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Abstract: We created a catalog of photometric redshift of ∼3,000,000 SDSS galaxies annotated by
their broad morphology. The photometric redshift was optimized by testing and comparing several
pattern recognition algorithms and variable selection strategies, and was trained and tested on a
subset of the galaxies in the catalog that had spectra. The galaxies in the catalog have i magnitude
brighter than 18 and Petrosian radius greater than 5.5′′. The majority of these objects are not included
in previous SDSS photometric redshift catalogs such as the photoz table of SDSS DR12. Analysis of
the catalog shows that the number of galaxies in the catalog that are visually spiral increases until
redshift of ∼0.085, where it peaks and starts to decrease. It also shows that the number of spiral
galaxies compared to elliptical galaxies drops as the redshift increases.
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1. Introduction

Most galaxies can be broadly separated into two morphological types: spiral and elliptical [1].
Galaxy Zoo [2] was the first attempt to analyze the distribution of a large number of spiral and
elliptical galaxies in the local universe. Using the power of crowd sourcing, it provided morphological
classifications of nearly 900,000 galaxies. Subsets of “clean” and “superclean” datasets were used to
deduce the distribution of elliptical and spiral galaxies in the local universe [3–5].

A more recent catalog of galaxy morphology is the catalog of ∼3,000,000 Sloan Digital Sky Survey
(SDSS) galaxies [6] classified automatically using machine learning [7,8]. While the catalog is large, it is
limited in the sense that the vast majority of the galaxies in that catalog do not have spectroscopic data.

Photometric redshift (photo-z) plays a vital role in the study of astronomy and cosmology.
Spectroscopic measurements of millions of celestial objects is technically daunting and expensive
compared to photometric measurements. The redshift can be estimated from the photometric
measurements, and that estimation is often sufficient for many applications involving statistical
analysis of a large population of astronomical objects [9]. Clearly, photometric measurements can
provide more redshift estimates per unit telescope time compared to spectroscopic measurements [10].
Therefore, during the past decade significant efforts have been aimed toward developing photometric
redshift estimation methods, most of them can be classified into two types: template-fitting and
empirical methods [11].

Empirical methods use celestial objects with known spectroscopic redshift as training data
to estimate the redshift based on patterns in the photometric measurements. The performance of
empirical methods is limited to the range of the spectroscopic redshift of the samples in the training set.
Template-based methods estimate the photometric redshift by using spectral templates. The estimation
is accomplished by selecting the Spectral Energy Distribution (SED) from a library of templates such
that the SED best reproduces the observed fluxes in the broadband filters [9]. These methods are
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preferred when exploring new regimes, while empirical methods are preferred when large training
sets with spectroscopic redshift are available [11]. In general, empirical methods provide better
accuracy [11]. For detailed discussion of photometric redshift techniques see reviews [11,12].

In some cases hybrid methods that combine empirical and template approaches can improve
the accuracy of the photometric redshift reconstruction. Examples of empirical methods include
predication trees and random forests [13,14], Polynomial Fitting [15], the Nearest Neighbour
Polynomial (NNP) technique [16], Decision Trees [17], Artificial Neural Networks [18,19], and Support
Vector Machines [20]. Gaussian Process Regression (GPR) can provide competitive results compared
to ANN and least-square fitting methods [21]. Some studies showed improved prediction accuracy
using the combination of templates and magnitude priors [22]. The inclusion of near IR magnitude
and angular size also showed significant contribution to the accuracy of the photometric redshift
prediction [23]. The combination of morphological and photometric variables have shown to increase
the accuracy, especially in cases where fewer bands are available [24].

Examples of photometric redshift catalogs include the catalog of ∼106 SDSS DR4 objects with
redshift values in the range of 0.4 < z < 0.7 [18], and the catalog of SDSS DR9 galaxies, in which
an artificial neural network was used [25]. The ANNz2 artificial neural network [26] was used to
create a photometric redshift catalog of ∼3.9 × 108 for the Kilo-Degree Survey Data Release 3 [27].
Another large catalog is contains the photometric redshift catalog of about ∼2 × 108 galaxies from
SDSS DR12, with redshift range of 0 < z <0.8 [28].

