
like convoluted patterns of trajectories—esthetically pleasing, great for staring, but unfortunately
revealing sparse additional insight.
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4.5. Trajectory in Equatorial Surface

Value θ(τ) = π/2 in Equation (35) assures condition ∂L/∂θ,τ = Const. Thus, a body that starts its
journey with initial conditions θ,τ(0) = 0 and θ(0) = π/2, always remains at the surface θ(τ) = π/2.
Therefore, θ,τ(τ) = 0 for all τ.

To determine the trajectory, either the remaining Lagrange equations Equation (35) need to be
solved, or the invariant needs to be used:

(1− x
x2+a2 cos2 θ

)(t,τ)2 + 2a x
x2+a2 cos2 θ

sin2 θ (φ,τ)(t,τ)

− x2+a2 cos2 θ
x2−x+a2 (x,τ)2 − (x2 + a2 cos2 θ)(θ,τ)2 − (x2+a2)2−(x2−x+a2)a2 sin2 θ

x2+a2 cos2 θ
sin2 θ(φ,τ)2 = 1

, (36)

i.e., for the motion at the surface θ = π/2,

(1− 1
x
)(t,τ)

2 +
2a
x
(φ,τ)(t,τ)−

x2

x2 − x + a2 (x,τ)
2 − (x2 + a2)2 − (x2 − x + a2)a2

x2 (φ,τ)
2 = 1 (37)

with θ,τ = 0 and θ = π/2, together with Equations (34), which take the form

φ,τ =
j(x− 1) + aε

x(a2 + (−1 + x)x)
, t,τ =

−aj + x3ε + a2(−1 + x)ε
x(a2 + (−1 + x)x)

. (38)

For the particular case of ε = 1 (parabolic trajectory), the Lagrange equations for variables x(τ),
φ(τ), t(τ), written in the parametric form via u(τ) = x−1(τ), take the form

x,τ = −
√

u− j2u2 + (a− j)2u3, φ,τ =
u2(j + au− ju)

1− u + a2u2 , t,τ =
1− aju3 + a2u2(1 + u)

1− u + a2u2 . (39)

The covariant components are obviously calculated following the rule vα = gαβvβ. For this
reason, the module of space-velocity must be calculated using metric tensor, according to the rule
V2 = vjvj = gijvivj with i, j = 1, 2, 3.

Note that, for the Lagrangian in the form of Equation (25), or Equation (26), the 3-velocity in the
physically accessible region of space–time, under no circumstances exceeds the speed of light, V2 ≤ 1.

In the case of a non-rotating black hole with the Schwarzschild metric, when a = 0 (and strictly
1− j2u + j2u2 > 0, i.e., j < 2), the body unavoidably "falls" onto the black hole.

The equations describing the motion become

x,τ = −
√

u(1 + j2(−1 + u)u), φ,τ = ju2, t,τ =
1

1− u
. (40)

When a 6= 0 and the test body approaches the surface of ergosphere, u→ 1, we obtain from the
point of view of the observer in the "proper" frame

x,τ = −
√

1− j2 + (a− j)2, φ,τ =
1
a

, t,τ =
1− aj + 2a2

a2 . (41)

From the point of view of the observer at the infinity, at the surface of ergosphere,

ẋ = − a2
√

1− j2 + (a− j)2

1− aj + 2a2 , φ̇ =
a

1− aj + 2a2 . (42)

Here, ẋ = x,τ/t,τ and φ̇ = φ,τ/t,τ are contra-variant radial and angular components of velocity
observed from the infinity.
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5. Parabolic Trajectory

5.1. Classification of Regimes

Let us consider, in more detail, motion of a test body along a parabolic trajectory at the equatorial
surface of a rotating black hole with rotation parameters bounded by the condition −0.5 < a < 0.5.
When there is no motion at the infinity, parameter ε = 1. To find trajectory x = x(φ), one should make
transformation x = u−1 and account for x,τ = −φ,τu−2u,φ.

After calculations, we obtain the trajectory equation for x−1 = u(φ):

(
du
dφ

)2 =
(1− u + a2u2)2

(j + au− ju)2 u
(

1− j2u + (a− j)2u2
)

. (43)

For the Newtonian approximation, we must put parameter a → 0 and neglect the small term
∼ u2 in the brackets of the right part of Equation (43). Then, the solution is u(φ) = (2j2)−1(1− cos φ),
i.e., the body moves along the parabolic trajectory around the gravitating center. For large j � 1
(for practical estimations, j > 4÷ 5), quantity u ≤ umax = (4j2)−1 � 1.

