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Abstract: Disk accretion onto black holes is accompanied by collimated outflows (jets). In active
galactic nuclei (AGN), the kinetic energy flux of the jet (jet power or kinetic luminosity) may exceed
the bolometric luminosity of the disk by a few orders of magnitude. This may be explained in the
framework of the so called “cold” disk accretion. In this regime of accretion, the disk is radiatively
inefficient because practically all the energy released at the accretion is carried out by the magnetized
wind. This wind also provides efficient loss of the angular momentum by the matter in the disk. In this
review, the physics of the accretion driven by the wind is considered from first principles. It is shown
that the magnetized wind can efficiently carry out angular momentum and energy of the matter of
the disk. The conditions when this process dominates conventional loss of the angular momentum
due to turbulent viscosity are discussed. The “cold” accretion occurs when the viscous stresses in
the disk can be neglected in comparison with impact of the wind on the accretion. Two problems
crucial for survival of the model of “cold” accretion are considered. The first one is existence of the
magnetohydrodynamical solutions for disk accretion purely due to the angular momentum loss by
the wind. Another problem is the ability of the model to reproduce observations which demonstrate
existence of the sources with kinetic power of jets 2–3 orders of magnitude exceeding the bolometric
luminosity of disks. The solutions of the problem in similar prescriptions and numerical solutions
without such an assumption are discussed. Calculations of the “unavoidable” radiation from the
“cold” disk and the ratio of the jet power of the SMBH to the bolometric luminosity of the accretion
disk around a super massive black hole are given in the framework of the Shakura and Sunyaev
paradigm of an optically thick α-disk. The exploration of the Fundamental Plane of Black Holes
allows us to obtain semi empirical equations that determine the bolometric luminosity and the ratio
of the luminosities as functions of the black hole mass and accretion rate.
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1. Introduction

Classical works on the physics of accretion [1–3] laid the foundations of the theory of disk accretion
onto relativistic objects, neutron stars and black holes. In the model of Shakura and Sunyaev [3]
(hereafter, SS model), every particle loses angular momentum due to viscous stresses arising in a
turbulent plasma. In the geometrically thin and optically thick accretion disks, all the gravitational
energy released at the accretion is carried out by radiation.

The bolometric luminosity of a disk accreting onto a nonrotating black hole can be represented
as Lbol = ηṀc2, where Ṁ is the rate of accretion, c is the speed of light and η is the efficiency of
transformation of the rest of the mass into the radiation during the accretion onto a Schwarzschild
black hole η ≈ 0.1. It is also convenient to work with the dimensionless mass of the black hole
m = M/M�, where M� is the solar mass, and dimensionless luminosity expressed in units of the
Eddington luminosity LEdd = 4πGmp Mc/σT , where G is the gravitational constant, mp is the proton
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mass, and σT is the Thomson cross-section. At Eddington luminosity, the force arising in Thomson
scattering of photons of radiation on an electron equals the force of gravitational attraction of the
proton compensating the electric charge of the electron. Correspondingly, the Eddington accretion
rate is introduced as ṀEdd = LEdd/ηc2. Dimensionless accretion rate ṁ = Ṁ/ṀEdd. In the standard
SS disk, accretion Lbol/LEdd = ṁ.

Observations of AGNs revealed rather dramatic deviations of the theory from reality. The galactic
center of our galaxy Sgr A* is especially interesting in this regard. Sgr A* is surprisingly faint despite the
rich gas reservoir in its immediate surroundings that should provide a high accretion rate. The accretion
onto the SMBH in the Galactic center should be Ṁ ∼ 10−6 M�/year [4] at Bondi radius. For the mass
of SMBH, M = 4× 106 ṀEdd = 0.072 M�/year giving the accretion rate ṁ ∼ 10−5. However, the
bolometric luminosity is no more than ∼1036 ergs−1. This corresponds to Lbol/LEdd = 2.5× 10−9,
which is 3–4 orders of magnitude below the value that should be expected in the standard SS disk.
This is not an isolated case.

The faintness of Sgr A* led to the development of theoretical models with radiatively inefficient
accretion flows (RIAFs). One of the models is the advection dominated accretion flow (ADAF) [5],
in which the low luminosity is explained by the combination of a high ratio of radial to tangential
gas velocities, and the decoupling of hot protons and cold electrons in low density gas. However,
this solution has numerous problems both in the assumptions used and in comparing with the
observations. For example, the presence of the magnetic field in the accreted material violates one
of the basic assumptions of ADIOS that radiation efficiency of the disk is low [6]. The detection of
linear polarization and the low electron densities estimated from the Faraday rotation measure rules
out the large accretion rate of the standard ADAF model. This led to the development of convection
dominated accretion flow models (CDAFs) [7,8], which favor lower accretion rates and shallower
density profiles. The last set of models are models with substantial mass loss like advection-dominated
inflow–outflow solutions (ADIOS) [9–11] or jet models [12,13].

While astrophysicists tried to explain the low luminosity of disks, another spectacular property
was discovered. Accretion at a low rate is accompanied by an impressive phenomena, which was
not expected in the standard models. X-ray binaries and AGN produce jets, well collimated flows of
plasma, propagating on a large distance from the source. It has been found that power of the jets from
AGN is often much greater than the bolometric luminosity of the disk. For example, the famous galaxy
M87 is a characteristic example of an AGN with a very large kinetic luminosity ∼1044 erg/s [14,15] in
comparison with the bolometric luminosity of the disk not exceeding 1042 erg/s [16]. The example of
M87 is also not an isolated case.

It is necessary to keep in mind that estimation of the kinetic and bolometric luminosities of the
jets is not a simple task for observers. Starting with the paper [17], jet power in radio galaxies and
quasars were estimated using energetics and lifetimes of extended double radio sources. The ratio of
kinetic-to-bolometric luminosity can be estimated also from radio and X-ray data. The works [18–24]
argued that the radio and X-ray luminosities are likely to be related to the kinetic and bolometric
luminosities, respectively. Exploration of these methods shows that, in a large fraction of AGNs, the jet
kinetic luminosity exceeds the bolometric luminosity [25–31].

Other estimates follows from gamma-ray astronomy. The jet power in 191 quasars detected by the
Fermi Large Area Telescope (LAT) in gamma rays, systematically exceeds the bolometric luminosity [32].

Indirect evidence of high kinetic luminosity of an outflow exceeding the bolometric luminosity
is provided by observations of the Galactic Center in TeV gamma-rays [33]. To explain the observed
diffuse flux of the VHE gamma-rays from the Galactic Center region, the production rate of protons
accelerated up to 1 PeV should be ∼1038 erg/s. Assuming that the accelerator of protons is powered
by the kinetic energy of the outflow (a wind or jets) from the SMBH in the Galactic Center (Sgr A*),
even in the case of 100% conversion of the bulk kinetic energy to non thermal particles, the kinetic
luminosity of the outflow would be two orders of magnitude larger than the bolometric luminosity of
Sgr A*, which is estimated to be close to 1036 erg/s [34].
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Sometimes, the jet power exceeds the Eddington limit. Observations of the very powerful and
bright in gamma-rays AGN 3C 454.3 during the outbursts of this object show that the apparent
luminosity in GeV gamma-rays could exceed 1050 erg/s [35–38]. The mass of the black hole in
this AGN is estimated in the region (0.5–4) × 109 M�. Thus, the Eddington luminosity is in the
range of (0.6–5) × 1047 erg/s. Because of the Doppler boosting effect, the intrinsic gamma-ray
luminosity of this source is much smaller, by several orders of magnitude, than the apparent luminosity.
However, the estimates of the jet kinetic luminosity in any realistic scenario give a value exceeding
the Eddington luminosity [39]. In general, the estimates of the bolometric and kinetic luminosities
are model dependent [40]. Nevertheless, it is unlikely that the estimated values differ from the actual
values more than an order of magnitude. Therefore, it is difficult to avoid a conclusion that some
AGNs demonstrate extremely high kinetic luminosities of jets which are not only above the bolometric
luminosity, but in some cases can exceed the Eddington luminosity of the central SMBH.

Compilation of data about X-ray binaries and AGN results in the following general picture.
At high accretion rates, the accretion occurs in accordance with the SS model. The disk is bright
and there is no (or there is only weak) evidence of jets [41]. At accretion rate ṁ < 10−2 − 10−1, the
disk becomes radiatively inefficient and accretion is accompanied by powerful jets. This picture is
a challenge for astrophysicists. It is necessary to answer two key questions. The first one is why
the accretion process is radiatively inefficient at low accretion rates and why jets with the kinetic
luminosity exceeding the bolometric luminosity are produced in this regime of accretion and are not
produced at high accretion rates (or are produced with low efficiency).