Here we test several machine learning algorithms and sets of photometric variables for the purpose
of photometric redshift estimation, and apply the method to create a catalog of ∼3,000,000 galaxies
that have information about their broad morphology and their photometric redshift. That information
can be used to profile the distribution of broad morphology of galaxies in different redshift ranges.

2. Data

The initial data were taken from the catalog of ∼3 × 106 SDSS galaxies separated by their broad
morphology into elliptical and spiral galaxies [6], all taken from SDSS DR8 [29]. The vast majority of
these DR8 galaxies do not have photometric redshift computed through previous catalogs. For instance,
a joint query with the redshift catalog of ∼2 × 108 SDSS DR12 galaxies [28] only includes 827,591 of
the galaxies in the catalog, which is merely about 27.6%.

The reason for the exclusion of these galaxies from the photoz table [28] of SDSS DR12 could be
that the galaxies in the photoz table are objects identified as galaxies by all primary photometric
measurements included in the GalaxyTag view [28], while the objects in the catalog of broad
morphology were selected by using the “type” field of the PhotoObjAll table, and then filtered by
applying further analysis of the image based on the morphology of the object. Therefore, many objects
that have an object type “galaxy” (type = 3) in the PhotoObjAll table and are included in the catalog
of broad morphology might not have been included in the set objects included in the photoz table.
For instance, DR12 has 48,528,684 objects with model i magnitude smaller than 19 and identified to
have the type “galaxy”, while just 11,761,054 of these objects are included in the photoz table. Figure 1
shows examples of objects identified as galaxies in SDSS DR12 PhotoObjAll, but are not included in
the photoz table of DR12.

The catalog also has the certainty of each galaxy to belong in each of the broad morphological
classes, and the threshold can be used to control the consistency of the subset [6]. The certainty
values are used in a similar fashion to the way the degree of agreement between human annotators is
used in Galaxy Zoo [2]. By using a certainty threshold of 0.54 for the spiral galaxies and 0.8 for the
elliptical galaxies, the catalog contains ∼9 × 105 spiral galaxies and ∼6 × 105 elliptical galaxies with
consistency of ∼98% with the Galaxy Zoo debiased “superclean” dataset [2], as thoroughly described
in [6]. All galaxies are bright (i magnitude brighter than 18) and large (Petrosian radius measured in
the r band larger than 5.5′′), and therefore allow the identification of the morphologies of the galaxies
in the catalog while excluding small and faint objects that their morphology cannot be identified.
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Figure 1. Examples of objects identified as galaxies by DR12 PhotoObjAll table, but are not included in
the photoz table of DR12.

The source code used to create the catalog is also publicly available [30]. Figure 2 shows the
distribution of the r model magnitude, the Petrosian radius measured in the r band, and the distribution
of the redshift among 115,359 galaxies included in the catalog that also had spectra.
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Figure 2. Distribution of the redshift, r magnitude, and Petrosian radius measured on the r band of the
115,359 galaxies that have spectra. These galaxies were used for training and testing the photometric
redshift algorithms.

A subset of 20,000 galaxies that have spectra was used for training and testing the algorithm.
Naturally, these galaxies need to have spectra so that the predicted photometric redshift can be
compared to their spectroscopic redshift to deduce the efficacy of the algorithm. The photometric
information was taken from the PhotoObjAll table of SDSS DR8.

The purpose of the set of galaxies with spectra is to train and test a model to estimate the redshift
of the galaxies in the catalog of SDSS galaxies with broad morphology classification [6]. For that
purpose, the set of galaxies with spectra that are used for training and testing needs to be as similar
as possible to the entire population of galaxies in the catalog it aims at analyzing. Figure 3 shows
the distribution of the magnitude and size of the galaxies in the catalog of galaxies with broad
morphological classification. As the figure shows, the brightness and size of the galaxies in the catalog
is very similar to the brightness and size of the galaxies in the training set.

