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Abstract: We derive the equation that relates gravity to quantum mechanics: R|mass−shell =
8πG

c4 LSM,
where R is the scalar curvature, G is the gravitational constant, c is the speed of light and LSM is the
Standard Model Lagrangian, or its future replacement. Implications of this equation are discussed in
the paper. In particular, we show (in the last section) that this equation is the transformation that
relates four-dimensional physics to two-dimensional physics.
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1. Introduction

General Relativity (GR) is described by the following combined action1, called the Einstein–Hilbert
action, SE , where we link the Lagrangian of the Standard Model of particle physics (LSM = SU(3)C ×
SU(2)L ×U(1)Y) to GR (using the (−+++) metric signature, with g = det[gµν]):

SE =
∫
{ 1

2κ
R + LSM}

√
−gd3xdt (1)

In Equation (1), the constant κ = 8πG
c4 . This action is non-renormalizable [1,2] in four-dimensional

space-time. For the purposes of this paper then, we discard SE and replace it with a new action
SNP . In considering a replacement for SE , we require that the classical General Relativity equations
of motion are maintained; only the off-mass-shell behavior can be modified. This requires that
the high energy momentum components from the gravity Lagrangian be damped. Wilson [3] has
shown us how to do that by introducing a smooth cutoff function K in the denominator of the term
in which we are interested. This program was carried through by Igarashi, Itoh and Sonoda [4],
who showed that different choices of the smooth cutoff function merely amount to reparameterization
and renormalization of the fields.

The only K available is LSM, so the ratio R/LSM must be present. Finally, this ratio cannot appear
in a polynomial, which would vanish when gravity is neglected, thereby giving the exponential form:

SNP =
∫

e
R

2QLSM LSM
√
−gd3xdt (2)

where Q is a constant and Q 6= κ (shown below). The subscript ‘NP’ designates ‘non-polynomial’.
The replacement SE → SNP has profound implications for physics, which this paper discusses.

Donoghue [5] describes the present arguments that General Relativity is a perfectly acceptable
effective field theory. Understanding this to mean that low energy gravity must be renormalizable,

1 We discuss the cosmological constant in Section 3.1 below.
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the search is then on to find the coupled-matter-gravity action that replaces SE . That this approach
could lead to valuable results is emphasized by the work of Halpern and Huang [6], who showed that
non-polynomial Lagrangians have surprising new physics.

2. Equations of Motion with Noether’s Theorem

The coupling of gravity and matter in SNP prohibits the ability to add four-vector divergences
to either gravity or matter, because the divergence theorem is no longer applicable. The action is
stationary for fields that are solutions of the actual equations of motion; in other words, the variation is
over those fields that satisfy the symmetries of the problem. This allows non-polynomial Lagrangians,
if desired2. The extremum condition is:

δSNP = 0 =
∫
{ δ

δgµν [e
R

2QLSM ]LSM
√
−g

+
δ

δgµν [LSM
√
−g]e

R
2QLSM LSM}δgµνd3xdt

+
∫
{∑

i
[e

R
2QLSM LSM

√
−gδi(

R
2QLSM

)

+ e
R

2QLSM
√
−gδi(LSM)]}d3xdt (3)

In Equation (3), ∑i denotes the variation δi over the fields in LSM. Note that
√−g and R do not

involve3 the variation associated with δi. The individual variations are independent of each other and
separately are extrema.

2.1. Gravitational Equations of Motion

The gravitational equations of motion are determined by:

0 =
∫
{ δ

δgµν [e
R

2QLSM ]LSM
√
−g +

δ

δgµν [LSM
√
−g]e

R
2QLSM LSM}δgµνd3xdt (4)

In contemplating what this may reduce to, we consider the fact that SE , as a classical field theory,
satisfies all macroscopic experimental data tests. Thus, we would expect that SNP has the same
classical behavior as SE , but different quantum behavior. In particular, SNP can be a renormalizable
action that will be discussed in Section 3. Equation (4) reduces to:

0 =
∫

d3xdte
R

2QLSM {
√−g
2Q

δR
δgµν +

δLSM
δgµν

√
−g(1− R

2QLSM
) + LSM

δ(
√−g)
δgµν }δgµν (5)

We do each term separately.
δR = Rµνδgµν + gµνδRµν (6)

