
galaxies

Review

A Review of Recent Observations of Galactic Winds
Driven by Star Formation

David S. N. Rupke

Department of Physics, Rhodes College, Memphis, TN 38112, USA; drupke@gmail.com

Received: 14 September 2018; Accepted: 5 December 2018; Published: 9 December 2018
����������
�������

Abstract: Galaxy-scale outflows of gas, or galactic winds (GWs), driven by energy from star formation
are a pivotal mechanism for regulation of star formation in the current model of galaxy evolution.
Observations of this phenomenon have proliferated through the wide application of old techniques
on large samples of galaxies, the development of new methods, and advances in telescopes and
instrumentation. I review the diverse portfolio of direct observations of stellar GWs since 2010.
Maturing measurements of the ionized and neutral gas properties of nearby winds have been joined
by exciting new probes of molecular gas and dust. Low-z techniques have been newly applied in large
numbers at high z. The explosion of optical and near-infrared 3D imaging spectroscopy has revealed
the complex, multiphase structure of nearby GWs. These observations point to stellar GWs being a
common feature of rapidly star-forming galaxies throughout at least the second half of cosmic history,
and suggest that scaling relationships between outflow and galaxy properties persist over this period.
The simple model of a modest-velocity, biconical flow of multiphase gas and dust perpendicular to
galaxy disks continues to be a robust descriptor of these flows.
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1. Introduction

Significant amounts of gas in galaxies move in outward radial trajectories due to energy imparted
by star formation. This energy originates from a combination of phenomena rooted in stellar processes:
radiation, winds, explosive events, and cosmic rays. These gas outflows powered by star formation,
or stellar galactic winds (GWs), continue to be a dynamic topic of observational research in the era
of large galaxy surveys and multi-messenger astronomy. Outflows are challenging to characterize
largely because of two factors: the large contrast between the outflow and an underlying galaxy disk;
and the complex, multiphase structure of outflows. High quality data in many gas tracers are essential
to adequately quantify the mass, momentum, and energy budget of the wind.

Advances in observations of GWs driven by stellar processes in this decade have come from the
use of new observational techniques and the application of old techniques to much larger samples.
Both have been aided by new-and-improved telescopes or instrumentation. In the first category fall
molecular gas transitions newly applied to study outflows (notably the hydroxyl molecule), mid- and
far-infrared (MIR/FIR) imaging of dust, and resonant-line emission in the rest-frame ultraviolet (UV).
In the second category are surveys with integral field spectrographs (IFSs), with multi-object long-slit
spectrographs, and with the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST).

Excellent and thorough reviews from previous decades of theory and observations of GWs
provide in-depth discussions of the quantities of observational interest and the astrophysics of GWs
(e.g., [1,2]). They also show the trajectory and progress of the field. The scope of this review is narrower.
I synthesize observational results from the current decade (approximately 2010 through the present).
I focus on direct measures of outflows and do not discuss studies that infer the presence or properties
of GWs by studying other phenomena.
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As an example of an indirect measurement of the presence or properties of GWs, studies of the
mass-metallicity relation constrain how efficiently GWs eject metals from galaxy disks compared
to metal production and reaccretion (e.g., [3]). A second example is the significant reservoirs of
highly ionized carbon and oxygen that preferentially arise in the circumgalactic media of actively
star-forming galaxies [4–8]. A logical source of these metals is stellar GWs. Third, the hot halos that
appear to be a common feature of star-forming galaxies [9] may be produced by stellar GWs. Finally,
cosmological simulations typically use numerical prescriptions for the unresolved physics of stellar
GWs and compare simulated galaxy properties with observed galaxy properties (like the galaxy mass
function) to constrain the nature of GWs (e.g., [10–12]). Such indirect measurements are essential for a
complete picture of the relationship of GWs to their surrounding environments. However, at present,
interpretations of these measurements based on stellar GWs typically compete with other physical
models and are rarely definitive.

Stellar processes are not the only possible drivers of GWs. Evidence continues to accumulate
that actively accreting supermassive black holes (active galactic nuclei, or AGN) are also important
in powering GWs in galaxies with above-average masses (see reviews in [13,14]). However, it can
be difficult to distinguish whether the AGN is energetically important for the GW if significant star
formation is also present, except in the most powerful AGN. This difficulty is due to the possible power
sources being cospatial at low resolution and to the uncertain duty cycle of AGN. Consequently, in this
review I focus on studies of purely star-forming systems, or at least those where star formation clearly
dominates the galaxy’s luminosity. AGN with low-to-moderate Eddington ratios are almost certainly
present in many galaxies classified as purely star-forming [15,16], but their energetic importance for
GWs remains unquantified.

I organized this review at the highest level by redshift. This is useful for two reasons. First, star
formation and galaxy properties at redshifts above unity differ significantly from those in the local
universe. The global star formation rate (SFR) peaked at z ∼ 1.9 (e.g., [17]) and gas mass fraction
increases with increasing redshift (e.g., [18]). Galaxies may grow from the inside out, meaning that
disks are more extended compared to stars at high z [19,20]. Second, low-z winds are much better
characterized because many more techniques can be brought to bear. Some techniques are in practice
easier to apply to high-redshift galaxies, but on balance this is not the case.

2. Winds Driven by Star Formation at Low Redshift

Most data on nearby stellar GWs in the first 20 years of earnest work came from the optical and
X-ray bands. These studies fell largely into two classes: (1) long-slit spectroscopic and/or narrowband
imaging surveys (e.g., [21–23]) or (2) case studies using optical 3D spectroscopy, X-ray imaging
spectroscopy, or narrowband imaging (e.g., [24–27]). This work was primarily focused on starburst
galaxies, which lie above the star-forming main sequence in SFR. High-mass starbursts are typically
luminous in the infrared (IR) and classified as either luminous or ultraluminous infrared galaxies.
These LIRGs and ULIRGs are defined to have LIR > 1011 L� and LIR > 1012 L�, which corresponds to
SFR > 10 M� year−1 and SFR > 100 M� year−1 if all the IR luminosity is powered by star formation.
Low-mass (dwarf) starbursts are luminous in the UV and optical bands.

New observing capabilities, surveys, and archival databases have allowed probes of more physical
conditions, broadening the picture of winds sketched first by small studies of the warm and hot ionized
and cool neutral phases. They have also extended the study of winds to main-sequence galaxies.

This section is divided into four parts. First, I discuss new UV surveys of nearby starbursts.
Second, I visit the use of the Sloan Digital Sky Survey (SDSS) for outflow studies. Third, I summarize
results from the widening use of integral field spectroscopy. I end by surveying significant advances in
revealing and quantifying the molecular gas and dust in GWs using ground-based submillimeter and
space-based FIR telescopes.
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2.1. Ultraviolet Surveys

The rest-frame UV contains many interstellar absorption lines and Lyα, the brightest UV emission
line in unobscured starbursts. Previous UV instruments have been used to study individual systems
or small samples, but the sensitivity of COS has enabled population studies of low-z, UV-bright
starbursts at high signal-to-noise (S/N). These studies are large enough to study correlations between
the properties of GWs and galaxy properties.