Selecting training samples from the same set of galaxies that need to be classified might lead to
performance evaluation that reflects the sample from which the galaxies were taken, and not necessarily
the entire set of SDSS galaxies, which also includes small and faint galaxies. Also, the training set
contains galaxies that were selected as spectroscopic targets, and are therefore not necessarily a random
representation of SDSS general galaxy population. However, since the purpose of the algorithm is
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to estimate the redshift only for galaxies within that sample, higher accuracy can be achieved if the
population of the samples in the training set is similar to the population of the samples that will be
classified with the machine learning system. The galaxies in both the catalog and the training set are
galaxies that were selected using the same criteria, and Figures 2 and 3 show that the population of
galaxies in the catalog is similar to the population of galaxies included in the training set. The training
set does not include random galaxies from SDSS spectroscopic sample, but just galaxies that are part of
the catalog, and their population is similar to the galaxy population in the catalog. While the solution
is expected to achieve poor performance for galaxies outside of that sample, it is designed specifically
for a certain catalog.

0

0.05

0.1

0.15

0.2

0.25

0.3

11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 >20

F
ra

c 
o

n
 o

f 
to

ta
l

r range (magnitude)

r

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

<10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 >45

F
ra

c 
o

n
 o

f 
to

ta
l

Petrosian radius (pixels)

Size

Figure 3. Spectroscopic redshift distribution of the galaxies in the catalog of broad galaxy morphology.

3. Methods

3.1. Pattern Recognition Algorithms

Several supervised machine learning algorithms were tested, and the performance was evaluated
to identify the algorithms that demonstrated the highest efficacy. These algorithms included
Simple Linear Regression, MultiLayer Perceptron [31], M5P [32], ZeroR, Decision Table [33],
and Random Forest [34]. Given the photometric redshift is a continuous value and not a crisp
class, suitable algorithms need to be able to perform a regression and compute a continuous value as
their output.

The Logistic Regression algorithm predicts a multi-dimensional point by minimizing its squared
error. MultiLayer Perceptron builds a multi-layer neural network of weighted perceptron nodes.
Each node receives several input values, and “fires” a value to the next layer if the results of the
function (called “activation function”) using these input values as parameters reaches a certain
threshold weight [35]. The weights in the nodes are optimized by running the training samples
through the network iteratively, and adjusting the weights based on the results of the training samples.
Given the output layer contains multiple perceptrons, their values can be interpolated to provide a
continuous value.

The M5P algorithm implements M5 model trees and rules [32]. As each leaf in the M5 model is
a linear regression function, it is suitable for predicting continuous values rather than a crisp class.
ZeroR is a simple classifier that makes a prediction based on the frequency of the output variable in
the training set. A Decision Table [33] is a rule-based method that uses a frequency table to make a
prediction. The frequency table is built based on the frequency of the features in the training samples,
and their distribution in different ranges [33]. The tree-based Random Forest algorithm [34] builds
a classifier using a large number of random decision tree classifiers. Each decision tree is created
randomly such that each node is a different feature, and the decision is made based on the value of
that feature in a specific given test sample, until reaching the leaf that is assigned with an output value.
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These trees are used to create an ensemble classifier such that each tree is a classifier, and the output is
determined by an interpolation of the results of all decision trees. Given each decision tree provides
an output, the high number of outputs being interpolated makes the method suitable also for the
prediction of continuous values. The implementation of the algorithm was taken from the Weka open
source machine learning toolbox [36].

3.2. Variable Selection

Feature selection in a multidimensional environment is a complex task that often requires
heuristics or assumptions, which can then be tested empirically. Several different methods were used
for variable selection, including hand-crafted variable selection and automatic statistical selection of
the variables. The hand-crafted set of variables is the variables used in [25] to compute the photometric
redshift of SDSS DR9 objects. These variables are listed in Table 1, and a short description of each
variable can be found in Table A1.

Table 1. Variable sets.