However, the variations must satisfy the symmetry properties of GR, which is4 gµνδRµν = 0. Therefore:

δR
δgµν = Rµν (7)

2 No integration by parts is required.
3 This is true even though the gravitational field has matter fields as sources.
4 This is a four-vector divergence (see for example [7]), which is zero by Noether’s principle.
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Working out the remaining terms:

1√−g
δ
√−g
δgµν = −1

2
gµν (8)

and:
δLSM
δgµν = −1

2
(Tµν − gµνLSM) (9)

In Equation (9), Tµν is the stress-energy tensor. Putting these altogether gives:

0 =
∫

d3xdte
R

2QLSM [

√−g
2Q

Rµν +

√−g
2

(gµνLSM − Tµν)(1−
R

2QLSM
) + Lsm(

−√−g
2

gµν)]δgµν (10)

The arbitrary variation giving zero requires that the complete term in parenthesis must be
zero, producing:

Rµν −
R
2

gµν = (Q− R|mass−shell
2LSM

)Tµν (11)

Now, the conservation of energy-momentum from the tensor Tµν requires:

R|mass−shell
2LSM

= constant ≡ ζ (12)

We now can evaluate the two constants Q, ζ using the technique in [8], by requiring that the
gravitational interaction reduces to the static Newtonian potential. Operating on Equation (11) by
gµν gives:

R− R
2
(4) = (Q− R|mass−shell

2LSM
)T (13)

where5 T = −LSM → energy density. Noting that all the R in Equation (13) are on the mass-shell
(equation of motion), we momentarily drop the designation and have:

− R = QT +
R
2

or − 3R
2

= QT (14)

In order to satisfy Newton’s law of gravitation, the equation for the scalar curvature must reduce,
in that particular case, to R = −8 πG

c4 T, so the constants are Q = 12 πG
c4 and ζ = 4 πG

c4 . Thus, the central
equations for the non-polynomial action are:

R|mass−shell =
8πG

c4 LSM (15)

with the equation of motion:

Rµν −
R
2

gµν =
8πG

c4 Tµν (16)

By using the original Einstein–Hilbert action, Equation (15) has gone missing. We note here that
the scalar curvature is already known to be non-vanishing only within matter, so Equation (15) would
not be an unexpected finding6.

5 In the static limit.
6 The scalar curvature can be positive or negative, consistent with Equation (15).
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2.2. Matter Equations of Motion

The other extremum from Equation (3) is:

0 =
∫
{∑

i
[e

R
2QLSM LSM

√
−gδi(

R
2QLSM

) + e
R

2QLSM
√
−gδi(LSM)]}d3xdt (17)

We work this out for a scalar field φ to demonstrate that the non-polynomial action is a viable
action due to the symmetry properties of the variations, which gives rise to a zero four-vector
divergence (Noether’s theorem). Equation (17) becomes (for a single field):

0 =
∫

e
R

2QLSM
√
−g(1− R

2QLSM
)δLSM d3xdt (18)

From the previous section:

(1− R
2QLSM

) =
2
3

(19)

The term δLSM for a single scalar field φ is:

δLSM =
∂LSM

∂φ
(∆φ) + (

∂LSM
∂(∂µφ)

)∂µ(∆φ) (20)

We use the identity:

∂µ{
∂LSM

∂(∂µφ)
∆φ} = ∆φ∂µ{

∂LSM
∂(∂µφ)

}+ ∂LSM
∂(∂µφ)

∂µ(∆φ) (21)

Equation (20) becomes:

δLSM = {∂LSM
∂φ
− ∂µ

∂LSM
∂(∂µφ)

}∆φ + ∂µ{
∂LSM

∂(∂µφ)
∆φ} (22)

However, the variations satisfy the symmetries of the Lagrangian and:

∂µ{
∂LSM

∂(∂µφ)
∆φ} = 0 (23)

without requiring integration by parts or the divergence theorem (Noether’s principle again).
Because the integrand in Equation (18) involves a never-zero exponential7 and a 2

3 factor, the terms
multiplying ∆φ must vanish, giving the equation of motion:

0 =
∂LSM

∂φ
− ∂µ

∂LSM
∂(∂µφ)

(24)