For small φ2 � 1, and consequently, for small u (large x = u−1), estimation φ(u) ' ±2j
√

u
is valid.

In the case of a rotating black hole, when a 6= 0, the event horizon and the surface of ergosphere
are separate, and two regimes of motion are possible for the traveling body.

In the first regime, the body starts its motion at infinity, where parameter u = 0, with zero initial
velocity, i.e., ε = 1. The body then arcs around the rotating black hole, approaching within the minimal
distance x−1

min = u1, and then leaves to infinity. The movement of the body occurs, first, in the regime
from 0 to u1, and then from u1 to 0. This scenario is possible if condition j4 > 4(j− a)2 is satisfied
in expressions

u1,2 =
j2 ∓

√
−4a2 + 8aj− 4j2 + j4

2(a2 − 2aj + j2)
, u3 =

j
j− a

. (44)

The trajectory equation can then be written as

dφ

du
= ± u3 − u

(1− u + a2u2)
√

u(u1 − u)(u2 − u)
. (45)

If the body moves from infinity towards the black hole, i.e., from u = 0 to u = u1 for the flyover
trajectory, the motion is described by the branch with the plus-sign.

In the opposite direction—from u = u1 to u = 0—the sign is negative. For flyover trajectories,
u1 < u3 always.

Definition (44) can be rewritten as

u1,2 =
u2

3
2
(1∓

√
δ), u3 =

j
j− a

, δ = 1− 4
j2u2

3
. (46)

Roots are real if δ > 0.
Quantities u1,2 as functions of parameter j are shown in Figure 3. In this figure, solid lines show

the branches of roots u−1 (upper) and u+
1 (lower) that correspond to the limit cases of the rotation

parameter a = ∓0.5. Dashed lines show u−2 and u+
2 . At the points marked by large dots, the roots

merge u∓1,2 = (u∓3 )
2/2. The physical, external region is defined by the condition 0 ≤ u ≤ 1 (from the

infinity u = 0 to the static limit u = 1). Line uS = 1 is the static limit. Line uH = (
√

1− 4a2/2)−1 = 2
is the event horizon. The region between uS = 1 and uH = 2 represents the ergosphere.

When a = −0.5 (the black hole rotates clockwise), the body with the angular momentum per mass
unit j < jm = 1 +

√
2 ' 2.414 “pierces” the static limit and reaches the event horizon, i.e., the body
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will be captured by the black hole. In addition, at the level u−3 = j/(j + 0.5), the sign of the derivative
φ,u changes (level u−3 is shown in the Figure by the lower dotted curve). In other words, the body
approaching the black hole will be unavoidably involved into co-rotation with the black hole.

When a = +0.5 (rotation of the black hole is counter-clockwise), the body with specific angular
momentum 1 < j < jp = 1.25 "dives" under the static limit surface into the ergosphere, reaches the
closest distance with the black hole u−1

1 , and "dives out" to proceed on its way to infinity.
For a = +0.5, the body will be captured by the black hole only for small j ≤ 1. No change of sign

of derivative φ,u happens in this scenario.

Figure 3. Roots u1,2 as functions of initial specific momentum (angular momentum per mass unit) j.
Dotted lines depict u±3 . Pink zone is the ergosphere.

At the relatively large values j� 1 (typically, j > 3), the roots may be calculated using formulae
u1 ' j−2 + j−4, u2 ' 1 + 2a/j− (1− 3a2)/j2, and u3 ' 1 + a/j− a2/j2.

The characteristic behavior of the test body for a relatively large value of parameter j, when δ > 0,
may be qualitatively understood based on Figure 4. For illustration, the calculations use j = 2.5. In this
case, real roots u1,2 exist. Then, having started at the infinity with u = 0 with zero initial velocity,
the test body reaches the closest distance from the black hole (defined by the smallest of the real roots
of u1) and returns to infinity, u = 0, at the angle φ 6= 2π.

Figure 4. The right part of Equation (45) with j = 2.5 for values a = 0 (middle line, medium dashes),
a = 0.49 (lower line, long dashes) and a = −0.49 (upper line, short dashes). Motion of test body is
possible in the domains where the root branches have positive values.

Another scenario (see Figures 5 and 6) takes place when δ < 0 and 0 < j < jm,p, which
is equivalent to ∆ = −4a2 + 8aj − 4j2 + j4 < 0, i.e., when real roots u1,2 do not exist. Then,
the approaching body unavoidably becomes captured by the black hole and falls onto the static
limit surface u = 1, i.e., onto the boundary of the ergosphere.
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Figure 5. Determinant ∆(j) = −4a2 + 8aj− 4j2 + j4 as function of j for values a = 0.5 (blue upper line),
0 (yellow middle line), and a = −0.5 (green lower line).