Name Variables

[25]
ra, dec, g, r, i, z, psfMagErr u, psfMagErr g, psfMagErr r, psfMagErr i,
psfMagErr z, extinction u, extinction g, extinction r, extinction i,
extinction z, u-g, u-r, u-i, u-z

KBest13 deVMag_g, deVMag_r, dered_g, dered_u, expMag_g, expMag_r,
fiberMag_u, g, petroMag_g, photozcc2, photozd1, u

KBest21
deVMag_g, deVMag_r, deVMag_u, dered_g, dered_r, dered_u,
expMag_g, expMag_r, fiberMag_g, fiberMag_u, g, petroMag_g,
petroMag_r, photozcc2, photozd1, psfMag_g, psfMag_u, r, u

KBest30

deVMag_g, deVMag_i, deVMag_r, deVMag_u, dered_g, dered_r,
dered_u, expMag_g, expMag_i, expMag_r, expPhiErr z, fiberMag_g,
fiberMag_u, g, isoA_u, isoBGrad_u, isoB_u, isoCocl_u, isoPhi_u,
isoRowcGrad_u, petroMag_g, petroMag_r, petroMag_u, photoscc2,
photozd1, psfMag_g, psfMag_u, r, u

KBestMod
deVMag_g, deVMag_r, deVMag_u, dered_g, dered_r, dered_u,
expMag_g, expMag_r, fiberMag_g, fiberMag_u, g, petroMag_g,
petroMag_r, psfMag_g, psfMag_u, ra, dec, i, r, u, u-g, g-r, r-i, i-z

Another method of variable selection is based on computing the variable’s analysis of variance
(ANOVA) F-value, and then selecting the highest rated features [37]. That was done by using the python
library scikit-learn 1. The function sklearn.feature_sclection.SelectKBest takes a dataset and a
comparison function to choose the most informative features. For the comparison function, we used the
ANOVA F-value computation function sklearn.feature_selection.f_classif. These variables are
selected automatically, and therefore some of the variables might not necessarily have a straightforward
physical explanation, but in the context of the database can provide useful patterns when used in
combination with other variables. We chose the top 13 (KBest13), 21 (KBest21), and 31 (KBest31)
variables and ran the random forest algorithm on each subset of variables.

Table 2 shows the mean absolute error when using the different feature sets. The mean absolute

error is defined by
ΣN

i=1|Zi,p−Zi,s |
n , where Zi,p is the photometric redshift of galaxy i, Zi,s is the

spectroscopic redshift of galaxy i, and N is the total number of galaxies in the test samples. That process
is repeated 10 times using a 10-fold cross-validation test strategy, meaning that the test is performed

1 http://scikit-learn.org/stable/index.html.

http://scikit-learn.org/stable/index.html
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10 times such that in each run a different set of 10% of the samples are used for testing, and the
remaining 90% for training.

Table 2. Mean absolute error for three different feature sets when using the random forest algorithm
and the 10-fold cross-validation test strategy.

Feature Set Mean Abs Error

KBest13 0.00749
KBest21 0.00741
KBest30 0.00748

As Table 2 shows, using 21 variables provided the best performance, and the larger feature
set did not lead to better accuracy, although the difference in performance when using different
sets of variables is small. All experiments were performed with a standard 10-fold cross-validation
testing strategy.

Finally, the set of KBest21 variables was enhanced with the four color variables, that are not
included in SDSS and were therefore not analyzed by ANOVA, creating the KBestMod variable set.
That variable set included the following variables: deVMag_g, deVMag_r, deVMag_u, dered_g,
dered_r, dered_u, expMag_g, expMag_r, fiberMag_g, fiberMag_u, g, petroMag_g, petroMag_r,
psfMag_g, psfMag_u, ra, dec, i, r, u, u-g, g-r, r-i, i-z.

3.3. Performance Evaluation

In order to evaluate the performance we used three metrics of the performance: The mean absolute
error, the root square error, and the normalized error. The root mean square error (RMSE) is defined by
Equation (1)

RMSE =

√
1
N

ΣN
i=1(Zspec − Zphot)2. (1)

The normalized Z error ∆Znorm is defined by Equation (2).