The problem of low radiative efficiency of disks is conventionally explained by accretion in
ADAF mode. In the standard SS model, the accreting material is cooled efficiently. All the energy
released through viscosity is radiated. The accreted gas is much cooler than the local virial temperature.
The orbiting material has a vertical thickness much smaller than the radius. However, if the cooling is
not able to keep up with the heating, then a part of the released energy will have to be advected with
the accreted gas. The gas has a higher temperature, but lower luminosity than in the SS disks. The
analysis of this kind of flow resulted in a model of geometrically thick but optically thin disks with
suppressed bolometric luminosity of the disk [5]. In these disks, the height of the disk is of the order of
the radius while the radial velocity of the accreted matter is higher than in the SS model. The density
of matter in the disk appears much lower than in the SS disk. If the free–free processes dominate in the
emissivity of the disk, this results in strong reduction of radiation from the disk. Only a small fraction
of the released gravitational energy goes into radiation. ADAF is a very inefficient regime of accretion
regarding transformation of the gravitational energy of the accreted material into radiation or energy
of jets. The major part of the energy is advected into the black hole and goes into increasing of its mass.

However, ADAF does not solve the problem with energetics of jets. This model needs an
additional source of energy to energize them. A rotating (Kerr) black hole can supply the jets by the
energy of rotation. A Kerr black hole placed in an external magnetic field makes it co-rotate, producing
an effect similar to the rotation of the pulsar magnetosphere. This results in an extraction of rotational
energy and angular momentum from the black hole which is carried out by an electron–positron wind.
This is the so called Blandford and Znajek effect [42]. Estimates made by Blandford and Znajek have
shown that the energy of the outflow is small compared with the radiation from conventional SS
disks. However, this is valid only if we consider moderate rotation and conventional values of the
magnetic field according to the SS model. A new model of a Magnetically Arrested Disk (MAD) has
been introduced in the work [43]. This model is based on the assumption that the interstellar magnetic
field ∼µG is dragged to the center by the converging accreting plasma like it was shown in [44] to the
level where the magnetic field disrupts the disk. The value of the magnetic field in this case essentially
exceeds the conventional magnetic field in SS disks. Numerical simulations in fully 3D geometry show
that the energy flux in the outflow from the black hole can achieve a value of the order 3Ṁc2, provided
that the black hole rotates close to the maximal possible angular momentum [45].
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Thus, one of the possible models able to explain the energetics of accretion and outflow from AGN
needs the following set of assumptions. It is necessary to assume that accretion occurs in the ADAF
regime, that the main source of energy of jets is the energy of rotation of the black hole rotating close
to the maximal limit and finally that accretion results in the formation of the Magnetically Arrested
Disk (MAD) in its inner part. In this review, an alternative approach to the problem of disk accretion
is discussed. In the alternative approach, the only available energy of AGNs including jets is the
gravitational energy released in the accretion.

In conventional theories of disk accretion, turbulent viscous stresses provide loss of the angular
momentum of the accreted matter. However, the angular momentum and rotational energy can be
lost due to another mechanism. Wind from a rotating magnetized object can carry away its angular
momentum and rotational energy. Starting with the classical work of Parker [46], it was clear that all
main sequence stars, including the Sun, eject matter in the form of winds. Schatzman [47] proposed
that as the winds contain a frozen-in magnetic field that goes back to the star, the angular momentum
loss is leveraged many times. The importance of stellar winds in extracting angular momentum from
main sequence stars was recognized by Mestel [48,49]. Pulsars also lose their energy of rotation due to
a similar mechanism. The wind of electron–positron plasma produced in the pulsar magnetosphere
carries out all the rotational energy of the pulsar. It is important to pay attention that the loss of the
angular momentum is accompanied by a corresponding loss of the energy of rotation without essential
heating of the stars and pulsars. In the case of accretion disks, we are sure that they produce outflows
in the form of magnetized winds and jets. It is natural to assume that, in addition to the loss of the
angular momentum due to the viscosity, the matter in the disk loses its angular momentum due to
the magnetized wind. This idea was first formulated by Blandford and Payne [50]. Pelletier and
Pudritz [51] pointed out that the loss of the angular momentum due to the wind can dominate over
the loss of the angular momentum due to the viscosity under rather conventional conditions. Later,
this idea has been explored in many works of the Grenoble group [52–55], which called this type of
flow around black holes Magnetized Accretion–Ejection structures (MAES). Several other authors over
the years explored similar approaches in different physical contexts [56–60]. In the last works of the
Grenoble group [61,62], the radiation from the Jet Emitting Disks (JED) is discussed in the context of
X-ray binaries. Starting with our first work [63] devoted to the same problem, we focused on the fact
that these disks can be the key to the solution of the problem of high ratio of the kinetic luminosity of
the jets over the bolometric luminosity of the disks. Actually, Ferreira and Pelletier [53,55] noted much
earlier that, under conventional conditions, the jet can carry out almost all the angular momentum
and energy from the accretion disk. Due to this, the radiation from the disk appears suppressed and
we arrive to another model of a radiatively inefficient disk. However, unlike ADAF, in this case, the
system black hole and the disk is a very efficient system. It transforms almost all the energy released
at the accretion in to the kinetic energy of jets. In this case, we have Lkin/LEdd ≈ ṁ. No additional
sources of energy are necessary.

The review is based mainly on the results obtained in the National Research Nuclear university
(MEPHI), although a lot of results have been obtained earlier by the Grenoble Group (see Refs. [52–55]).
We acknowledge this in the appropriate places.

2. Magnetic Field of the Disk and Wind

Assumed Structure of the Magnetic Field in the Disk

In the case of ideal plasma (viscosity and electric resistivity are neglected), the magnetic field is
determined by advection of the field lines by the accreted plasma to the center. This process was firstly
considered in [64]. However, the matter in the disk is evidently not ideal. Turbulence produces rather
strong turbulent viscosity and electric resistivity. Therefore, the processes of diffusion of matter across
the magnetic field lines also take place in the disk. Moreover, the process of diffusion appears so strong
that prevents accumulation of the magnetic flux at the central part of the accretion disk what makes
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the operation of the Blandford and Znajek effect problematic [65,66]. Some ideas about how to avoid
this problem are discussed in [67,68].

The majority of the works devoted to the process of disk accretion consider the disk as a thin
layer of plasma penetrated by the field lines of one polarity. The value of the magnetic field and
magnetic field pressure is defined by two processes: by the process of advection of the field lines to
the disk center and by the process of diffusion of the field lines in the opposite direction. Equilibrium
of these processes provides a steady state structure of the magnetic field. This approach was used
by the Grenoble group starting with work [52]. However, there is a general understanding that
the process of disk dynamo plays a major role in the production of the magnetic field inside the
disk [69–73]. In addition, a quite specific dynamo mechanism can operate in the disks [74,75], although
they remain debatable [76].

The dynamo mechanism results in formation of small scale loops of the magnetic field which
basically defines the viscosity of the matter of the disk. Numerical simulations show that the loops
emerge on the surface of the magnetic field in accordance with the predictions made in [69], and
expand into surrounding space at the differential rotation of the field line foot points in the disk [77,78].
Pressure of plasma and centrifugal forces leads to the opening of the field lines and to the formation of
magnetized wind along open field lines. The schematic structure of the magnetic field lines inside and
outside the disk is shown in Figure 1. It is reasonable to consider the disk with the wind in the quasi
steady state. In this state, the average value < B2 > does not vary with time, while the time derivative
∂B
∂t 6= 0. The average pressure of the magnetic field does not change with time, but the polarity of B

varies with time, so that the average over time value of B is equal to zero. This is valid for the magnetic
field inside the disk and for the magnetic field in the wind. The field lines of the wind of the opposite
polarities are separated by current sheets. We assume that, like in the case of the Sun, the process of
field annihilation due to field line reconnection in the current sheets takes place inside the disk and
corona, while, in the wind, the activity of the current sheets in the wind is suppressed. Therefore,
the dynamics of plasma in the current sheets can be considered in the ideal MHD approximation.
All the dissipative processes connected with the final electric conductivity and viscosity are neglected.
The current sheets in this approximation are MHD discontinuities with zero thickness. Observations
of a fine structure of the magnetic field of the solar wind support this assumption. The small scale
magnetic field of the coronal streamers produces multiple current sheets in the interplanetary space
that are observed even at the Earth orbit [79,80].