Figure 6. Zoomed-in view of Figure 5 showing the same determinant ∆(j) = −4a2 + 8aj− 4j2 + j4 for
values a = 0.5 (blue upper line), 0.45 (yellow line), a = 0 (green line), and a = −0.5 (red line). It is
apparent that with a certain combination of parameters—j-rotation of the test body around the black
hole and proper a-rotation of the black hole—there arises a "window of transparency" where ∆(j) > 0.
However, for such window u1 > 1, the noted flyover regime does not become realized in the region
0 ≤ u ≤ 1, i.e., outside the ergosphere.

For j = 1 +
√

2 − β when β → +0, near u ' 0.343, change of angle φ occurs most rapidly
(Figure 7). This is where the majority of the spins occurs.

Figure 7. Coordinate φ[u] as function of u as the body falls onto the fast-rotating black hole for
parameters a = −0.5 and j = 1 +

√
2− β where β = 10−2 (lower), 10−3 (middle) and 10−6 (upper).

Falling onto the static limit occurs either (if a > 0, when u3 > 1) along the inward spiral without
any peculiarities, or (if a < 0) with the change of the direction of rotation of the body around the
black hole at level u3 < 1 (when dφ/du < 0) . In particular, after traversing level u = u3 and further
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moving towards level u = 1, the body starts moving in the same direction as the black hole’s rotation.
The numerical simulation of this scenario is shown in Figure 8. During the capture process, the
trajectory sharply curves and the body starts co-rotating with the black hole. In the figure, the black
hole (at the center) rotates with a = −0.5. Its radius (maximum permitted for such rotation) equals to
0.5 (for the plane θ = π/2). Radius for ergosphere (marked in pink) equals to 1. Three trajectories are
shown for j = 1 (black), j = 2 (blue), and j ' 1 +

√
2− 10−3 (red).

Figure 8. Numerical simulation of the scenarios where the traveling body approaches the black hole
(rotating in the opposite direction) and becomes entrapped by the “whirlpool” of space–time.

The impact of the curved space–time (the Kerr metric) in the vicinity of the black hole remarkably
resembles a gigantic whirlpool (Figure 9).9

Figure 9. Ocean whirlpools in legends. Illustration by unknown artist.

Just like an ocean whirlpool swirls, traps and swallows a boat—a situation dramatically described
in Edgar Allan Poe’s short story A Descent into the Maelström) [28]—and so does the black hole. When

9 A whirlpool is a rotating current of water that creates a characteristic vortex. In nature, there exists a number of consistent
and frequently occurring whirlpools that have become legendary. Many sea myths have featured whirlpools, typically
in situations involving great peril to ships. An especially powerful whirlpool is known as a maelström—one of the more
notable maelströms is the Moskstraumen, an immense network of eddies and whirlpools off the coast of Norway.
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the “aiming” parameter j is less than the certain critical value j∗ (for a = +0.5, quantity j∗ ≡ j+ = 1.25,
and for a = −0.5, quantity j∗ ≡ j− = 1 +

√
2), the approaching object cannot free itself once entrapped.

5.2. At What Angle Does the Body Come Closest to the Black Hole?

The answer to the question ’At what angle does the body come closest to the black hole?’ follows
from integrating Equation (45) for a flyover trajectory, when δ > 0 (and keeping in mind that

√
t2 = |t|):

φm =
∫ u1

0
dξ

u3 − ξ√
ξ(u1 − ξ)(u2 − ξ)

K(ξ), (47)

where

K(ξ) = (1− ξ + a2ξ2)−1/2. (48)

Due to the presence of K(ξ), the integral cannot be calculated analytically. However, in the vicinity
of level u∗ where the flyover regime switches to the capture regime, the main contribution into the
integral in Equation (47) comes from the domain near the boundary u∗ : u∗,− → 0.34 and u∗,+ → 1.
This is where (as seen in Figure 10) the fastest change in derivative dφ/du happens and the sharp
twisting of the trajectory occurs. In this domain, an approximation for K(ξ) can suffice.

Figure 10. Derivative φu as function of u for limit parameters a = ±0.5, i.e., for j+ = 1 +
√

2 and
j− = 1.25. For a = −0.5 (left curve), domain u1 = 0.343 ≤ u ≤ 1 is not accessible by the test body.