∆Znorm =
Zspec − Zphot

1 + Zspec
(2)

and the mean normalized error ∆Znorm is the mean ∆Znorm of the test galaxies.
Table 3 shows the performance for the different variable sets when using the random forest

classifier. As the table shows, the KBestMod feature set performs better than the other feature sets for
all three performance metrics.

Table 3. Performance of random forest on 20,000 galaxies with different feature sets.

Feature Set Mean Abs. Err. Root Err. ∆Znorm

Brescia et al. [25] 0.00747 0.01492 0.00246
KBest13 0.00749 0.01728 0.00305
KBest21 0.00741 0.01561 0.00259

KBestMod 0.00617 0.01294 0.00222

Additionally, the random forest algorithm performs better than other algorithms. Table 4 shows
the performance of the Simple Linear Regression, MultiLayer Perceptron, M5P, ZeroR, Decision Table,
and Random Forest machine learning algorithms when using the KBestMod feature set.
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Table 4. The 10-fold cross-validation performance of the different machine learning methods on a set
of 20,000 galaxies using the KBestMod feature set.

Algorithm Mean Abs. Err. Root Err. ∆Znorm σ(∆Znorm)

Simple Linear Regression 0.00621 0.01321 0.01273 0.0347
MultiLayer Perceptron 0.00617 0.01313 0.01041 0.0159

M5P 0.00611 0.01288 0.00562 0.019
ZeroR 0.00616 0.01304 0.06581 0.0719

Decision Table 0.00616 0.01301 0.01586 0.0231
Random Forest 0.00617 0.01294 0.00222 0.0107

As the table shows, the random forest algorithm provided the best performance, with ∆Znorm of
∼0.0022, lower than any of the other algorithms. The standard deviation of the normalized error is
also the lowest when using the random forest classifier (0.0107). The median absolute deviation of
the random forest classifier is ∼0.056. M5P produced a marginally better mean absolute error and
root square error of 0.0061 and 0.0128, respectively. Simple Linear Regression provided the worst
performance, with a mean absolute error of 0.0062 and root absolute error of 0.0132.

It should be mentioned that the performance figures provided in Table 4 reflect the performance
on the galaxy sample of the catalog described in Section 2, but not the entire galaxy population in SDSS.

The performance of the algorithm was also compared to the performance of the redshift estimation
using Multilayer Perceptron, as well as the photometric redshift methods based on the Nearest
Neighbour Polynomial (NNP), and the neural network algorithms CC2 and D1 [9]. Table 5 shows
that the photometric redshift estimation based on the random forest is favorably comparable to other
methods, and therefore can provide a solution to the estimation of the redshift of the galaxies in
the catalog.

Table 5. Error of the different photometric redshift algorithms in different redshift ranges.

Measurement z < 0.115 0.115 ≤ z 0.117 ≤ z
z < 0.177 z < 0.345

∆znorm Random Forest 0.002 0.002 0.003
Mean Abs. Err. Random Forest 0.006 0.006 0.009
Root Err. Random Forest 0.008 0.009 0.014
∆znorm Multilayer Perceptron 0.02 0.01 0.08
Mean Abs. Err. Multilayer Perceptron 0.03 0.02 0.36
Root Abs. Err. Multilayer Perceptron 0.044 0.04 0.41

∆znorm Err. NNP 0.062 0.108 0.16
Mean Abs. Err. NNP 0.067 0.118 0.19
Root Err. NNP 0.082 0.128 0.21
∆znorm Err. CC2 0.014 0.015 0.04
Mean Abs. Err. CC2 0.015 0.017 0.05
Root Err. CC2 0.058 0.058 0.13
∆znorm Err. D1 0.024 0.018 0.06
Mean Abs. Err. D1 0.026 0.021 0.11
Root Err. D1 0.148 0.058 0.27

Photometric redshift accuracy can change in different color ranges. Figures 4 and 5 show the
change in the absolute and normalized error, respectively, at different magnitudes in the different
bands. The red lines show the least square error linear regression.
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Figure 4. Absolute error when using the random forest classifier and different magnitude ranges.
The red lines show the least square error linear regression.
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Figure 5. Normalized error when using the Random Forest classifier and different magnitude ranges.