In this picture, the magnetic field in the wind changes with time. Although the magnetic pressure
can be constant in the steady state flow, the magnetic field permanently changes polarity because a
new magnetic field emerges from the interior of the disk and advection replaces the field lines of one
polarity with field lines of the opposite polarity. Nevertheless, the problem of the wind outflow with
such a magnetic field can be reduced to the problem of the wind outflow in the unipolar magnetic
field like it was done in the work [50].
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WIND
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Sdown
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Figure 1. The structure of the magnetic field in the accretion disc and in the out flowing wind. The disc
is shadowed. The magnetic field lines in the disc are distributed chaotically. At the base of the wind
from the disc, all the magnetic field lines are opened. Their polarities are random. Therefore, the total
magnetic flux leaving one side of the disc equals zero. The box drawn in dashed thick lines is the region
of integration of conservation laws connecting the properties of the disc and the wind.

3. Basic Equations of the Accretion and Outflow

The flow in the disk has huge hydrodynamic and magnetic Reynolds numbers. This means that
the viscosity and electrical conductivity are determined by turbulence. The collisional viscosity and
electrical conductivity can be neglected. Therefore, we will start with the ideal plasma approximation.
The condition of ideality has the form

E +
1
c

v× B = 0, (1)

where E is the electric field, B—magnetic field and v is the velocity of the plasma.
The dynamics of plasma is defined by the momentum conservation equation having the following

form in the tensor representation [81]

∂ρvi
∂t

+
∂σik
∂xk

= −ρGM
Ri
R3 , (2)

where
σik = ρvivk + pδik −

1
4π

(BiBk −
1
2

B2δik). (3)

The second equation expresses the energy conservation in the form

∂W
∂t

+
∂qk
∂xk

= 0, (4)
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W = ρe + B2

8π is the sum of the thermal and magnetic field energy densities, and e is the thermal energy
per particle. We consider here only nonrelativistic flows. The term related to the electric field is omitted
in W. The flux of the energy density equals

qi = ρvi

(
w +

v2

2
− GM

R

)
+

c
4π

[E× B]i + Qi , (5)

where Qi is the density of the energy flux of radiation.
In Cartesian coordinates, the angular momentum vector is introduced as li = εimpxmρvp [82],

where εimp is the unit antisymmetric tensor. Application of this transformation to Equation (2) gives

∂li
∂t

+
∂mik
∂xk

= 0, (6)

where mik = εimpxmσpk. Projection of this equation on the z axis gives

∂lz
∂t

+
∂mzk
∂xk

= 0, (7)

where lz = ρvϕr and

mzk = ρvkrvϕ −
1

4π
rBkBϕ. (8)

The conservation equations for the matter and the magnetic fluxes are

∂ρ

∂t
+

∂ρvk
∂xk

= 0, (9)

and
∂Bk
∂xk

= 0. (10)

These equations are supplemented by the equation of induction

∂B
∂t

+ curlE = 0. (11)

4. Conservation Laws for the Disk

In this section, we obtain vertically integrated equations conventionally explored in the theory
of accretion disks. We study a steady state axisymmetric accretion and outflow. Because of turbulent
motion inside the disk, all variables vary in time on small time scales. Below, we consider equations
for ensemble-averaged variables. The ensamble is the large number of identical accretion disks. In the
steady state flow, these variables are constant in time. Averaging is expressed by the brackets < ... >.
Application of the averaging operation to the terms in the equations with time derivatives makes them
equal to zero.

Let us consider a control volume in the form of ring with rectangular cross section in the poloidal
plane as it is shown in Figure 1. The cross section is shown with a thick dashed line. The control
volume includes a fragment of the disk and corona. The upper and lower boundaries of the volume
are located at the base of the wind above the disc. All the magnetic field lines of the wind are rooted
here.

Integration of the equations over the control volume gives us the equations in integral form.
Conservation of the angular momentum, energy and mass are as follows:∮

S
< mzk > dSk = 0, (12)
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∮
S
< qk > dSk = 0, (13)∮

S
< ρvk > dSk = 0. (14)

Integration here is performed along a closed surface surrounding the volume. The surface consists
of the sides S1 at radius r1, side S2 at radius r2 and upper and down sides Sup and Sd. Integration gives

−
∫ h

−h
r2 < ρvϕvr > dz

∣∣∣∣
r1
+
∫ h

−h
r2 < ρvϕvr > dz

∣∣∣∣
r2

+
1

4π

∫ h

−h/2
r2 < BrBϕ > dz

∣∣∣∣
r1
− 1

4π

∫
r2 < BrBϕ > dz

∣∣∣∣
r2

+2
∫ r2

r1

(
r < ρvϕvz > −

1
4π

r < BϕBz >

)
Sup

r dr = 0.

(15)

Integration across the disc is performed in the interval on z from −h to h correspondingly at the
radiuses r1 and r2. Integrations along Sup and Sd are equal to each other because the vector dS and the
component of the velocity vz change sign simultaneously. Therefore, we simply double the integration
along the surface Sup. This equation can be rewritten in the form

−
∫ h

−h/2
r2 < ρvr >< vϕ > dz

∣∣∣∣
r1
+
∫ h

−h/2
r2 < ρvr >< vϕ > dz

∣∣∣∣
r2

−
∫ h

−h
r2(< δρvrδvϕ > − 1

4π
< BrBϕ >) dz

∣∣∣∣
r1
+
∫

r2(< δρvrδvϕ > − 1
4π

< BrBϕ >) dz
∣∣∣∣
r2

+2
∫ r2

r1

(
r < ρvϕvz > −

1
4π

r < BϕBz >

)
Sup

r dr = 0,

(16)

where symbol δ means deviation of the value from average. The term

tϕr = −(< δ(ρvr)δvϕ > − 1
4π

< BrBϕ >) (17)

is the efficient viscosity of the matter caused by the turbulent motion and magnetic fields inside
the disk.

Equation (16) is reduced to the differential form as follows:

∂

r∂r

(
r2(
∫ h

−h
Vk < ρvr > −trϕ) dz

)
|disc

+2r
(
< ρvϕvz > −

1
4π

< BϕBz >

)
|wind = 0.

(18)

The subscripts |disc and |winds denote the variables describing the disc and the wind at the base
(at the surface Sup). According to this equation, the angular momentum of the disc is carried out by
the out flowing plasma and by the magnetic stresses in the outflow. Introducing the accretion rate in
the disk as

Ṁ = −2πr
∫ h

−h
< ρvr > dz, (19)
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we finally obtain for conservation of the angular momentum of the disk the following equation

∂

r∂r

(
rVk Ṁ + 4πr2trϕh

)
|disc

−4πr
(

Vk < ρvz > −
1

4π
< BϕBz >

)
|wind = 0.

(20)

Everywhere below, we accept that the azimuthal velocity of the plasma in the disc < vϕ >= Vk,
where Vk =

√
GM/r is the Kepler velocity and the disk is geometrically thin with aspect ratio

h/r << 1. Similar manipulations with the energy conservation equation give the following equation

∂

r∂r

∫ h

−h/2
r
(
< ρvrw > +

< vrB2 >

4π
+

< ρvrv2 >

2
− < ρvr >

GM
r
− < Br(vB) >

4π
+ < Qr >

)
dz|disc

+2
(
< ρvz

(
w + v2

2
− GM

R

)
> +

c
4π

< [E× B]z > +Qz

)
|wind = 0.