Let us expand K(ξ) into a series in the vicinity of u1. Even the first few terms of the expansion
offer an acceptable approximation for the entire region of changing u

K(ξ) =
∞
∑

k=0

bk
Zk+1 (ξ − u1)

k =

1
Z + 1−2a2u1

Z2 (ξ − u1) +
1−a2−3a2u1+3a4u2

1
Z3 (ξ − u1)

2 + b3
Z4 (ξ − u1)

3 + b4
Z5 (ξ − u1)

4 + ....
(49)

Here, Z = 1− u1 + a2u2
1, b3 = 1− 2a2 − 4a2u1 + 4a4u1 + 6a4u2

1 − 4a6u3
1, b4 = 1− 3a2 + a4 −

5a2u1 + 10a4u1 + 10a4u2
1 − 10a6u2

1 − 10a6u3
1 + 5a8u4

1, etc.
Equation (47) can then be written in the form

φm =
∞

∑
k=0

bk

(
2

∂

∂u2

∫ u1

0
dξ

√
u2 − ξ√

ξ(u1 − ξ)
(ξ − u1)

k
)

. (50)
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The auxiliary integral

Ik(u1, a) =
∫ u1

0
dξ

√
u2 − ξ√

ξ(u1 − ξ)
(ξ − u1)

k (51)

and its doubled derivative 2I′k(u1, a) ≡ fk can be easily calculated here, yielding a simple10 analytical
expression for the leading terms of the expansion

fk =
√

πΓ( 1
2+k)

2(1+k)Γ(1+k)
√
−u1+u2

(−u1)
k
[
−
(

2(1 + k) 2F1(− 1
2 , 1

2 + k, 1 + k, u1
u1−u2

)

−(1 + 2k) 2F1(− 1
2 , 3

2 + k, 2 + k, u1
u1−u2

)

)
u1 + 2(1 + k) 2F1(− 1

2 , 1
2 + k, 1 + k, u1

u1−u2
)u3

− (1+2k)u1
2(2+k)(u1−u2)

((
2(2 + k) 2F1(

1
2 , 3

2 + k, 2 + k, u1
u1−u2

)

−(3 + 2k) 2F1(
1
2 , 5

2 + k, 3 + k, u1
u1−u2

)

)
u1 − 2(2 + k) 2F1(

1
2 , 3

2 + k, 2 + k, u1
u1−u2

)u3

)]
.

(52)

Here, 2F1(α, β, γ, z) is the hypergeometrical function of the second kind, and Γ(z) is the
gamma–function.

The main contribution comes from the leading term

f0 = π
2
√
−u1+u2

[(
− 4

π E( u1
u1−u2

) + 2F1(− 1
2 , 3

2 , 2, u1
u1−u2

)

)
u1 +

4
π E( u1

u1−u2
)u3−

u1
4(u1−u2)

(
(4 2F1(

1
2 , 3

2 , 2, u1
u1−u2

)− 3 2F1(
1
2 , 5

2 , 3, u1
u1−u2

))u1 − 4 2F1(
1
2 , 3

2 , 2, u1
u1−u2

)u3

)]
.

(53)

It is worth reminding that, in the equatorial plane, the boundary of the event horizon is determined
by the value uH ≡ (xH)

−1 = 2(1 +
√

1− 4a2)−1, and the surface of the static limit–by uE = 1.
Therefore, for a physically realizable trajectory, it always holds that u ≤ u1 < 1:

φm ' π
2(1−u1+a2u2

1)
√
−u1+u2

[(
− 4

π E( u1
u1−u2

) + 2F1(− 1
2 , 3

2 , 2, u1
u1−u2

)

)
u1+

4
π E( u1

u1−u2
)u3 − u1

4(u1−u2)

(
(4 2F1(

1
2 , 3

2 , 2, u1
u1−u2

)− 3 2F1(
1
2 , 5

2 , 3, u1
u1−u2

))u1−

4 2F1(
1
2 , 3

2 , 2, u1
u1−u2

)u3

)]
.

(54)

Recall that parameters u1,2 are

u1,2 =
u2

3
2
(1∓

√
δ), u3 =

j
j− a

, δ = 1− 4
j2u2

3
. (55)

Solution for the Schwarzschild metric results from Equation (54) by setting a = 0, i.e., u3 = 1.
The Newtonian limit results from making an approximation with a = 0, j� 1, i.e., from formally

setting in Equation (54) u1 → 0, u2 → 1 and u3 → 1. This produces the well-expected result: if a

10 “Simplicity”, of course, is a relative concept, on par with “large”, “small” and “all we need”, as humored by Mark Twain,
a titan of the American literature: “... My friend, take an old man’s advice, and don’t encumber yourself with a large
family–mind, I tell you, don’t do it. In a small family, and in a small family only, you will find that comfort and that peace of
mind which are the best at last of the blessings this world is able to afford us, and for the lack of which no accumulation of
wealth, and no acquisition of fame, power, and greatness can ever compensate us. Take my word for it, ten or eleven wives
is all you need–never go over it”.
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body starts at infinity with initial φ = 0 and zero-velocity, then at the moment of maximum approach
with the gravitating center, the position of the body is characterized by φm = π.