3. Renormalizability of SNP
Before calculations are presented, we want to explain in an intuitive manner why SNP and SE

should differ when quantum fluctuations are taken into account. Firstly, Equation (15) shows that the
scalar curvature is renormalized using the theorem in [9], which was derived in finite-temperature
field theory for the thermodynamic potential Ω. Secondly, the deleterious effects of having a
coupling constant G with units is ameliorated by LSM in the denominator of the exponential of
SNP . Radiative corrections will give rise to new, additional operators in the Hamiltonian: if their

7 This is critical for both Equations (10) and (18).
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coefficients8 are finite, we say we are dealing with a renormalizable action; if the coefficients are infinite,
the action becomes non-renormalizable. Thus, the statement that SNP is renormalizable means that all
the radiative corrections are finite after normal mass, charge and wavefunction renormalizations are
performed. We now go into the details.

3.1. Renormalization of the Scalar Curvature R

The inputs to a gravitational calculation are the stress-energy tensor, Tµν, with boundary conditions.
The Lagrangian in Equation (15) is used to calculate the components of Tµν, and Equation (16) gives
the solution for the Einstein tensor. R in finite-temperature quantum field theory is given by vacuum
diagrams. The thermodynamic potential Ω in finite-temperature quantum field theory is renormalized by
the theorem9 of [9]:

ΩB({gBi}, {mBi}, T, {µi})−ΩB({gBi}, {mBi}, T = 0, {µi = 0}) = ΩR({gRi}, {mRi}, T, {µi}) (25)

where B and R refer to bare and renormalized quantities, {gi}, {mi} refer to the collection of
coupling constants and masses and T, {µi} refer to temperature and the various chemical potentials.
When quantum corrections are derived for R, the renormalized10 scalar curvature RR is:

RB({gBi}, {mBi}, T, {µi})− RB({gBi}, {mBi}, T = 0, {µi = 0}) = RR({gRi}, {mRi}, T, {µi}) (26)

From Equation (26), we see immediately that the various condensates (Higgs, chiral, etc.)
associated with phase transitions do not contribute to RR

11.
The finite and tiny cosmological constant λcos 6= 0 has an unknown origin at the present time.

To illustrate Equation (15), we give a toy model for λcos: a condensation of a sterile neutrino of mass
mtoy that fills up positive energy levels in the Universe to Fermi momentum ptoy. The Fermi momentum
replaces the chemical potential µ in Equation (26). From Equation (15):

< R > =
8πG

c4 < LSM >

=
8πG

c2 ρtoy (27)

where ρtoy is the mass density. The mass density of such a neutrino is given by Equation (10) in [10].

ρtoy =
πm4

toyc3

h3 {2x(1 + x2)3/2 − x
√

1 + x2 − sinh−1 x} (28)

where x =
ptoy

mtoyc .
The relationship between λcos and < R > is:

< R >= 4λcos (29)

Then, for this toy model:

λcos =
2π2Gm4

toyc

h3 {2x(1 + x2)3/2 − x
√

1 + x2 − sinh−1 x} (30)

8 These being after having done the mass, charge and wavefunction renormalizations.
9 Here, this is written for on-mass-shell renormalization, so no Euclidean subtraction momentum squares appear.
10 The set of coupling constants includes Newton’s constant G.
11 This is because these condensates are present under the conditions T = 0, {µi = 0} and so cancel from the two terms on the

left-hand side of Equation (26).
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A value of λcos = 1.11× 1052/m2 is an approximation, [11]. If we arbitrarily assign a value of
mtoyc2 = 10 meV (0.01 eV), then x = 0.647 . . .

3.2. Finite Radiative Corrections to SNP
We do background gauge field quantization: by expanding locally, the short distance behavior

is always flat space for a smooth manifold. Following [1], gµν = ηµν + hµν leads to
√−gR ∼ (∂h)2 +

(∂h)2h + · · · and in Equation (2), letting h =
√

Qh̃:

e
R

2QLSM ∼ e
1

2LSM
√−g [(∂h̃)2+

√
Q(∂h̃)2 h̃+··· ]

(31)

The LSM term in Equation (31) acts like a smooth momentum cutoff function, as long as LSM itself
is renormalizable12. Thus, the matter Lagrangian LSM plays a critical role in the renormalization of
gravity. This cutoff behavior results in an effective re-scaling of the metric:

e
R

2QLSM
√
−g ≡

√
−g′ (32)

where
√
−g′ is a finite quantity, after the standard mass, coupling constant and wavefunction

renormalizations are performed.