Two studies find a correlation between the velocity of the ionized outflow and basic properties of
the galaxy and starburst itself: stellar mass M∗ and star formation rate SFR [28,29]. Table 1 compares
these correlations and the ionization states probed. The first [28] uses COS data on 48 starbursts at
z < 0.26 taken from the literature. The second [29] combines COS and Far-Ultraviolet Spectroscopic
Explorer (FUSE) data on 39 starbursts at z < 0.25 [30] plus MMT or Keck spectra of 9 compact starbursts
at z = 0.4− 0.7 [31,32]. Notably, the studies differ in their definition of outflow velocity. The first [28]
uses the 50% and 90% points in the cumulative velocity distribution (CVD; starting from the red side
of the line). The second [29] uses either the 98% point of the CVD (in the case of data taken from
secondary sources [31,32]) or the authors’ own velocity measurements (vmax). I label the correlations
from this second study with vmax for simplicity.

Table 1. Log-Log Fits of Outflow vs. Galaxy Properties.

Axes Tracer IP (eV) N Range Slope p Reference

v50% vs. SFR Si II 16.3 48 10−1 − 102 M� year−1 0.22 ± 0.04 <0.001 [28]
v50% vs. SFR Na I 5.1 41 10−1 − 103 M� year−1 0.35 ± 0.06 · · · [33]
v50% vs. SFR Na I 5.1 13 100.8 − 102.2 M� year−1 0.15 ± 0.06 c · · · [34]
v50% vs. SFR Na I 5.1 13 100.8 − 102.2 M� year−1 0.30 ± 0.05 c · · · [34]
v90% vs. SFR Si II 16.3 48 10−1 − 102 M� year−1 0.08 ± 0.02 0.002 [28]
v90% vs. SFR Na I 5.1 59 10−1 − 103 M� year−1 0.21 ± 0.04 <0.001 [23]
v90% vs. SFR H I, N II 13.6–29.6 48 100.7 − 102.6 M� year−1 0.24 ± 0.05 <0.001 [35]
vmax vs. SFR Si II, C II, Mg II 15.0–24.4 48 10−2 − 103 M� year−1 0.32 ± 0.02 <0.0001 [29]
v50% vs. M∗ Si II 16.3 48 109 − 1011.5 M� 0.20 ± 0.05 0.002 [28]
v90% vs. M∗ Si II 16.3 48 109 − 1011.5 M� 0.12 ± 0.03 0.003 [28]
v90% vs. M∗b Na I 5.1 52 · · · 0.28 ± 0.08 <0.001 [23]
v50% vs. vcirc

a Si II 16.3 48 101.8 − 102.5 km s−1 0.87 ± 0.17 0.002 [28]
v90% vs. vcirc Na I 5.1 20 101.4 − 102.7 km s−1 0.85 ± 0.15 <0.001 [23]
v90% vs. vcirc

a Si II 16.3 48 101.8 − 102.5 km s−1 0.44 ± 0.09 0.003 [28]
vmax vs. vcirc

a Si II, C II, Mg II 15.0–24.4 48 101.3 − 102.5 km s−1 1.16 ± 0.37 <0.0001 [29]
η vs. M∗ O I, Si II–Si IV 13.6–45.1 7 107 − 1011 M� −0.43 ± 0.07 <0.001 [36]
η vs. M∗ H I, N II 13.6–29.6 33 109.6 − 1011.2 M� −0.43 · · · [35]
η vs. M∗b Na I 5.1 42 1010 − 1011 M� −0.95 ± 0.20 0.006 [23]
η vs. vcirc

a O I, Si II–Si IV 13.6–45.1 7 · · · −1.56 ± 0.25 <0.001 [36]

IP gives the ionization potential range of the atomic tracers; N is the number of galaxies in the fit; the range
applies to the galaxy property in the fit; the slope is for a linear fit in log-log space (or the exponent of a
power law fit in linear space); and the p-value is the estimated likelihood of a null correlation. For references
where only the correlation coefficient is provided, the p-value is inferred from it. a vcirc is calculated from M∗
using a linear scaling. [28,36] use log (vcirc/km s−1) = 0.28 log(M∗/M�)− 0.67 from [37], while [29] uses
log (vcirc/km s−1) = 0.29 log(M∗/M�)− 0.79. b M∗ is assumed to be proportional to the K-band luminosity.
c The first of these fits uses integrated spectra; the second is from spatially resolved fits.

While both studies find correlations, the ranges of galaxy properties in one are wider [29].
This study also finds steeper slopes in lines fitted to the data; the slopes from the two studies
differ at >1σ. The second study does not specify a fitting method [29], while the first uses
a method that accounts for x and y errors, outliers, and scatter [28]. Neither study finds a
significant correlation between outflow velocity and specific star formation rate sSFR ≡ SFR/M∗.
One also finds no correlation with star formation rate surface density ΣSFR, but their sample
has a range ΣSFR = 10−2 − 101 M� year−1 kpc−2 [28]. The second study adds three orders of
magnitude to the upper end of this range and do find a correlation, which they parameterize as
vmax = 3296/[(ΣSFR/1307.9)−0.34 + (ΣSFR/1307.9)0.15] at a significance of p < 0.0001 [29].
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The mass outflow rate Ṁ and mass outflow rate normalized to the star formation rate (η ≡
Ṁ/SFR)1 were computed for subsamples of these two larger samples [30,36]. One study estimates
the wind column density using multiple ions and a stacked spectrum; they apply this single column
density to the entire sample of 39 galaxies [30]. Their mass outflow rate is then a product of the outflow
velocity and starburst radius times a constant. They find a correlation between Ṁ and SFR that is
near-linear (though the slope is unquantified) and which appears to be driven largely by the correlation
between Ṁ and vmax. They also find that η is inversely correlated with SFR and M∗ (or vcirc).

The other study finds a similar result for the inverse correlation of η and galaxy mass ([36]; Figure 1;
Table 1). While based on a much smaller sample size, this work uses high signal-to-noise spectra,
velocity-resolved optical depths and covering factors, and photoionization modeling to estimate the
ionization state, density, metallicity, and inner radius of the wind (assuming a model relating velocity
and radius). The measured slope (−0.43 ± 0.07) matches predictions from numerical simulations,
which are in the range −0.35 to −0.50 at low masses [38–41].6 Chisholm et al.

We then calculate the energy outflow rate ( €Eo) using Equation 12
as

€Eo(w) = 1
2

€Mo(w)v21w2 (14)

and the momentum outflow rate ( €po) as

€po(w) = €Mo(w)v1w (15)

These four quantities are velocity resolved. Specifically, €Mo in-
creases at low-velocities and decreases at high-velocities, reaching
a maximum €Mo at intermediate velocities. The increase in €Mo hap-
pens as the velocity and radius increase, and the decrease happens
as the density and covering fraction decrease (Paper III). Here, we
take the maximum value of each quantity as the estimate of the
quantity. This means that the reported values in Table 1 and in each
figure are calculated at specific velocities that correspond to their
maximum values. We choose the maximum value as the representa-
tive value because a radially accelerated outflow implies that the €Mo
in each velocity interval is a snapshot of the €Mo at a given velocity
(or equivalently radius or time). Further, if the decrease in density
is due to a phase change (photoionized gas to a hotter phase), then
the decrease in €Mo actually represents a transfer of €Mo from the
photoionized phase to a hotter phase. In this case, the maximum
€Mo represents the time when the photoionized outflow is the largest

contributor to the total €Mo of the galaxy.
The errors of each quantity are calculated by varying the es-

timated parameters of Equation 12 by a Gaussian distribution cen-
tered on zero with a standard deviation corresponding to the pa-
rameters’ measured errors. We then recalculate the €Mo value with
these Monte Carloed values, and repeat the procedure 1000 times to
form a €Mo distribution. We take the standard deviation of this dis-
tribution as the errors on €Mo and propagate the errors accordingly
for €po and €Eo. The errors are larger for low-mass galaxies because
narrow absorption line profiles are challenging to determine the
density scaling (↵), which leads to larger uncertainties in ↵ and
€Mo. We normalize each of the quantities by the SFR, star formation

energy deposition rate (Equation 9) and star formation momentum
deposition rate (Equation 10) within the COS aperture to determine
how e�ciently outflows remove these quantities from star-forming
regions (see Table 2 for the values).