5.3. How Many Rotations Does the Body Complete before Departing towards Infinity?

To determine how many rotations the body completes before departing toward infinity, we need
to calculate the integral along both branches of the trajectory–the approach branch with u,τ > 0 and
the departure branch with u,τ < 0:

N =
1

2π

∫ u1

0
dξ

u3 − ξ√
ξ(u1 − ξ)(u2 − ξ)

− 1
2π

∫ 0

u1

dξ
u3 − ξ√

ξ(u1 − ξ)(u2 − ξ)
. (56)

By substituting ξ → u1 − ξ, the second integral becomes

N =
1

2π

∫ u1

0

dξ√
ξ(u1 − ξ)

(
u3 − ξ√
u2 − ξ

+
u3 − u1 + ξ√
u2 − u1 + ξ)

)
. (57)

The main contribution to the integral comes from the domain near u1.
The number of rotations, as a function of j, is shown in Figure 11.

Figure 11. Number of turns N as function of specific angular momentum j when test body travels in
the vicinity of fast-spinning black hole, shown for two rotation regimes, a = −0.5 (retrograde, right
curve) and a = +0.5 (prograde, left curve).

In a particular example, at the maximum value allowed by the theory of black holes, a = +0.5
(when both the black hole and the test body rotate in the same direction, clockwise in our analysis) and
when j = 1.249, the number of rotations is N ' 2.12. In other words, upon arriving from the point
with coordinates x = ∞, φ = 0, and after completing two rotations around the black hole, the body
departs towards the infinitely-remote point with coordinates x = ∞, φ = 0.12 radian. When the
black hole rotates counter-clockwise, with a = −0.5 and j ' 2.4150 > 1 +

√
2 ' 2.41421 (note the

difference from the critical value is only in the forth decimal), the body completes more than a hundred
rotations, N ' 102.76. In other words, upon arriving from the point with coordinates x = ∞, φ = 0
and completing one hundred and two rotations around the black hole, the body departs towards the
point with coordinates x = ∞, φ = 0.76 radians.

If j → 1 +
√

2, the rise in the number of rotations happens rapidly, N → ∞. The trajectory of
the body “spirals” infinitely onto the minimally close circular orbit defined by u1 ' 0.343, to start
“unwinding later, after an infinite number of turns”.

Figure 12 presents a typical trajectory of the body approaching a clockwise-rotating
black body with the maximum allowed value a = −0.5 and the value of specific angular
momentum j = 1 +

√
2 + 10−3 only slightly exceeding the “capture” limit j∗ = 1 +

√
2. The body,
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arriving along the initially parabolic trajectory from the initial location characterized by x → ∞ and
φin → 0 (following the dashed line from right to left), then curves around the black hole, gets involved
in the rotation of the space–time in the vicinity of the black hole, and flies away towards infinity with
the angle (relative to the axis) φ f in 6= 2π.

Figure 12. Overfly trajectory near retrograde-rotating black hole for initial conditions a = −0.5 and
j = 1 +

√
2 + 10−3. These parameters were selected to reveal clearly on the graph the impact of the

black hole rotation on the trajectory of the traveling test body. The dashed line sketches the initial
parabolic part of the test body trajectory, as the body approaches the retrograde-spinning black hole.

6. Explicit Lagrangian in Post-Newtonian Approximation

The Lagrangian written for the test body moving in the space–time qµ = (t, x, θ, φ) as seen by a
distant observer is written as Equation (25). Dots over variables represent derivatives with respect to
time t measured by the observer located at the infinity.

Consideration of Lagrangian (26) in its general form is not particularly informative because the
avalanche of numerical details buries the insights. In addition, certain limit cases appear useful.

To grasp the impact of the black hole rotation on the motion of the body, we restrict consideration
to the motion in the equatorial surface of the black hole, θ = π/2.