(21)

In this equation, the term < ρvr
v2

2 > can be expanded as

< ρvrv2 >=< ρvrV2
k > + < ρvr2Vkδvϕ > + < ρvrδv2

ϕ > + < ρv3
r > + < ρvrv2

z >, (22)

taking into account that Vk � δvϕ, Vk � δvz and Vk � δvr, we remain with

< ρvrv2 >≈< ρvr > V2
k + 2Vk < ρvrδvϕ > . (23)

Starting at Ref. [3], it is assumed that the energy density of the chaotic magnetic field in the disk
is of the order of density of the turbulent energy, ρv2

t /2 ∼ B2/4π. Both of them are much less than
ρV2

k /2. These terms are also omitted in Equation (21). The term < Br(vB) > is expanded into

< Br(vB) >=< B2
r vr > + < BrBϕ > Vk+ < vzBzBr > . (24)

The term < BrBϕ > Vk is much larger than the remaining. We neglect them. For the same reasons,

< ρvz(
w + v2

2
) >≈< ρvz >

V2
k

2
. (25)

The z component of the Poynting flux

< [E× B]z >=< ErBϕ > − < EϕBr >, (26)

where Er =
1
c (vzBϕ − vϕBz) and Eϕ = 1

c (vrBz − vzBr). Keeping in Equation (26) the largest term, we
obtain that

< [E× B]z >≈ −
Vk
c

< BzBϕ > . (27)

After substitution of all these equations into Equation (21) taking into account Equations (30)
and (19), we obtain the equation expressing energy conservation in the disk

1
r

∂

∂r

(
Ṁ(

V2
k

2
− GM

r
) + 4πrVktrϕh

)
disc

−4π

(
< ρvz >

(
V2

k
2
− GM

R

)
− Vk

4π
< BϕBz > +Qz

)
wind

= 0.

(28)
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The last equation is the matter conservation

∂

r∂r

(
r
∫ h

−h/2
ρvr dz

)
disc

+
(
2ρvz

)
wind = 0. (29)

Exploring definition (19), the last equation takes the form

∂Ṁ
∂r
− 4πrρvz = 0. (30)

Subtraction from Equation (28) of Equation (20) multiplied with the Keplerian angular velocity
Ωk = Vk/r results in the energy flux of radiation from one side of the surface of the disk being

Q = Qz = trϕrh
∂Ωk
∂r

(31)

like in the classical accretion disk of Shakura and Sunyaev [3]. Below, instead of Qz, we will use Q.

5. The Problem of the Wind Outflow

5.1. Invariance Principle

Below, we consider only axisymmetric flows when all the averaged variables do not depend
on the azimuthal angle. In this case, the problem of the wind outflow can be essentially simplified.
However, the problem of the plasma outflow in the poloidal magnetic field which changes polarity
remains too complicated. This problem can be simplified by reduction to the same problem in the
unipolar magnetic field.

It follows from equations of ideal MHD that the dynamics of plasma in ideal MHD is invariant in
relation to a reversal of the direction of the magnetic field lines in an arbitrary flux tube. This property
of ideal MHD flows was used for the solution of the problem of plasma outflow from pulsars [83].
This property was called the invariance principle.

The plasma flow in the nonrelativistic limit is described by the set of ideal MHD Equations (1),
(2), (4), (7) and (9)–(11).

Let us assume that we have some solution which is described by the functions B(r, t), ρ(r, t),
V(r, t) and P(r, t). It is easy to show that changing of polarity of the magnetic field ( and corresponding
electric field) in an arbitrary flux tube does not change dynamics of plasma.

Let us introduce a scalar function η(r, t) with the property that η = 1 everywhere except inside
the chosen flux tube where η = −1. This function satisfies the following two conditions:

B · ∇η = 0, (32)

and
∂η

∂t
+ V · ∇η = 0. (33)

The second equation is the consequence of Equations (1), (11) and (32). The value of η is advected
together with the plasma.

Then, the solution ηB(r, t), ρ(r, t), V(r, t) and P(r, t) also satisfies the system of Equations (1),
(2), (4), (7) and (9)–(11). Indeed, the tensor of the momentum flux density (3) is bi quadratic in relation
to the magnetic field. It does not change because η2 = 1. This means that the forces affecting the
plasma do not change with this transformation.

Let us consider how this principle operates in the most simplified model of the wind outflow
from the surface of a star. The distribution of the normal component of the poloidal magnetic field is
axisymmetric. In that case, we get the model with the axisymmetric wind. According to the invariance
principle, the change of the direction of magnetic field lines in some flux tube does not affect the
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dynamics of the plasma. Let us assume that we obtain a solution for the axisymmetric rotator, as shown
schematically in Figure 2a. Then, a reversal of the sign of some magnetic field lines in an arbitrary
poloidal flux tube gives us a solution which is not axisymmetric and non stationary, as shown in Figure
2b. This is a solution for the plasma outflow from a rotator with axisymmetric B2 at the surface but with
a magnetic spot of the opposite polarity on the upper hemisphere. Figure 2b shows the cross-section of
such a magnetic field by the poloidal plane. The stream lines are the same as for the axisymmetric case.
However, the poloidal magnetic field changes sign in the magnetic spot corresponding to the flux tube
of the opposite polarity. The path of the field line in this flux tube in 3D is shown by a dashed line.
These spots propagate in the poloidal plane with the velocity of the plasma and hence the pattern is
non stationary. It is clear that the number of such magnetic spots and their position at the base surface
can be arbitrary.

(a) (b)

Figure 2. Plasma flow from an axisymmetric rotator with an initially split-monopole magnetic field,
as in (a). Reversing the direction of the poloidal magnetic field in an arbitrary flux tube does not change
the dynamics of the problem while we obtain the configuration shown in (b) which describes a non
stationary and nonaxisymmetric plasma flow from a rotator with a magnetic spot of opposite polarity
on the base surface. The distribution of such spots can be arbitrary.

Now, let us return to the accretion disk. In our model, the accretion disk can be considered as
a layer at the equatorial plane with thickness 2h. All magnetic field lines are open and chaotically
change polarity in the wind. The total magnetic flux penetrating in to the disk equals zero. This means
that the disk brings to the black hole zero total magnetic flux. The formation of such a wind has been
investigated numerically in [78]. This naturally solves the old problem which was pointed out in the
first works on the accretion of the magnetized plasma [44,64]. The magnetic flux of one polarity can be
accumulated at the center preventing the accretion. There is no chance to annihilate this flux due to
magnetic field reconnection. In our case, the situation changes dramatically. The magnetic flux can
fully annihilate near the black hole, where the geometrical scales become much smaller in comparison
with scales in the disk because the plasma is filled by a large amount of current sheets separating
flux tubes of opposite polarities. Reconnection of the field lines near the black hole horizon can be
accompanied by the sporadic ejection of mass of plasma.

The invariance principle allows us to essentially simplify the solution of the problem of the wind
outflow from the disk. According to this principle, we can replace the direction of all the field lines
making them unidirectional in every hemisphere. The dynamics of the wind does not change. After
that, we arrive to the wind outflow in the unidirectional magnetic field like in the pioneering work by
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Blandford and Payne [50]. This procedure is shown in Figure 3 and corresponds to the transition from
the upper to the lower panel.

BH

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

BH

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Figure 3. The upper panel shows the structure of the magnetic field outside the disk. The magnetic
field lines (thin lines) leaving the disk from both sides chaotically change polarity. The flux tubes
of opposite polarities are separated by the current sheets (thick lines). This system of field lines is
compressed at the black hole horizon where an efficient reconnection takes place annihilating the
magnetic field. The replacement of the magnetic field lines leaving the disk by the similar lines of one
polarity does not change the dynamics of the wind and satisfy Maxwell’s equations. This allows us to
use the model shown in the lower panel where the magnetic field is unipolar.

5.2. The Role of the Azimuthal Electric Field in the Wind

In the limit of axisymmetric flow in the unipolar magnetic field, the azimuthal component of
Equation (11) and the frozen-in condition (1) for the same component give a couple of equations

∂

∂r
(rEϕ) = 0, (34)

and
Eϕ +

1
c
(vzBr − vrBz) = 0. (35)

The solution of Equation (34) results in

Eϕ =
A
r

, (36)

where A is some constant. This solution diverges at r → 0. It was pointed out in [84] that Eϕ is not
equal to zero at the accretion of an ideal plasma onto a gravitating center. Indeed, as it follows from
Equation (35), Eϕ at the base of the wind is equal to 1

c vrBz provided that vz → 0 at the center of the
disc. At accretion vr 6= 0, there is thus Eϕ 6= 0 as well. Thus, in the region of the accretion flow, Eϕ can
not be neglected because it is connected directly with the radial velocity of the plasma in the disc.
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As it follows from Equation (35) in this case, the velocity has a poloidal component v⊥ orthogonal
to the poloidal magnetic field line. The plasma in the wind is advected to the center together with the
matter in the disk. Nevertheless, this component of the electric field can be neglected when we consider
the dynamics of the wind under the condition v⊥ � v, where v is the full velocity of the plasma. If we
take into account that v ∼ Vk and that v⊥ = c Eϕ

Bp
the toroidal electric field can be neglected under

the condition
Bp0r2

0
Bpr2

vr(0)r
Vkr0

� 1. (37)