4. General Implications of SNP

4.1. Comment on the Black Hole Information Paradox

The black hole information paradox refers to the Hawking radiation being emitted by a black
hole13. If the photon radiation is truly thermal, it cannot carry away information14. The radiation need
not be photons. A positron-electron pair can be created outside a black hole, and one Fermion traverses
the event horizon, while the other goes to infinity. The black hole has then “eaten up” information
because ostensibly the scalar curvature R just records an energy density/angular momentum change,
which could have been any particles. However, Equation (15) changes this situation. Instead of an
energy density change, the Lagrangian density changes. This quantity carries with it all the symmetries
of matter, including the Fermion number. Equation (15) is a ledger inside the black hole, even if no
experiment can do an audit. A detailed calculation has to be implemented on the eventual end process
of black hole evaporation, but the back-reaction is now just an elementary particle recoil, with all
symmetries of LSM having to be conserved.

Other authors [13,14] have already concluded that there is no information loss from black hole
evaporation because black holes have surface normal modes that give rise to pure quantum states,
not mixed thermal states.

4.2. Implications for the Matter Lagrangian LSM

The QCD (Quantum Chromodynamics) Lagrangian LSU(3) piece of LSM has a possible effective
Lagrangian LSU(3)e f f , which is:

LSU(3)e f f = LSU(3) +
θ

16π2 tr(Fµν F̃µν) (33)

12 As shown in [1], ∂t LSM appears in the numerator of the renormalization group flow for changes of renormalization scales,
where t is a renormalization ‘time’ t = ln Λ0

Λ and t→ ∞ as Λ decreases.
13 For a review, see [12].
14 For example, it cannot radiate polarized light.
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where Fa
µν and F̃bµν are the familiar gluon color matrix tensor and color dual-field matrix tensor,

respectively, and tr means the trace in color space. The extra piece θ
16π2 tr(Fµν F̃µν) is the four-divergence

of a vector. If SE is being used, the Divergence Theorem can be invoked, and then, non-zero surface
terms from instantons can lead to this term contributing to quantum processes. If instead, SNP is used,
then the extra θ-piece stands on its own depending on experimental data determining the value of the
CP (charge conjugation x Parity) -violating parameter θ. Using SNP means just another parameter θ,
but no θ-vacuum, since instantons are no longer relevant in the presence of this gravity-matter coupling.

An interesting possibility is the following: starting with LSU(3)e f f , compute the θ radiative
corrections for the confining QCD ground state to see if θ = 0 is the minimum. This would be the
normal QCD ground state that conserves CP. However, the excited ground state of freed quarks may
have a different minimum θ 6= 0. The latter calculation can be done in a perturbative manner. This is
the suggestion put forward by [15] to explain CP violations in the early Universe.

4.3. Reduction of Quantum Mechanical Probability Amplitudes

Feynman [16] shows that the quantum mechanical amplitude is the sum over all paths, where each
path has a phase proportional to the action S:

φ = const× e
i
h̄
∫

d3xdte
R

2QLSM LSM
√−g (34)

where const is a constant. Using Equation (15), the dominant contribution to φ can be evaluated
directly. With x0 = ct, cd3xdt = d4x, and the definition of the Planck length lP:

lP ≡
√

h̄G
c3 (35)

Equation (34) reduces to:

φ→ e
i 3√e
8π

∫
d4x

R|mass−shell
√−g

l2P (36)

Now, R|mass−shell/l2
P is the scalar curvature per unit area, and we conclude that the probability

amplitude is the integration over space-time of the scalar curvature per unit area. The inescapable
conclusion is that quantum mechanical information resides on two-dimensional surfaces. This is a
concrete realization of the ‘holographic principle’ [17].

5. Conclusions

This paper discards the historical Einstein–Hilbert action and replaces it with a coupled
gravity-matter non-polynomial interaction. The renormalizability of the scalar curvature follows
the same mathematics as the renormalizability of the thermodynamic potential in finite-temperature
quantum field theory. Radiative corrections to SNP are finite due to the high momentum cutoff from
the renormalized matter fields in LSM. This leads to an effective finite metric tensor. Many details still
remain to be worked out, including the calculation of the Hawking radiation, with the constraint now
imposed by Equation (15).
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