First, let us remind readers that, from Equation (30), it follows that θ = π/2, θ̇ = 0 satisfies the
equations of motion—if the motion is in the equatorial plane initially, it always remains in the plane.
This result follows from the uniqueness theorem for solutions of differential equations. With θ = π/2
and θ̇ = 0, the Lagrangian is

L = −m
[

1− 1
x
+

2a
x

φ̇− x2

x2 − x + a2 ẋ2 − 1
x2

(
(x2 + a2)2 − (x2 − x + a2)a2

)
φ̇2
]1/2

. (58)

It gives correct limit expression when the observer is at a large distance from the black hole,
i.e., when x → ∞ and the gravity field produced by the black hole can be neglected. In this case,
L → −m

√
1− v2 where ẋ2 + x2φ̇2 = v2. This is exactly the Lagrangian of a free (relativistic) test

particle in the absence of a gravitational field [12].
For a relativistic particle (with ẋ2 + x2φ̇2 ≡ v2 < 1, x > 1, a2 < 1), by keeping the leading

terms in expansion Equation (58)—in particular, by keeping only the permanent terms with x−2,
for x−1 keeping only the terms with no greater than the second order with respect to velocity, for the
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terms containing only the velocity keeping the terms not greater than the fourth order with respect to
v, and finally, keeping the term linear in a—we obtain that

L = L0 + L1 '[
−m + mv2

2 + m
2x

]
+

[
m
8
(ẋ2 + x2φ̇2)2︸ ︷︷ ︸+ m

8x2︸︷︷︸+ m
4x

(3ẋ2 + x2φ̇2)︸ ︷︷ ︸−−m
x

aφ̇(1 +
1
2

x2φ̇2)︸ ︷︷ ︸
]

. (59)

The first term in L1 of Equation (59) is the correction that follows from the special theory of
relativity—when the velocity of the particle is not small relative to the speed of light. The second term
follows from the general relativity theory (the case of the Schwarzschild metrics when a = 0). The next
term may be interpreted as the result of interaction of the gravitational field created by the central body
with the moving object. Curiously, this term is anisotropic along the radial and transversal components
of velocity. The last term, which depends on the direction of the black hole rotation, follows from the
Kerr metrics near the black hole. Coordinate x here is interpreted as "distance" from the black hole,
even though, as clarified in the Introduction, it is not quite so.

The classical Newtonian approximation corresponds to the case when L1 is neglected.
The constant m in Lagrangian (59) does not became apparent in the equations of motion. However,

this constant is important in the expression for the energy. The full energy following from

E = uj ∂L
∂uj − L , (60)

where j = 1, 2, 3 are space indices, is

E = m +
m
2
(ẋ2 + x2 φ̇2)− m

2x
+ ... . (61)

These expressions explain the meaning of the parameter m. Being measured in energetic units
(m → mc2), it gives the rest–mass energy of the particle, E0 = mc2. Expression (61) contains the
rest-mass energy of the test particle, its kinetic energy, and the potential energy, of the particle in
the central gravitational field. For Lagrangian, the form of Equation (25) is well chosen because the
square-root form is what yields the correct coefficient 1/2 in the expression for potential energy in the
classical Newtonian approximation Equation (61) because rg = 2GMh/c2 in x = r/rg is defined with
coefficient 2.

However, in the post–Newtonian approximation, everything evolves as if in the usual classical
space–time, the Lagrangian L0 gained an additional term, L0 → L0 + L1, leading to appearance of
additional field forces, ∂qj L1. Let us notice that the second term in L1 is responsible for the appearance
of the additional force—in a certain sense, an analogue of the Coriolis or Lorentz force—because
L1 ∼ (∇Unewt · [J, v]) with Unewt = −m/2x. Notably, for this effect to arise, it is necessary that both,
∂xxUnewt, J and v, are non-zero simultaneously.

The described model can be useful for analysis of problems when extended, elastically-deformable,
plasma objects (with or without a hard “shell”) are torn apart, or when “super-droplets” of super–dense
(nuclear) matter travel in the vicinity of astrophysical objects with strong gravitational fields. If it is
known a priori that an elastic body (not a “dust cloud” composed of gravitating particles, for which
the Roche limit is derived) upon its approach to the black hole becomes torn apart into a small number
of fragment-droplets; then, to describe the end-result, there is no need to turn to the hydrodynamical
approximation. Instead, the Lagrangian technique is more natural and better suited. The method
presented in this article is much simpler for numerical simulations and generates results that are easier
to interpret.