3.3.1 Scaling relations

Here, we study how the masses and energetics of outflows scale
with the stellar mass of their host galaxies. With only a sample of
seven galaxies, more high-quality data is required to confirm these
relations, but we do find statistically significant correlations. As
discussed in § 4.3, we exclude IRAS08339 from the fits because the
line profile does not follow the model of § 2.3, and upper-limits of
the €Mo estimates are shown on the plots as an X, assuming � = 0
and C f (Ri) = 1. Figure 1 shows the scaling of the mass-loading
factor with stellar mass. Over-plotted in black is the least-squares fit
to the relation, with the 95% confidence interval as the gray region.
This trend corresponds to a relation of

€Mo
SFRCOS

= 0.76 ± 0.20
✓

M⇤
1010 M�

◆�0.43±0.07
(16)

The fit is significant at the 3� significance level (p-value < 0.001),
and has a coe�cient of determination (R2) of 0.88, where an R2 of
1.0 implies that the fit describes 100% of the variation. The relation
has a residual standard error of 0.26 dex.

Figure 1. The scaling of the maximum mass-loading factor ( €Mo/SFRCOS)
with stellar mass (M⇤). The line gives the least squares regression fit to
the circles (see Equation 16), while the gray region is the 95% confidence
interval of the fit. The X is IRAS 08339+6517, a high-mass merger that is
not fit by the line profile model of Equation 6 (see § 4.3).

Several simulations scale the mass-loading factor by the cir-
cular velocity (vcirc) of the galaxy (e.g., Somerville & Davé 2015).
Since we do not measure vcirc for our sample, we rescale M⇤ into
vcirc using the Tully-Fisher relation from Reyes et al. (2011). Doing
this, we find

€Mo
SFRCOS

= 1.12 ± 0.27
✓

vcirc
100 km/s

◆�1.56±0.25
(17)

Similarly, Figure 2 gives the scaling of the momentum e�ciency
with M⇤ as

€po
€pSFR

= 0.42 ± 0.12
✓

M⇤
1010 M�

◆�0.36±0.07

= 0.58 ± 0.15
✓

vcirc
100 km/s

◆�1.39±0.26 (18)

which is significant at the 2.5� level (p-value < 0.006), and has an
R2 of 0.85. Finally, in Figure 3 we show the variation of the outflow
energy e�ciency with M⇤, which has a scaling relation of

€Eo
€ESFR

= 0.03 ± 0.01
✓

M⇤
1010 M�

◆�0.28±0.07

= 0.04 ± 0.01
✓

vcirc
100 km/s

◆�1.02±0.27 (19)

This relation is only significant at the 2� level (p-value < 0.01),
and has an R2 of 0.74. We do not consider this relation signifi-
cant, but an inverse relation exists such that low-mass galaxies have
higher energy e�ciencies (the trend has a Kendall’s ⌧ coe�cient
of �0.71). These relations describe how e�ciently photoionized

MNRAS 000, 1–11 (2016)

Figure 1. A fit to η ≡ Ṁ/SFR vs. M∗ for a sample of nearby GWs [36]. The gray region is the 95%
confidence interval. Outflow masses have been estimated from multiple rest-frame UV absorption
lines and photoionization modeling. Relationships between outflow and galaxy properties are key
tools for connecting observations to theory. The fitted slope of −0.43 ± 0.07 compares favorably with
predictions from numerical simulations at low masses [38–41]. At higher masses the slope may be
steeper, as suggested by some simulations [39,41] and measurements [23]. Reproduced with permission
from Figure 1 of reference [36].

The velocity measurements in these UV surveys employ lines from ions of relatively low ionization
potential [28,29], while the estimated wind masses are inferred from a larger range of ions [30,36].
The resulting fits to GW vs. galaxy properties are in overall agreement with similar fits made a decade
earlier using the cool, neutral gas phase (Table 1; [23,33]). The spread in fitted slopes illustrates the
systematic uncertainties in this enterprise, but a conservative synthesis points to velocity depending
on SFR and M∗ as v ∼ SFR0.1−0.3 and v ∼ M0.1−0.3

∗ . The dependence on circular velocity is thus

1 This quantity has an uncertain physical interpretation, though at face value it might quantify the capability of a wind to
act as negative feedback on star formation. The logic is: if η > 1, then more gas is leaving the region than is forming stars.
Thus, the outflow is going to deplete gas more quickly than star formation (maybe leading to fewer stars in the end). It is
sometimes referred to as the mass-loading efficiency or factor, perhaps suggesting that it measures the amount of gas that is
“loaded” into the wind as it moves through the galaxy. That is, it is the ratio of the mass of gas that eventually emerges from
star-forming regions to the mass of outflowing gas that is initially produced by star formation through, e.g., stellar winds
and supernovae. However, it is not a direct measure of this. The term mass-loading originated with studies of how much
cool, ambient gas is mixed into a hot wind phase in the model of a wind driven by a hot fluid.
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steeper (close to linear). The upper end of the range of slopes of v vs. SFR matches a prediction from
simulated absorption lines in 3D hydrodynamic simulations [42]. There are fewer measurements
of how η depends on various properties, and the systematic uncertainties in η are higher than in
velocity. However, as discussed above, published fits are surprisingly consistent with predictions from
numerical simulations [40,41], including at high masses where the slope steepens [23,41].

This begs the question of what drives the scatter in these relationships. It is worth noting
that the pursuit of scaling relations relies on reducing the velocity field of a galactic outflow to a
single parameter in a single tracer. Outflows are unlike galaxies in that they are inherently a violent,
non-equilibrium process whose structural properties are governed by time-varying power sources, gas
hydrodynamics, and radiation transfer rather than gravitational processes. Their properties thus almost
certainly depend on multiple host parameters simultaneously. The fact that outflow properties scale at
all with bulk galaxy properties such as SFR is not surprising (more energy means higher-velocity gas).
There are clearly important details beyond this, however, that are harder to quantify and may reflect
the unique structural properties or history of particular galaxies (Is it a merger? Did the outflow just
turn on?) or other hidden scalings that are orthogonal to those with SFR and mass. One solution might
be to combine multiple galaxy or wind properties into single parameters in search of an “outflow
fundamental plane,” but combining, e.g., two parameters into one has yet to noticeably improve
matters [29,36].

The imprint of GWs in the UV is found not only absorption lines but also in Ly emission lines and
the escape of ionizing radiation beyond the Lyman limit. Extended Lyα emission and Lyman continuum
(LyC) escape may be caused in part by outflows that create low-density holes in a galaxy’s ISM.