Figures 6 and 7 show the absolute and normalized error, respectively, as a function of the color.
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Figure 6. Absolute error when using the Random Forest classifier and different color ranges.
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Figure 7. Normalized error when using the Random Forest classifier and different color ranges.

The figures show that the error increases when the objects get dimmer. The correlation between
the error and the magnitude can be expected as the dimmer galaxies also tend to have higher redshift,
and the error expected to increase as the redshift gets higher. The threshold of 0.54 was selected based
on previous experiments by comparing it to the Galaxy Zoo “superclean” samples [6]. Any threshold
higher than 0.54 does not increase the consistency of the dataset substantially.

As Figures 6 and 7 show, the error also tends to decrease slightly when the galaxies are bluer.
That can be explained by the observation that spiral galaxies in the catalog tend to have lower redshift.
Since spiral galaxies also tend to be bluer than elliptical galaxies, bluer galaxies in the catalog have
lower redshift, and therefore their estimated photometric redshifts have a lower error.
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Figure 8 shows the frequency of galaxies as a function of the normalized and absolute error. As the
figure shows, catastrophic outliers with error of more than 0.15 are very rare, and are less than 0.2% of
the cases.
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Figure 8. Frequency of galaxies as a function of the normalized and absolute error.

3.4. Dependence on the Size of the Training Set

The performance of machine learning algorithms is heavily dependent on the size of the dataset
on which they are trained, and larger training sets normally lead to improved performance of the
algorithm. However, the accuracy does not grow with the size of the training set in a linear fashion,
and at a certain point it is expected that increasing the size of the training set has a negligible
contribution to the performance of the machine learning algorithm [38].

To determine the effect of the size of the training set on the performance, the random forest
algorithm and the KBestMod feature set were used with several training set sizes ranging from 1000 to
20,000 galaxies. The results of these experiments are shown in Table 6. As the table shows, the accuracy
of the algorithm improves as the size of the dataset gets larger, but the improvement in the ∆Znorm

becomes negligible when the number of training samples reaches ∼5000. The mean absolute error and
the root error also show a very small decrease beyond 5000 training samples, but the decrease is more
substantial compared to the ∆Znorm. Therefore, more than 5000 training samples will make a minor
contribution to the ∆Znorm, while having somewhat higher impact on the mean absolute error and the
root error. It should be noted that for the machine learning algorithms used in this study, using large
training sets as shown in the table does not add substantial computing requirements.

Table 6. Statistics for various training set sizes. The KBestMod feature set was used with the random
forest algorithm.

Training Set Size Mean Abs. Err. Root Err. ∆Znorm

1000 0.00836 0.02027 0.00266
5000 0.00646 0.01446 0.00219

10,000 0.00626 0.01342 0.00221
20,000 0.00617 0.01294 0.00222
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4. Catalog

The purpose of the photometric redshift methods described in Section 3 is to compute the
photometric redshifts of the objects in the catalog of galaxy morphologies described in Section 2.
The photometric redshift of the galaxies in the catalog was computed with the KBest_mod feature set
and the random forest algorithm.

The catalog contains the 2,912,341 SDSS galaxies classified automatically to spiral and elliptical
galaxies [6]. For each galaxy, the catalog contains the SDSS DR8 object ID of the galaxy, its right ascension,
declination, elliptical and spiral marginal probabilities, and the computed photometric redshift.

Figure 9 displays the distribution of the galaxies in the catalog across different photometric
redshift ranges. The figures shows that the number of elliptical galaxies remains fairly constant across
the redshift ranges, but increases at around redshift of 0.35. The higher number of galaxies in that
redshift range is aligned with previous studies, showing a peak in the total number of galaxies at
around z = 0.35 [39]. On the other hand, it should be noted that the drop in the number of elliptical
galaxies beyond z = 0.35 can be related to the limiting magnitude of the catalog. Galaxies with i
magnitude dimmer than 18 are excluded from the catalog, and the number of galaxies with redshift
greater than 0.35 that satisfy the magnitude threshold is small, and gets smaller as the redshift increases
and consequently the galaxies get dimmer. The number of spiral galaxies peaks at around redshift of
0.085, and then decreases gradually.