Generalization of the proposed model for the case of several “connected” bodies is not complicated.
To study the effect of how, in the post-Newtonian approximation, the black hole’s rotation impacts
the approaching body’s trajectory (in the plane θ = π/2) and how the structure of N bodies with
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interaction Uint (or, without one, in the cases of “dust cloud” or “droplet” without self-gravitation)
becomes deformed during the approach, it is natural to suggest a model Lagrangian in the form

LN =
N

∑
i=1

L(i) +
1
2

N

∑
i=1

N′
∑
k=1

U(rik), (62)

where U(rik) is the potential energy of interaction of i-th and k-th bodies, prime signifies absence of
diagonal terms in the double sum, and where

L(i) =

[
−mi +

mi
2

(
ẋi

2 + x2
i φ̇i

2
)
+

mi
2xi

]
+[

mi
8
(ẋ2

i + x2
i φ̇2

i )
2 +

mi

8x2
i
+

mi
4xi

(3ẋ2
i + x2

i φ̇2
i )−

mi
xi

aφ̇i(1 +
1
2

x2
i φ̇2

i )

]
. (63)

In Equation (63), it is assumed that ∑ mi � Mh.
In the conclusion of this section, without listing the details, let us present a plot of the resolved

equation of Lagrange, derived from Equations (62) and (63), for the case of destruction of an elastic
body traveling near the fast-spinning black hole (Figure 13).

Figure 13. Involvement into co–rotation with space–time "whirlpool", and subsequent destruction into
two fragments, of an elastic body traveling in the vicinity of a black hole. Three black hole rotation
regimes are shown: for non-rotating black holes (a = 0, blue), and for quickly rotating black holes with
parameter a→ −0.5 (orange) and a→ +0.5 (brown).

The body is decomposed into two fragments of approximately equal masses, m1 = 0.53m12 and
m2 = 0.47m12. Initially, the fragments were elastically connected with the factor of elasticity k = 0.1m12.
Initially, the body travels along parabolic trajectory with full energy at infinity E = (m1 + m2) and
specific per mass unit angular momentum j. To facilitate visual resolution of the graphs, the calculations
used j = 1.8. The more massive fragment is depicted by the larger dot. Three regimes are presented:
a non-rotating black hole (a = 0, blue curve), and quickly rotating black holes, a → ±0.5 (orange
curves for retrograde-rotating black hole, a < 0; brown curves for prograde-rotating black hole,
a > 0). Due to the tidal forces from the black hole, destruction of the elastic system into two detached
fragments occurs in all three cases. However, as Figure 13 shows, the final directions of fragment
trajectories depend on the regime of the black hole rotation.
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7. Conclusions

This paper was envisioned with dual goals in mind: to obtain concrete results and to highlight
some methodological aspects involved in the finding of these results. The material concerning the
space–time metric near black holes, coordinate choice, etc., contained in the introductory part of the
paper, can be found in works on general relativity, at least implicitly. However, these foundation
elements are scattered (sometimes in implicit form) through various works (cited in our bibliography
and in references therein). We aggregated this dispersed material. An important purpose of this paper
is to illustrate the “Lagrangian” method involved in the conducted study. We wished to convey to
the readers who desire fresh perspectives and are unencumbered by ingrained authoritative dogmas,
the idea that Method is more important than Result.11

In this paper, we laid out a step-by-step approach, based on the relativistically invariant,
“square–root–form”, Lagrangian Equation (25), for studying problems of compact and compound
stellar body motion in the vicinity of rotating black holes. We presented a classification of possible
regimes of motion, and demonstrated how a body, once in the vicinity of a rotating black hole, becomes
involved in the whirlpool-like rotation of the space–time (Figure 8). We determined the conditions
for the body’s capture and involvement in the co-rotative motion with the black hole. We showed
that, in describing interaction between components of a multi-body system moving near the black
hole, one can use Lagrangian in the form of Equations (62) and (63) derived in the post-Newtonian
approximation with respect to parameter rg/r.

Obviously, bodies traveling along curved trajectories must emit gravitational waves ([12], §110)
and lose energy in the process. This energy loss per unit of time is noticeable only at the fifth order
of magnitude in the Lagrangian expansion with respect to small parameter ∼(v/c). With respect to
the terms with the first four orders, the energy of the body remains constant. This means that, in the
expression for the Lagrangian, it suffices to include the terms up to the fourth degree of smallness with
respect to c−1, and not be burdened with more precise calculations.

For a metric tensor written in the form gαβ = ηαβ + hαβ (here, ηαβ is Minkowski tensor), Lagrangian
L = −mc((ηαβ + hαβ)uαuβ)1/2 with uγ = (1, q̇i). Here, the affine parameter τ is the time measured by
the remote observer, i.e., τ = t, and the dot denotes the derivative with respect to this time. Obviously,
ηαβuαuβ = c2 − vjvj with vjvj = v2, where v is the usual 3-velocity in the 4-coordinate system of
the remote observer. Therefore, the Lagrangian for one body in the (given) gravitational field takes
the form

L = −mc
ds
dt

= −mc2
(

1 + h00 + 2h0i
vi

c
− v2

c2 + hij
vivj

c2

)1/2

. (64)

Expanding the radical into series up to and including c−4, yields:

L = −mc2 +
mv2

2
+

mv4

8c2 −mc2
(

h00

2
+ h0i

vi

c
+

1
2

hij
vivj

c2 −
h2

00
8

+
h00

4
v2

a
c2

)
. (65)

This explains the choice of approximation (59).
In the context of the presented framework and findings, a question may be asked: what additional

information can be extracted from the observational results presented in Figure 1, beyond the
conclusion that bright stellar objects orbit around a massive compact object with M ∼ 4.1× 106M�,
presumably a black hole?