Recent studies of Lyα and absorption lines in samples of order tens of galaxies have quantified
the impact of outflows on the properties of Lyα and the escape of LyC. Population studies of Lyα in
nearby galaxies are, however, more complicated to interpret than studies of absorption lines because
of the resonant emission and absorption behavior of Lyα and its sensitivity to dust. As a result,
these studies have not reached firm conclusions on how these tracers reflect GW properties. There is
some suggestion that outflow velocity is correlated with Lyα escape fraction [43–49]. However, this
correlation has significant scatter, and cases exist of low outflow velocity and high LyC escape [49]. Lyα

and outflow velocity are also both correlated with SFR and/or ΣSFR [47,48]. In one sample, galaxies
with and without escaping LyC have similar outflow velocities [48]. The simple presence of outflows
may be a necessary but not a sufficient condition for Lyα and/or LyC escape [45]; other factors such as
the outflow acceleration, low H I column density, or low metallicity may also be required for Lyα or
LyC to exit the dense regions of a galaxy [44,46,48].

2.2. Single-Aperture Surveys

Searches for outflows in single-aperture optical spectroscopic surveys like SDSS are hampered
by the spatially unresolved bright host galaxy. Outflow features in emission lines are typically
overwhelmed by ionized gas emission from the star-forming host disk, which in galaxies with modest
GWs lies in the same velocity range as the outflow. Interstellar absorption lines can be similarly
dominated by stellar absorption features.

Both limitations can be overcome with data of high enough S/N and high-quality modeling of
the underlying stellar continuum. Stacking of many spectra is commonly used to achieve the required
S/N, and stellar models that match the spectral resolution of SDSS are mature. (Even if these models
may not uniquely constrain the star formation history or stellar population properties, they fit the data
very well.)

Three studies of GWs in star-forming galaxies have stacked SDSS DR7 data. The authors of the first
of these stack 105 high-mass (M∗ ∼ 1010 − 1011 M�) galaxies in bins of various physical parameters to
study the properties of cool, neutral outflows using the interstellar Na I D doublet [50]. They detect
this resonant line in both absorption and emission. They find that the velocity and equivalent width
of absorption scale with inclination, such that face-on galaxies are observed to have faster, higher
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equivalent width outflows, consistent with the model of minor-axis outflows. Outflow equivalent
width and linewidth also correlate with ΣSFR (over the range 10−2.5 − 10−0.5 M� year−1 kpc−2) and
M∗ (over the small range 1010.3 − 1011.2 M�). However, systemic interstellar absorption also scales
with ΣSFR and M∗, so the nature of these correlations is uncertain.

The second study uses 200,000 galaxies to stack by SFR and M∗ over a range of galaxy properties
comparable to the ranges in samples of individual galaxies ([51]; Table 1; Sections 2.1 and 2.3):
SFR = 10−2.7 − 102.3 M� year−1 and M∗ = 107.3 − 1011.8 M�. They fit [O III] 5007 Å, Hα, and
[N II] 6548, 6583 Å using a high S/N instrumental profile and extract the line-of-sight velocity
distribution (LOSVD) of both the ionized gas and stars. They use excess blueshifted emission-line gas
at the extreme end of the gas LOSVD to measure outflow velocity, with the stellar LOSVD serving as a
reference. For star-forming galaxies selected by line ratio [52], these authors find that vout correlates
significantly with SFR and sSFR. vout does not correlate with M∗, though it does with stellar velocity
dispersion, suggesting a discrepancy in how these quantities are measured. This method is most
sensitive to higher-velocity outflows, and outflows are detected primarily at SFR > 1 M� year−1 and
sSFR > 10−9 year−1. They are also preferentially observed in galaxies with SFR values that put them
above the main sequence.

Finally, a third study employs a similar technique over a larger sample of 600,000 galaxies in
bins of SFR and M∗ [53]. These authors apply two methods for parameterizing outflows: (1) they
fit the [O III] emission line in each stack using two Gaussians; and (2) they use the observed [O III]
profile as the gas LOSVD and calculate measures of line width and asymmetry. They then remove the
instrumental resolution in quadrature. They find no significant detection of starburst-driven winds in
star-forming galaxies. However, they select star-forming galaxies using a more restrictive line-ratio
criterion [54] than the ionized gas study that does detect stellar GWs [51]. They argue that a more
permissive selection [52] allows low-luminosity AGN to contaminate a sample of star-forming galaxies;
these AGN could in turn produce outflows in galaxies that are supposedly purely star-forming.
Low-luminosity AGN exist throughout the star-forming sequence with a range of contributions to
[O III] [15,16]. It is certainly plausible that star formation, rather than low-luminosity AGN, powers the
outflows detected in galaxies whose line emission is dominated by star formation [51], but separating
potential contributions from low-luminosity AGN requires further work.

These stacking studies add weight to the conclusions drawn from studies of smaller samples and
individual galaxies by probing more statistically complete samples of galaxies across a wider range
of basic galaxy properties. There is agreement between two of the stacking studies discussed above
that ionized and/or neutral winds are a common feature of galaxies of modest to high SFR across the
mass spectrum [50,51], consistent with results discussed elsewhere in this review. The disagreement
with the third study [53] on this point is puzzling, though the difficulty of separating AGN from star
formation as a possible energy source in galaxies with supermassive black holes accreting at lower
Eddington ratios is a valid concern. Furthermore, the correlations between wind and galaxy properties
are akin to those seen using UV and other optical studies (Section 2.1; Table 1), and the connection to
inclination angle is consistent with a wide range of observational results.

2.3. IFS Results

Though they cannot yet match the numbers of galaxies observed in the SDSS, spatially resolved
spectroscopic surveys with optical IFSs promise to significantly improve the detectability and
characterization of GWs. This is true both at ground-based resolution and with enhanced spatial
resolution from adaptive optics; the latter is important for probing the nuclear regions of galaxies
where GWs emerge from their power sources. Studies of one or a few galaxies with stellar GWs
published in the current decade are numerous [55–64]. These detailed case studies highlight the
ubiquity and complex, multiphase nature (ionized, neutral, dusty) of these winds (Figure 2) and the
power of IFS for leveraging the combination of spectral and spatial information to separate outflows
from their hosts.
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Figure 2. Illustration of the complex, multiphase structure of a nearby starburst-driven GW as observed
with IFS (F10565+2448; [57]). The background color maps are HST images of F435W − F814W
(or B− I), where red and white indicate the reddest colors. They show dusty filaments emerging from
the obscured starburst along the minor axis in red and white; the near side of the star-forming disk
is shown as the blue clumpy regions to the left in each panel. The galaxy major axis is the dashed
line, and the contours show ionized gas v98% on the left (−800, −700, −600 km s−1) and cool, neutral
v98% on the right (−700, −600, −500 km s−1). The minor-axis outflow reveals dusty filaments and
unresolved gas motions of hundreds of km s−1, consistent with a shocked outflow with layered clumps
of gas. The axes are in kpc. Reproduced by permission of the AAS from Figure 17 of reference [57].

Small surveys using instruments that target one galaxy at a time have characterized GWs
in galaxies with the highest star formation rates. The authors of a study of the ionized gas in
27 LIRGs [65,66] found frequent shock ionization accompanied by high gas velocity dispersions,
a conclusion supported by an earlier long-slit study of ULIRGs [67]. The line ratios are consistent with
models of slow shocks, correlate with σgas, and may be caused in part by GWs [65,66].