The value Bpr2 roughly equals the full flux of the magnetic field through the surface limited by

the field line. It can not change strongly along the field line,
Bp0r2

0
Bpr2 ∼ 1. Therefore, inequality (37) is

inevitably violated at the distance r � r0
Vk

vr(0)
. However, we do not care about validity of Equation (37)

in all of space.
In order to take into account the impact of the wind on the process of accretion, it is necessary

to calculate the product BzBϕ at the base of the flow. The flow of the wind does not depend on the
conditions down stream, the so called fast mode surface where the velocity of plasma equals the
fast mode magnetosonic velocity. To be more exact, this should be called the fast mode separatrix
surface [85]. However, the difference between them is not important for us here. Thus, the product
BzBϕ at the base of the wind is determined by the flow in the zone limited by the fast mode surface.
Therefore, the toroidal electric field in the wind can be neglected if

vr(0)RF
Vkr0

� 1, (38)

where RF is the radius of the fast mode surface.
This condition can be understood from another point of view. The equilibrium state in the zone

limited by the fast mode surface is formed during the time an MHD signal spends for travel from the
base to the fast mode surface ∼ RF/VF, where VF is the fast mode velocity that is close to the Alfven
velocity at the Alfven surface. At the Alfven surface, the velocity of plasma is ∼ Vk. The impact of
the advection of the matter in the disk on the dynamics of the wind can be neglected if the root of the
magnetic field line is displaced over the distance ∆r � r0 during this time. In this case, we arrive at
the same Equation (38).

5.3. Along Field Line MHD Equations of the Wind

If the azimuthal electric field can be neglected, Eϕ = 0, then, according to Equation (35), the
poloidal velocity is directed along the poloidal magnetic field. In this case, we have

lp = ρrvp

(
vϕ −

Bp

4πρvp
Bϕ

)
, (39)

for the angular momentum flux density along a poloidal filed line and

qp = ρvp

(
v2

2
− GM

R
−Ωr

Bp

4πρvp
Bϕ

)
(40)

for the energy density flux along a poloidal field line. If we take into account that the fluxes of the
angular momentum lpdS, energy qpdS, matter ρvp and magnetic field flux BpdS are conserved as it
is demonstrated in Figure 4, it can be obtained that the following two integrals of motion take place
along the field lines

rvϕ −
rBpBϕ

4πρvp
= L, (41)



Galaxies 2019, 7, 18 14 of 31

and
v2

2
− GM

R
−Ω

rBpBϕ

4πρvp
= H. (42)

The first equation from this couple is the conservation of the angular momentum per particle L
and the second one is the conservation of the energy per particle H along a field line.

An additional consequence from Eϕ = 0 is that the poloidal electric field Ep is perpendicular to
the poloidal magnetic field Bp. In this case, Equation (11) gives that the product Epdl is conserved
along a field line, where dl is the distance between two neighbor field lines. If we take into account that
dS = 2πrdl, we obtain that Er = −rΩBz/c and Ez = rΩBr/c or Ep = rΩ

c Bp. The frozen-in condition
for the poloidal component of the electric field gives in this case that

rΩBp + vpBϕ = vϕBp. (43)

Combining Equation (43) with Equation (41) results in

rvϕ =
L− r2Ω

B2
p

4πρv2
p

1− B2
p

4πρv2
p

. (44)

The denominator of this expression goes to zero at the Alfvenic point where vp = Bp/
√

4πρ.
The nominator of this expression must equal to 0 in this point to provide regularity of vϕ. From
this condition, we obtain that the momentum per particle equals L = Ω r2

A, where rA is the
cylindrical radius at the Alfvenic point where the plasma velocity equals the local Afvenic velocity
VA =

√
Bp/4πρ.

Taking into account that Bp/vp = Bz/vz in the wind, it is easy to determine that the product

rBzBϕ = −4πρvzΩkr2
0(λ− 1), (45)

at the base of the wind located at the radius r0. Following [54], λ = r2
A/r2

0.

dl1

dl2

Ep1

Ep2

r2

r1

Bp1

Bp2

Bp2

Figure 4. Fluxes of the magnetic field, matter, energy and angular momentum between any two close
field lines with the cross section dS = 2πrdl are conserved. The condition curl E = 0 gives that the
product Epdl, where dl is the distance between these field lines is also conserved.
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6. Disk-Wind Connection at the “Cold” Accretion

Taking into account the equation for mass conservation (30), the equations for angular momentum
conservation can be rewritten in the form

Ṁ
Ωk
2

+
1
r

∂

∂r

(
4πr2trϕh

)
|disc

+r < BϕBz > |wind = 0.

(46)

The energy conservation is fulfilled automatically provided that Equation (31) takes place.
It follows from Equation (46) that the impact of the wind on the dynamics of the wind is reduced to the
value of BϕBz,wind. We omit here brackets <> because in the steady state axisymmetric wind BϕBz,wind
is constant.

Taking into account Equation (45), Equation (46) can be rewritten in the form

Ṁ
Ωk
2

+
1
r

∂

∂r

(
4πr2trϕh

)
|disc

−4πρvzΩkr2
0(λ− 1) = 0.

(47)

This equation clearly demonstrates that every particle of the wind carries out an amount of the
angular momentum per particle equal to Ωkr2

0(λ− 1). In the case of purely hydrodynamical wind
(B = 0), this value equals 0 because λ = 1. The wind does not carry out any angular momentum from
the disk. The magnetic field dramatically changes the situation. Thanks to it, λ > 1 and every particle
of the wind carries out not only its own angular momentum, but also some fraction of the angular
momentum of the particles remaining in the disk. A natural question arises. At what conditions does
the wind carry out more angular momentum than it is transported outward by the viscous stresses?

As it was pointed out by [51], the momentum loss due to the wind will dominate the losses caused
by the viscous stresses provided that

4πrtrϕh� r2 < BϕBz > |wind. (48)

In the opposite case, we have the standard SS version of the disk accretion [3].
The physical sense of inequality (48) becomes clear if we note that according to the assumptions

of [3] and recent numerical simulations of the magnetic field generation [72]

− trϕ ∼
B2

disk
4π

, (49)

where the magnetic field Bdisk is taken inside the disk. We distinguish the magnetic field inside the
disk from the magnetic field at the base of the wind. In the works of the Grenoble group [53,54] and
other authors [58–60], these values are similar because the magnetic field vertically crosses the disk.
In reality, the magnetic field inside the disk can essentially exceed the field at the base of the wind [72].
The regime of “cold” disk accretion occurs when

θh
r
� 1, (50)

where

θ =
4πtrϕ

< BϕBz > |wind
∼

B2
disk

B2
wind

. (51)

For the geometrically thin disks with h/r � 1, “cold” disk accretion certainly has room for
existence provided that θ is not extremely large.
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Dissipative terms defined by trϕ can be neglected in Equations (28) and (46) in the regime of cold
accretion. The equations for the angular momentum and energy conservation take the form

Ṁ
Ωk
2

+ r < BϕBz > |wind = 0, (52)

1
2

∂V2
k Ṁ
∂r

+ 4πrρvzH|wind = 0. (53)

The luminosity of the disk is determined by Equation (31).
Our approach to the problem of disk accretion due to the wind methodologically differs from

the approach used by the Grenoble group and other researchers. In the works of the Grenoble
Group, the accretion and outflow are considered as one self-consistent process using a self similarity
prescription. It was named Magnetized Accretion-Ejection structures (MAES) [52]. The advantage
of this approach is that, simultaneously with the solution of the problem of accretion, the structure
of the disk is determined. However, this is simultaneously a disadvantage because it is necessary to
strongly simplify the processes in the disk and neglect for example dynamo processes and remain in
the frameworks of self similarity prescriptions. Keeping in mind practically the same physical picture,
we follow another methodology. We separate the problem of accretion from the problem of internal
structure of the disk. The arguments in favor of this approach are the following.