Figure 9. Redshift distribution of the elliptical and spiral galaxies in the catalog.

The catalog was also analyzed regarding the distribution of broad morphology of the galaxies
in each redshift range. Figure 10 shows the fraction of galaxies identified as spiral among the total
number of galaxies within each photometric redshift range. As the figure shows, the proportion of
spiral galaxies in the catalog drops as the redshift gets higher. In the redshift range of 0.05–0.1 the
fraction of spiral galaxies in the total number of galaxies is ∼0.62, while it is ∼0.4 at the redshift of
0.15, and drops to less than 0.2 when the redshift is 0.2 or higher.

It should be noted that the population of galaxies in the catalog might not represent a random
sample of the galaxies in the local universe, but is limited to galaxies that are sufficiently bright
and sufficiently large to be analyzed morphologically given the limitation of SDSS imaging power.
Elliptical galaxies are brighter than spiral galaxies [40], and therefore the magnitude threshold
(i magnitude < 18) can lead to the higher number of elliptical galaxies that meet that threshold to be
included in the catalog. Because the redshift and magnitude are strongly correlated, at higher redshifts
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more elliptical galaxies pass the magnitude threshold compared to spiral galaxies, consequently leading
to the higher population of elliptical galaxies compared to spiral galaxies at these redshift ranges.

Figure 10. Ratio of spiral galaxies over all galaxies in the catalog in different redshift ranges.

The increased population of elliptical galaxies at higher redshifts can also be the result of the
fact that spiral patterns become more difficult to identify in fainter and smaller galaxies, although
the galaxies are all relatively large (Petrosian radius larger than 5.5′′) and bright (i magnitude < 18),
and the annotations of the morphologies of these galaxies agree to a very high extent of ∼98% with the
debiased “superclean” annotations of Galaxy Zoo. Because the initial selection of galaxies is based on
the magnitude, more elliptical galaxies with higher photometric redshift can be included in the catalog,
and therefore the increase of their population at higher redshifts does not necessarily reflect higher
population in the higher redshift ranges of this catalog. On the other hand, the size threshold ensures
that only large objects are selected, so that bright and small objects are excluded from the catalog.

Figure 11 shows the distribution of the galaxies in the catalog by their broad morphology,
right ascension, and photometric redshift. Similarly to Figure 10, the lower redshift range has a
much higher number of spiral galaxies, which can be also related to the fact that spiral patterns are
more difficult to identify as the redshift gets higher.

The redshift range of the galaxies used in the catalog is relatively small in terms of galaxy evolution.
Some observations within that redshift range have been noted, such as the higher population of faint
blue galaxies at redshift range of 0.3 to ∼1 [41]. A more recent observation showed that the population
of settled disk galaxies changes in the range of 0.2 < z < 1.2 [42]. The absolute magnitude of
galaxies also increases (becomes dimmer) when the redshift increases in the range of 0 < z < 1 [39].
Another study showed a decrease in the population of massive late type galaxies in the 0 < z < 0.35,
which largely agrees with the distribution of the late-type galaxies in this catalog [43].
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Figure 11. Distribution of spiral and elliptical galaxies by photometric redshift and right ascension.
The range of the photoz is 0 to 0.4.

5. Conclusions

The primary goals of this study are to test machine learning and variable selection algorithms for
computing photometric redshift, optimize it for a specific population of galaxies, and mainly apply
these algorithms to provide a large catalog of galaxy morphology and photometric redshift.

The catalog presented in this paper is similar to the early Galaxy Zoo 1 catalog, but because it was
classified automatically it provides a much higher number of galaxies. Of the ∼3 × 106 galaxies in the
catalog, ∼1.5 × 106 are galaxies with 98% agreement rate with the Galaxy Zoo 1 debiased “superclean”
accuracy. It is limited in the sense that, like Galaxy Zoo, it represents the galaxies in the catalog, and not
necessarily a complete and unbiased sample of SDSS galaxies.