The authors of a larger study of the ionized and cool, neutral gas in∼50 LIRGs and ULIRGs [34,35]
concur that high ionized gas linewidths are shock-powered. To detect GWs, they spatially integrated
their spectra [34,35] and/or fit the spatially resolved data [34]. In the former case, they corrected
the velocity of each spatial position for gravitational motions and then summed over the field of
view. Fits to the wind velocity vs. SFR give best-fit slopes of 0.24 ± 0.05 (ionized gas), 0.15 ± 0.06
(integrated neutral gas), and 0.30 ± 0.05 (spatially resolved neutral gas). These are consistent with the
single-aperture fits discussed above (Section 2.1; Table 1). η is between 0.1 and 1 in the neutral and
ionized gas, with average values similar to those previously estimated in LIRGs and ULIRGs [23,57].
The study of integrated spectra [35] finds evidence that η decreases with increasing dynamical mass
over the range 109.6 − 1011.2 M�, with a log-log slope of −0.43 that is identical to that found in the UV
over a much wider mass range ([36]; Section 2.1; Table 1). (A steeper slope in this relationship at high
masses, as previously measured [23], is predicted by some simulations [39,41].) Finally, these authors
fit a relationship between η and ΣSFR with a log-log slope of 0.17 [35].

Two major (of order thousands of galaxies) IFS surveys have been ongoing for several years:
the SAMI (Sydney-Australian-Astronomical-Observatory Multi-object Integral-Field Spectrograph)
Galaxy Survey [68] and MaNGa (Mapping Nearby Galaxies at Apache Point Observatory) [69]. These
surveys employ instruments that target multiple galaxies at once, each with a single, small IFS. Though
limited in spatial resolution (of order 2′′), the ability of these surveys to integrate to high S/N, collect
large samples of galaxies across a wide parameter range, and separate the outflow from the host galaxy
using both spatial and spectral information with IFS promises more accurate statements about the
ubiquity and property of stellar GWs over a wider range of galaxy types.

The first result from these surveys relies on a sample of 40 edge-on SAMI disk galaxies [70].
These authors use minor-axis kinematic asymmetries to detect winds and find them down to very
low ΣSFR (10−3 M� year−1 kpc−2). The asymmetry increases with ΣSFR and is associated with recent
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bursts of star formation. The connection of the asymmetry to GWs and its association with high ΣSFR
and high-temperature extraplanar gas is bolstered by comparison to simulations [71].

2.4. Molecular Gas and Dust

The most rapid progress in the study of stellar GWs has come from molecular gas and dust
continuum measurements. The direct dust measurements have been made in the MIR/FIR using
space-based telescopes: AKARI, the Spitzer Space Telescope, and the Herschel Space Observatory.
The molecular gas measurements have been led by ground-based interferometers such as the
Atacama Large Millimeter/submillimeter Array (ALMA), SubMillimeter Array (SMA), Institut de
Radioastronomie Millimétrique (IRAM) Plateau de Bure interferometer (PdBI), and Nobeyama
Millimeter Array (NMA), though Herschel has also played an important role. While sample sizes are
still small and most studies have focused on individual galaxies in the starburst regime, results point
to the ubiquity of dusty molecular gas entrained in stellar GWs.

Recent interferometric measurements of CO transitions have uncovered outflowing cold molecular
gas in approximately 11 nearby LIRGs and ULIRGs whose energy output is dominated by star
formation [72–79]. Molecular outflows in four very nearby star-forming galaxies with lower SFR have
also been studied in detail: NGC 3628, M82, NGC 253 (Figure 3), and NGC 1808 [80–83]. M82 had
been the only previous starburst galaxy known to host a molecular outflow [84,85].

750,!and!2500!mJy!beamW1!contours).!The!panels!are!not!corrected!by!fieldWofWview!
illumination,! hence! the! signals! are! depressed! near! the! edges! of! the! mosaic.! The!
white!bar!and!ellipse! in! the!top!right!panel!represent!respectively!250!pc,!and!the!
synthesized!ALMA!beam!size!(θ≈3.4”×3”).!The!dotted!circle!is!the!approximate!halfW
power! field! of! view! of! our! 7Wpointing!mosaic.! The! green! circles! numbered! 1! to! 4!
show!the!location!and!extent!of!the!four!expanding!molecular!shells!identified!in!the!
CO!cube.!The!dashed!cyan!line!sketch!shown!in!the!channel!at!96!km!sW1!illustrates!
the! location! and! shape! of! the! outer! bright! filaments! in! the! Hα! outflow18.! The!
systemic! heliocentric! velocity! of! NGC! 253! is! 243! km! sW1,! and! the! emission! in! the!
northern!regions!at!171W208!km!sW1!corresponds!to!material!rotating!with!the!disk.!
!

! !
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a! color! composite! of!HST! JWband! (blue),!HST!HWband! (green),! and!ALMA!CO! (red)!
emission! integrated! over! all! velocities! and! corrected! for! the! mosaic! illumination!
(reference!position!is!given!in!Fig.!1).!The!dotted!circle,!white!bar,!white!ellipse,!and!
dashed! cyan! line! are! as! in!Figure!1.!The!blue! and!magenta! contours! show! the!CO!
emission!in!the!approaching!(v≈73!to!273!km!sW1)!and!receding!(v≈208!to!356!km!sW
1)!lobes!of!the!outflow!respectively.!The!region!±6”!on!each!side!of!the!galaxy!plane!
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Figure 3. One of the nearest and best-resolved molecular gas outflows in NGC 253 [81]. The background
image is HST NIR (blue+green) and ALMA CO (red). The blue (magenta) contours show the
approaching (receding) CO outflow. The green circles outline expanding molecular shells. The white
bar is 250 pc long. The dashed cyan contour outlines the warm/hot ionized outflow that is interior to
the molecular gas streamers and extends to larger scales (Section 2.4; [86]). NGC 253 is one of only a
few examples of the characteristic minor-axis filaments of a GW in molecular gas and their relationship
to the disk and other gas phases. Reprinted by permission from reference [81], ©2013.

These molecular outflows are typically confined to the inner kpc of the galaxy (in radius).
They have modest outflow velocities in nearby disks (tens to a few hundred km s−1) but have a
broader range of peak velocities in the more luminous starbursting disks and mergers (300–800 km s−1).
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Similarly, the outflow rates appear to scale with SFR and/or ΣSFR. The nearby, low-luminosity
starbursts have Ṁ values of a few to a few tens of M� year−1, while the LIRGs and ULIRGs have a
broader range of estimated Ṁ: several to several hundred M� year−1 (perhaps even ∼1000 M� year−1

in F17208−0014; [75]). Mass outflow rates of these magnitudes are similar to the star formation rates
in these systems, and equal to or larger than the mass outflow rates estimated in other gas phases.
The larger mass outflow rates in the molecular phase are due primarily to larger total outflowing
gas masses.

Dense gas, as probed by characteristic molecules such as HCN and HCO+, is also a common
feature of these outflows. It is present in the extended outflows of M82, NGC 253, NGC 1808, and Arp
220, as observed in emission using interferometry [78,87–90]. Outflowing dense molecular gas has also
been observed in absorption in the inner regions of the highly obscured binary Arp 220 [91–94].

The ubiquity of starburst-driven molecular outflows was first discovered using FIR OH and
H2O absorption lines with Herschel [95–99]. The outflow properties inferred from these spatially
unresolved absorption lines and detailed radiation transfer models are comparable to measurements
from molecular emission-line interferometry [99]: massive, high-velocity but compact flows.