The rate of the angular momentum loss by the disk due to the wind is determined by the product
BzBϕ at the surface of the disk or, equivalently, at the base of the wind. It is known from the theory of
MHD winds that, in order to solve the problem of the magnetized wind outflow from the surface of
the rotating object (in our case the surface of the disk), it is necessary to specify a certain number of
boundary conditions at the base of the wind [83]. At the base of the wind, the magnetic field pressure
dominates the gas pressure, vs � VA, where vs and VA are the sound and Alfvenic velocities. Therefore,
it is natural to assume that VA > vz > vs. This means that the mass flux density should be specified as
the boundary condition [83]. In addition, we have to specify as boundary conditions the temperature
of the plasma, the pressure, the normal component of the magnetic field Bz and the rotational velocity
of the object—five parameters in total. It is remarkable that the toroidal component of the magnetic
field Bϕ is determined from the solution of the problem of the wind outflow. This means that the
angular momentum loss of the disk can be determined by solving the problem of the wind outflow
only at the specified mass flux density distribution in the wind, temperature of the plasma, pressure,
and Bz at the base of the wind.

To determine these parameters, it is necessary to solve the problem of the internal structure of
the disk. At present, no convincing solution of this problem is obtained. Therefore, it is reasonable to
consider the disk as a layer which provides us, due to some processes, five parameters at the surface,
which are the functions of the coordinate at the disk surface. In the case of cold accretion, these
parameters reduce to two unknown parameters because temperature and pressure at the base of the
wind can be taken equal to 0 because, at the base, the gas pressure is much lower than the magnetic
field pressure. This is a so called cold wind. The angular velocity equals the Keplerian velocity of
the disk. We remain with two unknown functions: ρvz and Bz, which can be specified at the base of
the wind as boundary conditions for the problem of the wind outflow. Below, we will see that, in the
fully self-consistent solution, ρvz can not be an arbitrary function. This function is defined by the
distribution of Bz over the disk surface at the fixed Ṁ at the inner edge of the disk. Thus, the process
of cold accretion actually depends only on Ṁ at the inner edge of the disk and the distribution of Bz

over the surface of the disk.
The magnetic field at the surface of the disk is evidently limited from below. Our numerical

modeling of the self-consistent disk outflow shows (see below) that Bϕ ∼ Bz at the base of the wind.
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In this case, the disk accretion is possible if the magnetic field at the surface of the disk satisfies
the inequality

B2
z |wind >

ṀΩk
2r

. (54)

Basic Properties of the “Cold” Accretion

Equation (47) can be rewritten in the form

∂

∂r
(rVk Ṁ)− ∂Ṁ

∂r
rA(r)

2Ωk(r) = 0, (55)

where rA(r) is the Alfven radius of the force line rooted into disc at the point with radius r. The solution
of Equation (55) gives

Ṁ = Ṁedge exp
∫ r

rin

dr
2r(λ(r)− 1)

, (56)

where Ṁedge is the accretion rate at the inner radius of the disc rin.
Equation (53) also can be rewritten in the following form. Using Label (30), it is easy to obtain that

∂

∂r
ṀV2

k
2

∣∣∣∣∣
disc

+
∂Ṁ
∂r

Hwind = 0. (57)

We are interested in the solutions that allow particles to go to infinity from the disc. The necessary
condition for this is H > 0. This condition means that the energy per particle is positive. This is
necessary (but not sufficient) in order to have positive v2 at a large distance from the source.
The substitution of the explicit dependance (56) for Ṁ into Equation (57) results in

H = (2λ− 3)
GM
2r

= (2λ− 3)
V2

k
2

. (58)

This means that “cold” disk accretion is possible only at the magnetic field which satisfies the
condition λ > 3/2 first obtained in [50]. Equation (58) shows also that the energy of a particle in the
wind can essentially exceed the virial energy of the particle in the disk. Potentially, this fact gives us
the key to the solution of the problem of large Lorentz factors of the jets from AGNs. Kinetic energy of
the particles in the jets evidently strongly exceeds the virial energy of the particles at the last stable
orbit of the disk.

7. Self-Consistent Solution of the Problem

To make sure that the model of “cold” accretion can reproduce real processes of the disk accretion
onto a black hole, we have to obtain a convincing solution of the problem of self-consistent “cold”
accretion and to verify whether this model can give a ratio of the kinetic luminosity of jets over the
bolometric luminosity of the disk compatible with observations.

A lot of results in this regard have been obtained by the Grenoble Group. They used a self-similar
prescription of the solution and considered the problem of the disk structure, accretion and outflow
unified. The self-similarity imposes on the physics of the disk some extra demands, which do not
satisfy the full set of equations. Nevertheless, solutions obtained by the Grenoble Group support the
assumption that the process of accretion when the majority of the angular momentum of the accreted
material is carried out by the wind can be realized indeed [54].

To obtain solutions beyond the self-similarity limitations, we use another approach. As we already
discussed, we avoid consideration of the processes inside the disk. The disk is considered as a layer
with the zero thickness. The processes inside the disk provide the boundary conditions at the base
of the wind mass flux density ρvz and magnetic field flux Bz. Self-consistency of the outflow and
accretion means that the equation for mass conservation (30) and the equation for angular momentum
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conservation (52) are solved together with the full system of Equations (1), (2), (4), (7) and (9)–(11)
defining the flow of the wind from the disk. Below, we present in short the basic properties of solution
of the self-consistent problem in the self similar approximation and the numerical solution of the
problem without self similarity assumptions.

7.1. Basic Properties of Self Similar Solutions

The most comprehensive study of types of self similar flows has been investigated by the Grenoble
group [54]. The self similarity in the form proposed initially by [50] is used. In this kind of self similarity,
all the variables depend on the coordinates in the form

G(z, r) = rδG̃
( z

r

)
, (59)

where z, r are the cylindrical coordinates, and δ is the self similarity index.
The steady-state equations for an ideal, cold plasma (with pressure p = 0) (4), (7), (9)–(11) can be

rewritten in vector form as

ρ(v∇)v = − 1
8π
∇B2 +

1
4π

(B∇)B− ρ
GMR

R3 . (60)

According to the self similarity assumption, all the variables in these equations can be presented as

v(r, z) = r−δv ṽ(z/r),

ρ(r, z) = r−δρ ρ̃(z/r),

B(r, z) = r−δB B̃(z/r).

(61)

This representation of the variables says that they are scaled as the power law of r and all functions
depend on the angle ξ defined as tan ξ = z/r.

The superscripts δv, δρ, and δB are determined from the following conditions. Substituting of
Equations (61) into Equation (60) leads to the equations

2δB − δρ = 2δv = 1. (62)

It follows from them that
v(r, z) = r−1/2 ṽ(z/r),

ρ(r, z) = r−δρ̃(z/r),

B(r, z) = r−
(1+δ)

2 B̃(z/r).

(63)

It is evident that, in the self similar solution, λ is constant for all field lines. According to
Equation (56) the accretion rate in the disc varies with r as follows:

Ṁ = Ṁedge

(
r

rin

) 1
2(λ−1)

. (64)

This dependence was explored first in [52]. The combination 1/2(λ− 1) was called the ejection
index. Substitution of (64) into (30) taking into account (63) gives the following relationship between λ

and δ

δ =
3
2
− 1

2 (λ− 1)
, (65)

which has been first used in the work [54]. λ can change from 3
2 up to ∞. It is interesting that at the

same time the index of self similarity varies only in the limits between 1
2 and 3

2 .
It is interesting to compare this solution [63] with the classical solution of Blandford and Payne [50].

Their solution was not self-consistent. Equations (52) and (30) were not used. Therefore, index δ is
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not connected with λ by Equation (65). The scaling of the magnetic field and density was taken in the
form B ∼ r−5/4, ρ ∼ r−3/2 arbitrary as one of the possible scalings. The self similar solution for “cold”
accretion reproduces the solution of Blandford and Payne with additional connection expressed by

Equation (65). The scaling of the magnetic field depends on λ as B ∼ r−(5/4− 1
2 (λ−1) ) and density as

ρ ∼ r(−
3
2−

1
2 (λ−1) ). It is interesting to point out that observations show that the density of plasma in real

objects is more likely scaled with an index less than 3/2 [86], which can be explained by the fact that
λ 6= ∞ or by deviation of the flow from self similarity.

There is another interesting result obtained in [63]. The solutions at relatively low λ = 25 in [63]
and λ = 30 in [50] are quite similar. All flow lines diverge from the axis experiencing slight collimation.
However, already at λ = 64, the solution obtained in [63] demonstrates perfect cylindrical collimation
of the flow to the rotational axis at a rather large distance from the disk. It would be important to
verify this result in the numerical solutions. This is one of the reasons why the numerical solutions of
this problem are of special interest for us.

7.2. Numerical Solution of the Self-Consistent Problem

In the numerical self-consistent solution, the equations for the mass and angular momentum
conservation ((30), (52)) are solved together with the full system of Equations (1), (2), (4), (7), (9)–(11)
determining the flow of the wind from the disk.