Let us make a few quantitative estimates.

11 L. Landau: “A method is more important than a discovery, since the right method will lead to new and even more important
discoveries.” [29]
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The Schwarzschild radius, rg = 2GM/c2, for a body with mass M is of order ' 2.95(M/M�) km,
i.e., for the black hole in our galaxy, rBH ' 107 km ' 0.07 AU. The moving objects in Figure 1 follow
approximately elliptic trajectories. Only two trajectories are closed, i.e., objects SO-2 and SO-102
have completed their entire rotations over the duration of monitoring. The semi-major axis, a, of an
elliptic orbit and the distance of the closest approach (periapse), rmin, with the gravitating center M,
are related as a = rg/u1(1− ε), where ε is orbit eccentricity and u1 = rg/rmin. For a star that does not
approach the black hole too closely, simple estimates, following from the classical celestial mechanics,
can be used instead of cumbersome formulae of the relativistic theory.12 Then, from the law a3/T2 =

(8π2)−1rgc2, follows the relationship between characteristic time/period and the distance of the closest
approach—T2(1− ε)3 = (8π2)u−3

1 (rg/c)2. Numerically, T = 9.461× 1012τ, where T is measured in
seconds and τ in years. Then, we obtain relationship τ2(1− ε)3u3

1 = 7.72× 10−24(Mh/M�)2, which
obviously is strictly valid only for the Newtonian mechanics, but can be also used for estimations even
in post–Newtonian models. This relationship permits not only to estimate Mh based on measured
τ, ε, u1, but also to assess (in terms of the order of magnitude) which values of ε are acceptable for
experimentalists, so that the effects (similar to those shown in Figure 12) of the general relativity theory
become apparent. For regimes with parameter u1 ≥ 0.2 for the observed stars during τ ∼ 0.1÷ 1
(about a few months or a year), the above-mentioned relationship indicates that the eccentricity
of the analyzed orbits must be not small. To the contrary, parameter ε must be close to 1, ε → 1,
i.e., trajectories of the observed stars should resemble either very elongated ellipses, or fly-through,
quasi-parabolic paths. The movement of stars near the black hole would then occur very quickly, even
taking into account the red-shift affecting the distant observer. Therefore, high-resolution observations
of "bright" moving objects in the region shown in Figure 1 must be conducted continuously, not
occasionally or with long pauses.

At present, several teams conduct observations of the motion of stars orbiting around the
supermassive black hole in our Galactic center that permit probing the gravitational theory ([1,31–34]).
In view of their estimations (see for example [33]), the actually measurable value of parameter u1 (the
inverse periapse normalized by the Schwarzschild radius) is of order 7× 10−4 (for object S2 in the
S-star cluster in the Galactic center region, which has the shortest period). Therefore, observation
techniques need to evolve further to be able to capture stellar motions with parameters close to the
above-mentioned u1 and τ.

The challenges of obtaining reliable experimental data, which may escape the attention of
theoreticians and numerical modelers, can be clearly seen in Figure 14 (from [35]).

Figure 14 shows the positions of the two stellar objects, S0-2 (blue) and for S0-38 (red), from 1995
to 2014. The lines show best-fit orbits for the stars. Both stars orbit clockwise on the plane of the sky.
For S0-38 (red), some observations show greater uncertainty ranges due to the star’s proximity to
other objects.

In general, equations following from Lagrangians (62) and (63) can be useful for studying the black
hole’s tidal effects onto elastic bodies and analyzing the bodies’ potential destruction, as illustrated in
Figure 13.

Furthermore, future discoveries of "bright" objects traveling along fly-through trajectories close
to this super-massive black hole (similar to those shown in Figure 12) would serve as convincing
direct evidence for the general relativity theory and as an additional confirmation of the existence of
black holes.

12 In general, however, the possibility that “dark matter” may have an impact on the motion of stars in the central zone of our
Galaxy should also be noted and considered (see, for example, [30] and references therein).
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Figure 14. Positions on the plane of the sky and best-fit orbits of objects S0-2 (blue) and for S0-38 (red)
for the period from 1995 to 2014. From [35].
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