The cold molecular and cool atomic gas share similar dynamics. Global OH properties correlate
with those measured from the 158 µm [C II] emission line [100], which traces photo-dissociation
regions (PDRs). The 158 µm [C II] line may be a key technique for tracing outflows at high z as
it moves into the submillimeter band. OH properties may also correlate with Na I D atomic gas
measurements [23,33,57,98–101], though there is significant scatter in this correlation. On the spatially
resolved level, FIR atomic fine structure lines are seen in the GWs of M82 [102], NGC 2146 [103], and
NGC 253 [104]. In M82 and NGC 253 these atomic PDR tracers correlate well with the molecular gas
in terms of morphology and dynamics [102,104].

Direct observations of atomic H I in outflows may become possible with the next generation of
sensitive radio arrays. New Jansky Very Large Array H I data on M82 are consistent with a deceleration
of the outflow as it moves upward into the halo [105], suggestive of a galactic fountain [82].

Warm molecular gas does not contribute significantly to the mass budget of outflows, but the
strength of its emission lines in the accessible NIR band makes it a useful tracer of the extent and
physical state of molecular gas. Deep near-infrared (NIR) imaging and spectroscopy shows that
shocked, warm H2 in the M82 outflow extends several kpc from the disk along the minor axis [106,107].
Outflowing warm molecular gas has been detected in several nearby, starburst-dominated ULIRGs
using the 2.12 µm H2 1-0 S(1) transition [60,108,109]. These outflows are compact (<2 kpc),
with velocities of a few hundred km s−1, and the relationship between the cold and warm phases
requires further study. Indirect evidence from the global properties of a large sample of ULIRGs
implicates shocks in GWs as the origin of excess warm H2 in this population [110].

Dust and molecular gas are abundant under similar physical conditions. Observations of
filamentary dust structures along disk minor axes in some wind systems and the correlation of
these dust features with outflowing atomic gas columns are indirect evidence for outflowing dust
in stellar GWs (Figure 2; e.g., [50,57,111]). Further evidence in the form of UV reflection nebula and
polarized line emission strongly suggests the presence of dusty winds in M82 and NGC 253 [112–114].
Modeling of UV reflection in the M82 wind indicates smaller average grain sizes in the M82 wind
compared to the disk [114,115].

Observations of thermal emission from dust in galaxies where the disk and outflow can be
spatially separated strengthen the case that stellar GWs are dusty in at least some cases. Studies detect
1–4 × 106 M� of dust in M82 (traced at 7–500 µm) extending far from the disk plane [116,117], as well
as significant amounts of cold dust emplaced by tidal interaction with M81 [118].

Roughly 106 M� of warmer dust (traced at 70–160 µm) is also found in the outflows of NGC 253
and NGC 4136 [119,120] in structures that correlate with ionized gas emission at other wavelengths.
The extended cold dust in NGC 4631, however, may be of tidal origin [120], as in the case of
M82. In the dwarf galaxy NGC 1569, 70–500 µm imaging indicates a large reservoir (a few times
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105 M�) of circumgalactic dust, perhaps deposited by its starburst-driven GW [121]. At shorter
wavelengths, GW features in NGC 1569 are seen in warm dust emission [122]. Contrary to these
results, no dust is detected at 37µm in the NGC 2146 wind [103]. FIR observations of dwarf galaxies
with outflows observed at other wavelengths paint a nuanced picture of dusty outflows in systems
with lower SFR [121]; few systems show abundant circumgalactic dust or strong correlations with
multiwavelength signatures of GWs.

Finally, polycyclic aromatic hydrocarbons (PAHs) are prominent features of GWs in those galaxies
in which they have been detected. As alternately large molecules or small dust grains, PAHs bridge
the gap between molecular gas and dust and are luminous features in rest-frame 3–20 µm spectra.
An enormous PAH nebula extends from the M82 disk [123] and shows evidence for grain shattering
from PAH line ratios [107,124]. PAHs have been found in GWs in other galaxies [125,126], and the
amount of extraplanar PAH emission in galaxies may correlate with ΣSFR [126].

The warm and hot ionized gas traced by UV absorption lines, optical emission lines, and X-rays
are prevalent in GWs (Sections 2.1– 2.3). Quantifying the physical relationship between the molecular
and ionized gas phases thus appears to be within reach. In a few nearby systems this connection has
been made, but there has been no attempt for most galaxies (probably because the ability to detect the
molecular phase of the outflow is still relatively new). There is a need for sensitive, multiphase studies
at the highest spatial and spectral resolution to connect these outflow components.

M82 and NGC 253 both have deep, high-spatial-resolution maps of warm ionized gas (Hα), hot
ionized gas (soft and hard X-rays), and molecular gas. These two exemplars paint a picture of an
innermost hot, ionized wind fluid [27] that entrains warm and hot ionized material which are spatially
correlated with each other and surround the hot fluid, perhaps as a shell [86,127]. The cold molecular gas
in turn envelops these ionized phases as it is entrained from the disk (Figure 3; [81,82]). The relationship
between the warm molecular and ionized phases, however, is likely more complex. In examples
of minor-axis outflows where both are spatially resolved, there is coarse-grained spatial correlation
(Arp 220 [78,128], F08572+3915 [57,129], and M82 [106]), but in other cases there is not (NGC 4945; [130]).
At very high spatial resolution, apparent correlation may break down [106]. Note that the outflows
in some of these galaxies may be AGN-driven, but they are included here because the sample size of
galaxies with resolved molecular and ionized outflows is unfortunately small.

3. The Nearest Galactic Wind

The unexpected recent discovery of the so-called Fermi bubbles–large, diffuse γ-ray structures
that form a bipolar shape above and below the Galactic plane–has revived interest in characterizing the
GW in the Milky Way [131,132]. Previous data provided strong evidence of its existence (see references
in [2]), but the picture-perfect morphology of the Fermi bubbles make it an almost inarguable fact.

This review is concerned with observations of starburst-driven GWs, and the Milky Way’s GW
may be driven by star formation (e.g., [133]). It also may be powered by the Galactic nuclear black
hole during a previous accretion episode (see, e.g., the recent review of relevant data and models
in [134]). However, for completeness we note some recent observations, since the Milky Way is an
excellent laboratory for studying a GW at high sensitivity and spatial resolution in what is a “typical”
galaxy in the Local Universe. Since its discovery, the Fermi bubbles have notably been found to also
contain a magnetized radio plasma [135] and have been connected to the previously known microwave
“haze” that was re-observed with Planck [136]. The bubbles also appear to host neutral gas clouds
moving up to several hundred km s−1 [137–139], as well as higher-ionization species observed in
absorption [140–143]. These neutral and ionized clouds may lie along filaments swept up by the bubble
along its edges, though their contribution to the structure and mass/energy budget of the outflow are
not yet clear.

A recent claim has also been made for a GW in a satellite of the Milky Way. This potential outflow
in the Large Magellanic Cloud was extrapolated from absorption-line measurements of a single line
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of sight through its disk [144]. The LMC contains 30 Doradus, which is undergoing a significant star
formation episode.

4. Winds Driven by Star Formation at High redshift

The presence and ubiquity of stellar GWs outside of the local universe was first evident in
blueshifted rest-frame UV absorption lines and complex Lyα profiles in Lyman-break galaxies (LBGs)
(e.g., [145–147]). Information on stellar GWs at high z comes predominantly from single-aperture,
down-the-barrel spectroscopy of rest-frame UV lines. (“Down-the-barrel” refers to sightlines toward
the galaxy itself.) However, newer instruments and techniques have in the past decade opened other
avenues to study high z winds. These include rest-frame optical measurements of emission lines with
wide-field, NIR, multi-object spectrographs; multiplexed or wide-field IFS instruments such as the
K-band Multi-Object Spectrograph (KMOS) and the Multi-Unit Spectroscopic Explorer (MUSE) that
enable multi-object and/or spatially resolved measurements; NIR, adaptive optics IFS to achieve high
spatial resolution; FIR and submillimeter observations that probe molecular and atomic gas transitions;
and transverse-sightline spectroscopic surveys. These new techniques have established the ubiquity
and properties of stellar GWs in new galaxy populations and constrained the redshift evolution of
their bulk properties.