The problem of the flow of the wind is solved numerically by the method of relaxation explored
practically in all the numerical solutions of the problems of the wind outflow from astrophysical objects.
The dimension of the box of the numerical simulation was (1000 × 800) expressed in gravitational
radius rg = 2GM

c2 and is located above the equatorial plane. The disk and plasma are assumed to be
cold. The disk is located in the equatorial plane in the interval from 3 to 300 rg. The verification of the
solution and details of the solution of the problem by the relaxation method are presented in work [87].
Here, we focus on how to specify the boundary conditions at the disk in order to satisfy Equations (52)
and (30).

The basic steps of the solution of this problem are the following. Firstly, we specify the distribution
of Bz over the surface of the disk from Equation (54) as

B2
z,min =

1
2

ṀΩk
r

. (66)

For the calculations, we take the field three times higher than defined by (66).
After that, we specify the mass flux density j = ρvz,0 at the disk surface. The flow from the disk

is sub Alfvenic. The initial velocity of the plasma is below the local Alfvenic velocity. The initial
velocity at the disk is taken equal to vz,0 = 0.01 · Vk. The density in this case is equal to ρ0 = j/vz,0.
Equation (30) gives us the distribution of the mass loss rate along the radius of the disk r. However,
we do not know what will be the product Bz,0Bϕ,0 at the disk surface. While Bz is specified at the
disk, the component of the magnetic field Bϕ,0 is defined from the solution of the problem of the wind
outflow in all the computational domain. We stress that the product BzBϕ,0 is not a simple function
of j. It depends on the distribution j over all the disk rather than on the value of j at the same point.
Moreover, even if the solution of the problem of the wind outflow is solved, the obtained distribution
Bz,0Bϕ,0 will not satisfy the equation for angular momentum conservation (52). The solution is not
self-consistent in this case.

We propose the following iterative procedure [88].

1. The mass flux at the inner edge of the disk Ṁedge is specified and kept constant during
the modeling;

2. The initial distribution of the mass flux Ṁn(r) as a function of r is assumed. This is the iteration
number n = 0. The most simple assumption at n = 0 is Ṁn(r) = Ṁin. Thus, Ṁ0(r) is constant.
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3. The initial distribution of the mass flux from the disk (ρvz)n is specified. At n = 0, the distribution
of (ρvz)n is not connected with the accretion rate and the solution of the problem of the wind
outflow is not self-consistent with the process of accretion.

4. Internal iterations are performed. The objective of the internal iteration is to define the distribution
of j which fulfills the angular momentum Equation (52).They are indexed by an additional index
k. Therefore, the mass flux from the disk depends on two indexes and takes the form jn,k. At every
step k, the problem of the wind outflow is solved in all of the computational domains. The steady
state solution is obtained and thus we obtain new value of BzBϕ at the disk surface. Of course,
this value does not satisfy Equation (52) for the specified Ṁn. Here, we make the next step of the
internal iterations according to the following procedure. Let us introduce function

Φk = −2r5/2BzBϕ (67)

specified at the disk surface exploring the steady state solution in the computational domain.
The equation for the angular momentum conservation (52) is reduced to

Ṁ
√

GM = Φk(r). (68)

The new mass flux (ρvz)n,k+1 is defined by the equation

jn,k+1 =
Ṁn
√

GM
(δΦk + (1− δ)Ṁn

√
GM)

jn,k, (69)

where δ is the parameter of relaxation. This step means that, if the Φ(r)k < Ṁn(r)
√

GM, then the
mass flux from the point of the disk with radius r increases and decreases if the opposite inequality
takes place. Finally, we find the distribution of the mass flux jn which satisfies Equation (52).
However, it still does not satisfy the conservation of the mass in the disk—Equation (30).

5. In this step, Equation (30) is solved taking the obtained mass distribution jn and boundary
condition Ṁ = Ṁedge at rin. We obtain a new distribution of the accretion rate Ṁn+1. This is the
external iteration. After that, the entire procedure is repeated.

As a result of this entire procedure, the steady state solution of the problem of the wind outflow
with boundary conditions, which satisfies Equations (52) and (30), is obtained. As an example of the
procedure, we present the results of three consequent external iterations (iterations on n). Figure 5
shows the distribution of Ṁn and Φ(n,k) at some n and k. This is still not a fully converged solution.
Nevertheless, there is a good coincidence of two curves at r < 200. At r > 200, the solution still has not
converged. Here, we demonstrate the largest problem of the proposed method. While the convergence
on the external iterations is rather fast, the internal iterations converge slowly. This happens for the
following reason. The reaction of the wind on the variation of the mass flux of the wind at the base of
the flow is delayed and this delay increases with r.

The toroidal magnetic field at the surface of the disk is defined by all the flow until the Alfvenic
surface. According to the theory of steady state magnetized winds, the toroidal magnetic field is
defined by regularity conditions at the Alfvenic surface [83,85]. Therefore, after variation of the mass
flux at the base of the flow, the information about this event should propagate to the Alfvenic surface
and return back to specify a new value of the toroidal magnetic field at the base. This delay can be
estimated as the time τ necessary for a signal to travel from the surface of the disk to the Alfvenic
surface. The signal propagates with the Alfvenic velocity VA = B√

4πρ
. Travel time is estimated as

τ ∼ RA/VA, where RA is proportional to r. Assuming that VA scales as r−1/2 like the Keplerian
velocity, τ scales as r3/2. Then, in our case, the relaxation time of the flow at the outer edge of the disk
exceeds the relaxation time at the inner edge by a factor of 1000. This explains the extremely slow
convergence of the flow to the self-consistent solution.
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Nevertheless, already obtained results convince us that the self-consistent solution of the cold
accretion exists not only under the self similar assumptions. Apparently, at the magnetic field
exceeding Bmin, it is possible to find a density of the mass flow from the disk that will satisfy
Equations (52) and (30) expressing mass and angular momentum conservation. This means that
actually the solution of the problem depends only on distribution of the normal component of Bz

over the surface of the disk and accretion rate at the inner radius Ṁedge. The mass flux distribution is
defined at the solution of the self-consistent problem.
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Figure 5. Distributions of Ṁn+1 (solid line) and Ṁn (dashed-dotted line) and Ṁn−1 in comparison
with Φn+1 (open circles) at some n.

8. Ratio of Kinetic to Bolometric Luminosity of the Disk

One of the main objectives of the model of the cold accretion is the explanation of the high ratio of
the kinetic luminosity of jets from AGN over the bolometric luminosity of the disks. Therefore, one of
the most important tests for the model is its ability to account for this ratio. In this section, we present
an estimation of this ratio. Energy dissipated in the disk is defined by Equation (31). This energy
is distributed among nonthermal and thermal radiation emitted by the disk. All together gives the
bolometric luminosity of the disk. The rate of dissipation (31) depends on the thickness of the disk.
Its calculation is possible only in a specific model of the disk structure. Here, we explore the SS model
of geometrically thin but optically thick disk [3]. In this model,

trϕ = −αρv2
s , (70)

where α is the viscosity parameter, and the height of the disk above equatorial plane h equals

h = r
vs

Vk
. (71)

Assumption (70) allows us to estimate the radial velocity of matter in the disk as follows

vr =
α

θ
vs . (72)

This velocity essentially exceeds the radial velocity of matter in the SS disk at θ ∼ 1 because of the
higher efficiency of the angular momentum loss. In accordance with the SS model, we assume that all
the dissipated energy goes into heating of the disk and finally is carried out by thermal radiation from
the disk surface.
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8.1. Thermal Radiation from the Disk during “Cold” Accretion

In [3], three regimes of disk accretion were considered: (a) the radiation pressure exceeding the
gas pressure and the Thomson scattering dominating over free–free absorption; (b) the gas pressure
dominating over radiation pressure but the Thomson scattering dominating free–free absorption; and
(c) the gas pressure dominating over radiation pressure and the opacity of the matter defined by
free–free absorption. We consider only the cases when gas pressure dominates over radiation pressure.
These are regimes (b) and (c). Below, we will see that, when radiation dominates, accretion proceeds in
the Shakura–Sunayev regime.