The catalog is publicly available at https://figshare.com/articles/Morphology_and_photometric_
redshift_catalog/4833593. The source code used to create the catalog is also publicly available [30,44].
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Appendix A. Variable Description

Table A1 provides a short description of the variables used in the different experiments. A more
detailed description is available in the Sloan Digital Sky Survey documentation [45]. The variables
that were used for the photometric redshift are only the variables included in the KbestMod feature set
described in Section 3.2, and not the entire list of variables described in the table.

Table A1. Variables used for photometric redshift estimation. The variables used for the photometric
redshift are the subset of variables included in the KbestMod feature set, and not the entire set of
variables included in the table.

Variable Description

u The best of the exponential fit magnitude and the DeVaucouleurs fit magnitude in the u band
g The best of the exponential fit magnitude and the DeVaucouleurs fit magnitude in the g band
r The best of the exponential fit magnitude and the DeVaucouleurs fit magnitude in the r band
i The best of the exponential fit magnitude and the DeVaucouleurs fit magnitude in the i band
z The best of the exponential fit magnitude and the DeVaucouleurs fit magnitude in the z band
deVMag_u DeVaucouleurs fit magnitude in the u band
deVMag_g DeVaucouleurs fit magnitude in the g band
deVMag_r DeVaucouleurs fit magnitude in the r band
deVMag_i DeVaucouleurs fit magnitude in the i band
deVMag_z DeVaucouleurs fit magnitude in the z band
fiberMag_u Magnitude measured in 3 arcsec diameter fiber radius in the u band
fiberMag_g Magnitude measured in 3 arcsec diameter fiber radius in the g band
fiberMag_r Magnitude measured in 3 arcsec diameter fiber radius in the r band
fiberMag_i Magnitude measured in 3 arcsec diameter fiber radius in the i band
fiberMag_z Magnitude measured in 3 arcsec diameter fiber radius in the z band
expMag_u Exponential magnitude in the u band
expMag_g Exponential magnitude in the g band
expMag_r Exponential magnitude in the r band
expMag_i Exponential magnitude in the i band
expMag_z Exponential magnitude in the z band
petroMag_u Petrosian magnitude in the u band
petroMag_g Petrosian magnitude in the g band
petroMag_r Petrosian magnitude in the r band
petroMag_i Petrosian magnitude in the i band
petroMag_z Petrosian magnitude in the z band
psfMag_u PSF magnitude in the u band
psfMag_g PSF magnitude in the g band
psfMag_r PSF magnitude in the r band
psfMag_i PSF magnitude in the i band
psfMag_z PSF magnitude in the z band
psfMagErr_u PSF magnitude error in the u band
psfMagErr_g PSF magnitude error in the g band
psfMagErr_r PSF magnitude error in the r band

http://www.sdss.org/
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Table A1. Cont.

Variable Description

psfMagErr_i PSF magnitude error in the i band
psfMagErr_z PSF magnitude error in the z band
extinction_u extinction in the u band [46]
extinction_g extinction in the g band
extinction_ r extinction in the r band
extinction_i extinction in the i band
extinction_z extinction in the z band
photozcc2 CC2 algorithm estimation
photozd1 D1 algorithm estimation
dered_u Model magnitude subtracted by the extinction in the u band
dered_g Model magnitude subtracted by the extinction in the g band
dered_r Model magnitude subtracted by the extinction in the r band
dered_i Model magnitude subtracted by the extinction in the i band
dered_z Model magnitude subtracted by the extinction in the z band
isoA_u Isophotal major axis in the u band
isoB_u Isophotal minor axis in the u band
isoBGrad_u Gradient in minor axis in the u band
isoCocl_u Isophotal column centroid in the u band
isoPhi_u Isophotal position angle in the u band
isoRowcGrad_u Gradient in row centroid in the u band
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