Deep spectroscopy of strong rest-frame optical emission lines (mainly Hα and [N II]) at z ∼ 2
reveals broad wings that arise primarily from bright star-forming regions [148–151]. These broad
wings, which appear to extend over several kpc and strengthen with increasing ΣSFR, have been
interpreted as evidence of stellar feedback. Similar wings are found in massive, compact star-forming
galaxies over a wider wavelength range [152].

Larger spectroscopic surveys (up to ∼500 galaxies) of star-forming galaxies at z = 0.3− 2 use the
low-ionization metal lines Mg I, Mg II, and Fe II to probe GWs [153–162]. Resonant transitions from
outflows in absorption (blueshifted) and emission (redshifted), as well as corresponding non-resonant
transitions, constrain basic outflow properties such as velocity and ionization state and, potentially,
more complex structural parameters (Figure 4; [163]). These high-z, low-ionization outflows are
broadly consistent with those found at low z: they have modest velocities (up to a few hundred km s−1

on average); their properties (velocity and equivalent width) correlate with SFR, ΣSFR, and M∗; their
detection rates in absorption average a few tens of percent, indicative primarily of the wind geometry
(a high frequency of occurrence of non-spherical winds); they have estimated mass-loss rates of
order the star formation rate, though with considerable uncertainty; and they are preferentially
found in face-on galaxies (or their properties are more extreme in face-on galaxies), consistent with
minor-axis flows. The velocities of these winds may increase with increasing z for galaxies of given
SFR, possibly due to increasing star formation rate surface density [157,164–166], and with increasing
ionization potential [166–168]. Extended, scattered emission (both resonant and non-resonant) from
low-ionization species has been probed in detail in a handful of systems [169–172] and is now
recognized as a common feature of star-forming galaxies at these epochs [162,173,174]. Pure resonant
emission is seen at low SFR, transitioning to P-Cygni or pure-absorption resonant profiles plus
non-resonant emission at high SFR, indicative of an increasing signature of outflowing gas [162].
In a handful of gravitationally lensed systems, absorption-line analyses of more ions indicate α

enhancement and more robustly constrain mass-loss rates [175,176].
At moderate redshifts (z ∼ 0.7− 0.8), the presence of low-velocity GWs in poststarburst galaxies

points to the possibility that these winds help to quench star formation [173]. Very high-velocity winds
(1000 km s−1) found in bluer, rarer post-starbursts [177] appear to be driven by very compact starbursts
rather than AGN activity [31,178].
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Fig. 1. Vacuum rest-frame 1D spectrum of the MUSE HDFS galaxy ID#13 covering the Fe ii and Mg ii transitions. The spectrum is in black with
the 1� error in magenta. Resonant transitions detected in absorption are labeled in blue. Non-resonant Fe ii* transitions detected in emission are
labeled in red. The C ii] nebular emission, which is a blend of five transitions, is labeled in green.

Table 1. Galaxy ID#13 properties from Contini et al. (2016).

Morphological analysis HST + GALFIT
Position angle (�) �45.9 ± 1.9
Inclination i (�) 33 ± 5
Half-light radius (kpc) 2.1 ± 0.03
Kinematic analysis MUSE 2D/3D
Position angle (�) �14/�13
Inclination i (�) +28/+17
Max. rotational velocity (km s�1) +24/+44
Velocity dispersion (km s�1) +48/+46
Photometric analysis SED fitting

Visual extinction AV (mag) 1.20+0.59
�0.26

log (M?) (M�) 9.89 ± 0.11
log (SFR) (M� yr�1) 1.89 ± 0.18

specific SFR of sSFR = 10 Gyr�1. The starburst phase of galaxy
evolution can produce large-scale outflows when many short-
lived massive stars explode as supernovae.

The properties of this galaxy are conducive to detecting
signatures from galactic winds. The low inclination angle fa-
vors observing blue-shifted absorptions, given that this signa-
ture increases substantially toward face-on galaxies (Chen et al.
2010; Kornei et al. 2012; Rubin et al. 2014). The [O ii] luminos-
ity (⇠1043 erg s�1) and rest-frame equivalent width (⇠50 Å, see
Table 3) indicate that the galaxy ID#13 is also well-suited for
investigating winds in emission, since Fe ii* and Mg ii emis-
sion correlate with LO ii or [O ii] rest-frame equivalent width
(Kornei et al. 2013; Zhu et al. 2015).

4. Absorption and emission profiles
from the 1D spectrum

In this section, we analyze the galaxy ID#13 1D spectrum
extracted from the MUSE data using a white-light weighting
scheme. The 1D MUSE spectrum (Fig. 1) reveals resonant Fe ii,
Mg ii, and Mg i self-absorption, non-resonant Fe ii* emission,
and C ii] and [O ii] nebular emission lines. The Fe ii transitions
occur in three multiplets3. In the Fe ii UV1, UV2, and UV3
multiplets, a photon can be re-emitted either through a resonant

3 See Tang et al. (2014) or Zhu et al. (2015) for energy level diagrams.

transition to the ground state, which produces emission infilling,
or through a non-resonant transition to an excited state in the
lower level, in which case the emission occurs at a slightly dif-
ferent wavelength. We investigate the integrated absorption and
emission profiles, focusing first on the resonant absorption and
emission properties (Sect. 4.1), then on the non-resonant emis-
sion properties (Sect. 4.2).

4.1. Resonant Fe and Mg profiles

Figure 2 presents the velocity profiles of each of the indi-
vidual Fe ii, Mg ii, and Mg i transitions relative to the galaxy
systemic redshift, for comparison. The self-absorption profiles
are asymmetric, with the strongest component centered on the
galaxy systemic redshift, and a significant blue wing extend-
ing to �800 km s�1. We fit these profiles simultaneously with
VPFIT4 v10, using several components and requiring each to
have the same redshift and Doppler parameter across the di↵er-
ent transitions. The absorptions are well fit with three compo-
nents at redshifts 1.28514 ± 0.00021, 1.28752 ± 0.00009, and
1.29024±0.00006, corresponding to shifts of �660±28 km s�1,
�349 ± 12 km s�1 and +8.5 ± 6.5 km s�1 relative to the galaxy
systemic velocity. Table 2 summarizes the total rest-frame equiv-
alent widths for each transition, calculated both from the fit and
directly from the flux.

Globally, the Fe ii resonant transitions in Fig. 2 reveal several
key features: (1) the Fe ii profiles are very similar to one another,
and (2) the strongest component is roughly centered at the galaxy
systemic redshift. As Prochaska et al. (2011) first demonstrated,
emission infilling in resonant absorption lines can alter doublet
ratios and mimic partial coverage. However, here we find that
emission infilling does not play a significant role in this galaxy
for the following two qualitative arguments.

First, while strong emission infilling would produce clear
P-cygni profiles (which are not observed), moderate amounts
of emission infilling would cause a blue-shift to the centroid
of the absorption, an e↵ect commonly seen in stacked spec-
tra (e.g., Zhu et al. 2015) or individual cases (Rubin et al. 2011;
Martin et al. 2013). None of the absorptions in the galaxy ID#13
spectrum (Fig. 2) have blue-shifted centroids.

Second, because Fe ii has multiple channels to re-emit the
photons (through resonant and non-resonant transitions), the

4 http://www.ast.cam.ac.uk/~rfc/vpfit.html
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Figure 4. Absorption and emission lines in the outflow of a z = 1.3 star-forming galaxy [172].
The resonant absorption lines (labeled in blue) are blueshifted and trace the approaching near side
of the outflow. The non-resonant iron emission lines (labeled in red), which are spatially extended
along the minor axis, trace the bulk of the outflow. These resonant and non-resonant lines are powerful
probes of the presence and properties of high-redshift outflows. Reproduced with permission from
Figure 1 of reference [172], ©ESO.

The down-the-barrel technique, which probes low-ionization outflows that emerge along the
line-of-sight toward the galaxy disk, is complemented by transverse sightlines through galaxy halos
toward background quasars or galaxies. LBGs at z = 2 − 3 host both low- and high-ionization
gas out to radii ∼100 kpc; because this gas is outflowing over a large solid angle (as inferred from
down-the-barrel observations), it is plausibly doing so at large radii [147]. In other samples, Mg II and
O VI absorbers show a preference for alignment with galaxy major or minor axes, and the minor-axis
gas is preferentially found in blue galaxies. This absorber alignment is suggestive of major-axis inflow
and minor-axis outflow, and the connection to blue galaxies points to star formation as the power
source [179,180]. Simple geometric outflow models of halo absorbers yield outflow properties that are
consistent with those seen at low z [181–183].

The prominence of Lyα in the spectra of high z galaxies makes it a tempting target for
parameterizing outflows (e.g., [184]). However, as mentioned above (Section 2.1), radiation transfer
effects make it an ambiguous indicator. Redshifted Lyα does typically accompany blueshifted
low-ionization lines (e.g., [147]). Star forming galaxies also show an increase in the velocity of Lyα as
SFR and Lyα equivalent width increase [185–187]. However, whether this is due solely to changing
outflow properties or instead to an increase in gas near the systemic redshift is unclear [187].

Finally, a handful of molecular gas detections of outflows at moderate-to-high z are emerging.
CO has been imaged in two high-velocity, apparently stellar GWs in post-starbursts at z ∼ 0.7 [32,188].
A long Herschel integration allowed detection of an OH outflow in absorption in a z = 2.3 ULIRG [189].
A serendipitous ALMA discovery of extremely broad CH+ in several z ∼ 2.5 ULIRGs points to
turbulent outflows [190]. Tentative detections of broad, faint [C II] line wings at z = 5.5 hint at the
possibility of stellar GWs in modestly star-forming galaxies at this epoch [191]. Finally, an OH outflow
exists in a gravitationally lensed, dusty galaxy at z = 5.3 [192].

5. Summary

We can say with reasonable certainty that GWs driven by energy from stellar processes are a
common feature of galaxies with moderate-to-high star formation rates and/or surface densities out to
z ∼ 2− 3. Stacking analyses of large rest-frame UV and optical spectroscopic surveys have established
that the average star-forming galaxy has an ionized and/or neutral wind whose velocity scales with
star formation rate, stellar mass, and possibly ΣSFR. At low redshift, these winds are most prominent
in starburst galaxies that lie above the galaxy main sequence; at higher redshift, where galaxies on the
main sequence have higher SFR, the situation may be different. Hints exist that GWs are common but



Galaxies 2018, 6, 138 13 of 24

simply hard to detect even in galaxies with low ΣSFR (for instance, the low-surface-brightness Milky
Way GW).

The correlations between outflow and galaxy properties found in some of the first large surveys
of stellar GWs have been verified and refined by larger and more diverse samples and different gas
probes. Besides serving merely as input to parameterizations of outflows in numerical simulations,
measurements of GWs can now be compared to the predicted properties of GWs from simulations that
better implement the physics of stellar feedback.

Detailed, multiwavelength studies of star-forming galaxies continue to reveal new layers of GWs.
Most notable is that stellar GWs entrain large quantities of molecular gas, including dense clumps,
and loft dust and soot (PAHs) far above the galactic disk. The promising technique of combining
resonant-line absorption and emission with non-resonant re-emission channels has been successfully
used to detect winds at high z and may prove a powerful probe of GW structure and extent when
widely deployed. Observations of a wider range of galaxies besides the usual suspects (e.g., M82) with
3D imaging spectroscopy shows that a complex, multiphase structure of filaments of dusty ionized
and neutral gas collimated along the minor axis is a common feature of GWs. Transverse-sightline
spectroscopy and correlations with galaxy inclination at a variety of redshifts bolster this picture.
Finally, increasingly in-depth studies of local galaxies with extended Lyα and LyC may eventually
put meaningful constraints on how outflows contribute to reionization and help interpret high-z
observations of Lyα.

Future progress will occur on a variety of fronts. At low z, a new generation of ongoing
multi-object IFS surveys (SAMI Galaxy Survey, MaNGA) will soon produce results on thousands
of nearby galaxies. Future, much larger IFS surveys are being planned (using, e.g., Hector; [193]).
Sensitive, wide-field IFS instruments on large telescopes (such as MUSE and KCWI, the Keck Cosmic
Web Imager) will probe the full extent of GWs in nearby, well-resolved targets and enable efficient,
spatially resolved characterization of many galaxies at once in high-z deep fields. Next generation
multi-object spectroscopy surveys (e.g., the Dark Energy Spectroscopic Instrument, or DESI, Survey
and 4MOST, the 4-metre Multi-Object Spectroscopic Telescope) will increase the fidelity of stacking
analyses over a wider range of redshift and galaxy properties.

Continued measurements with ALMA, particularly at high spatial resolution, will provide more
detailed understanding of the structure and chemistry of molecular gas in outflows. ALMA will also
certainly expand on its currently short list of detections of high-z stellar GWs. The high resolution
and sensitivity of the James Webb Space Telescope (JWST) in the MIR will undoubtedly produce useful
measurements of molecular gas and dust in stellar GWs, as well. However, the spatial resolution and
sensitivity of JWST is likely to provide the most dramatic advances in measuring the properties of
outflows in high-z galaxies by characterizing them in individual main-sequence galaxies at z ∼ 2− 3
and detecting them at very high z, where their impact could be especially significant but where
measurements currently do not exist.

Finally, we note two areas of study that have seen little recent progress, but whose prospects
should eventually rise. Measurements of the radio-emitting plasma in GWs are very rare except for a
few recent detections [194–196]. The next generation of wide-field radio arrays may make this a growth
area. The field of X-rays studies of GWs has also lain fallow, with a few exceptions (e.g., [197,198]).
The hottest gas phase of GWs, which may drive the outflows in starburst galaxies, has proven extremely
difficult to detect except in the nearest cases [27]. More sensitive X-ray telescopes in the coming two
decades will eventually lead to a better characterization of this pivotal component.
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Abbreviations

The following abbreviations are used in this manuscript:
ALMA Atacama Large Millimeter/submillimeter Array
COS Cosmic Origins Spectrograph
FIR far-infrared
GW galactic wind
IFS integral field spectrograph
LBG Lyman-break galaxy
LIRG luminous infrared galaxy
MIR mid-infrared
NIR near-infrared
SFR star formation rate
sSFR specific star formation rate
ULIRG ultraluminous infrared galaxy
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