8.2. Scattering Dominating over Free–Free Absorption

Firstly, we consider the case when Thomson scattering dominates over free–free absorption
(Thomson regime). Radiation pressure Prad equals ε/3, where ε = bT4. The sound velocity is defined
as v2

s = kT/mp, where mp is the proton mass. According to [3], the heat conductivity of the disk is
defined by the transport of radiation. Then,

ε =
3
4

Qσu0

c
, (73)

where σ = 0.4 cm2/g is the Thomson opacity, and u0 = 2ρh. The rate of heating of the disk follows
from Equations (31), (51), (52) and equals

Q =
3θṀVkvs

16πr2 . (74)

We used here that h = vs/Ω. The solution of these two equations under assumption (70) yields
the temperature inside the disk

T =

√
3

4
√

π

(
θ2Ṁ2Vkσ

bαcr3

) 1
4

. (75)

The sound velocity equals

vs =
31/4

2(π)1/4

k1/2V1/8
k (θṀ)1/4σ1/8

m1/2
p b1/8α1/8c1/8r3/8

, (76)

and the density flux of radiation from one side of the disk is expressed as

Q =
35/4

32π5/4

(θṀ)5/4V9/8
k k1/2σ1/8

r19/8m1/2
p b1/8α1/8c1/8

. (77)

Let us express Ṁ = ṁṀEdd , the radius r in r = (3rg)x and the mass M in the solar masses
M = mM�. In these variables, we obtain

Q = 0.77× 1023 (θṁ)5/4

m9/8x47/16α1/8 , erg/s/cm2. (78)

The integration of this expression over the disk gives the bolometric luminosity of the disk

Lbol = 0.84× 1036 (θṁ)5/4m7/8

α1/8 , erg/s. (79)

The ratio of Lbol/LEdd is
Lbol
LEdd

= 6× 10−3 (θṁ)5/4

(αm)1/8 . (80)
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The kinetic luminosity of the jets equals the total energy release of accretion. Therefore,

Lkin =
Ṁc2

12
= 1.4× 1038mṁ, erg/s. (81)

Then, the ratio of the kinetic luminosity over the bolometric luminosity equals

Lkin
Lbol

= 170
(mα)1/8

ṁ1/4θ5/4 . (82)

The bolometric luminosity can be expressed in the conventional variables:

Lbol =
4
5

θṀVk0vs0, (83)

where Vk0 and vs0 are the Keplerian and sound velocities at the inner edge of the disk. Taking into
account that the kinetic luminosity

Lkin =
ṀV2

k0
2

, (84)

the condition Lbol/Lkin � 1 becomes

8
5

θvs0

Vk0
=

8
5

θh
r
� 1, (85)

which practically coincides with the condition of applicability of the “cold” disk accretion
approximation defined by Equation (50). A similar condition has been obtained earlier in [55]. The
condition Lkin � Lbol indicates that accretion occurs in the “cold” regime.

The temperature in the disk

T = 2.5× 107
√

θṁ
α1/4x7/8m1/4 , K (86)

is less than the temperature in the Shakura–Sunyaev disk [3] disk results in θ ∼ 1.
Let us calculate the ratio of radiation pressure over the gas pressure in the disk,

Prad
Pgas

=
3

32π

θṀσ

rc
= 0.85

θṁ
x

. (87)

This means that all our estimates are valid when 0.85θṁ < 1. Other disk parameters are estimated
as follows. The density equals

ρ =
1

2
√

3π

√
θṀV3/4

k mpb1/4c1/4

r5/4kα3/4σ1/4 = 0.6

√
θṁ

m3/4x13/8α3/4 , g/cm3. (88)

The aspect ratio of the disk is

h
r
= 3.7× 10−3 (ṁθ)1/4x1/16

(αm)1/8 . (89)

The true optical depth τ∗ =
√

σ · σf f · u0 of the disk is expressed as

τ∗ = 51(θṁ)1/8m3/16x5/32α−13/16, (90)
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where σf f = 0.11 · T−7/2n, cm2/g is the free–free opacity of the disk. The surface temperature of the
disk TS is defined from the equation bcT4

s /4 = Q and has the form

Ts = 5× 106 (θṁ)5/16

m9/32x47/64α1/32 K. (91)

8.3. Free–Free Absorption Dominating over Scattering

Under the condition

4.6× 10−3 (αm)1/10x23/20

(θṁ)
> 1 , (92)

free–free absorption exceeds Thomson scattering. Hereafter, we call this regime “free-free”. Similar
calculations yield the following temperature distribution inside the disk

T = 107 (θṁ)6/17

x12/17(α ·m)4/17 K. (93)

The bolometric luminosity of the disk is

Lbol = 0.6× 1036(θṁ)20/17m15/17α−2/17 erg/s, (94)

while
Lbol
LEdd

= 4.4× 10−3 (θṁ)20/17

(αm)2/17 . (95)

The ratio of kinetic luminosity over the bolometric luminosity equals

Lkin
Lbol

=
228(αm)2/17

ṁ3/17θ20/17 . (96)

The full optical depth, the density of plasma and the aspect ratio of the disk are given by

τ = 93(θṁ)4/17m3/17x1/34α−14/17, (97)

ρ =
1.2(θṁ)11/17

(αm)13/17 · x61/34 g/cm3, (98)

h
r
= 2.5× 10−3x5/34(θṁ)3/17(αm)−2/17, (99)

respectively. The dissipated flux of energy per unit square from one side of the disk is

Q = 5.2× 1022 θ20/17ṁ20/17

m19/17x97/34α2/17 . (100)

Finally, the surface temperature is equal to

Ts = 5.5× 106 (θṁ)5/17

m19/68x97/136α1/34 K. (101)

9. Comparison with the Fundamental Plane of Black Holes

The fundamental plane encapsulates the relationship between the compact radio luminosity, X-ray
luminosity, and the black hole mass, and provides a good description of the data over a very large
range of black hole masses. There are reasons to believe that the Fundamental Plane (hereafter, FP) of
black holes reproduces the actual relationship between the kinetic luminosity of jets and the bolometric
luminosity of the disks. In [29], the position of objects of different masses in the coordinates Lkin/Lbol
and Lbol/LEdd has been collected in one FP. If this is true, the FP can be used to extract information
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about the dependence of θ on ṁ and m. All data at the FP can be approximated by a power law
function of the form

log
Lkin
Lbol

= (A− 1) log(
Lbol
LEdd

) + B (102)

with A in the range (0.43–0.47) and B in the range from −0.94 to −1.37. For our estimates, the values
A = 0.457 and B = −1.1 around the average have been chosen.

If the empirical relationship (102) is valid, then

Lbol
LEdd

= 10−
B
A ṁ

1
A . (103)

We used here that Lkin/LEdd = ṁ in the regime of “cold” accretion. This semi empirical
relationship is very useful because it connects the bolometric luminosity of the disk with the accretion
rate directly. The equations defining Lbol and Lkin/Lbol obtained for A = 0.457 and B = −1.1 are
as follows:

Lbol = 3.6× 1040mṁ2.19 erg/s , (104)

and
Lkin
Lbol

= 3.9× 10−3ṁ−1.19. (105)

The empirical relationship (102) allows us to estimate θ. Obviously, a constant θ is not consistent
with observations. It must depend on ṁ and m. It is natural to assume that θ depends on ṁ as a
power law

θ = Dṁγ. (106)

In the Thomson regime,

X =
Lbol
LEdd

= 6× 10−3 ṁ5(γ+1)/4D5/4

(αm)1/8 , (107)

and

Y =
Lkin
Lbol

=
168(αm)1/8

D5/4ṁ(5γ+1)/4
. (108)

After simple algebraic calculations, we obtain that Y depends on X as in Equation (102) if

A =
4

5(γ + 1)
, (109)

For A = 0.457, the value γ = 3/4 = 0.75. Then, the value B = −1.1 is obtained for D =

5× 103(αm)1/10. Thus, in the Thomson regime,

θ = 5× 103ṁ3/4(αm)1/10. (110)

Similar calculations in the free–free regime yield

θ = 11.2× 103ṁ0.86(αm)1/10. (111)

The power of ṁ is chosen so as to provide uniform dependence of Y on X of the form (102) with
constant A in both regimes.

The dependencies (110) and (111) look physically reasonable. They show that, the smaller the
accretion rate, the more uniform is the magnetic field across the disk.

A plot of θ/(αm)1/10 is presented in Figure 6. θ corresponding to FP agrees with the assumption
of “cold” accretion because this curve is located well below the curve separating the regime of cold
accretion from the Shakura–Sunyaev regime. In Figure 6, the dashed-dotted line separates regions
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of domination of the gas pressure and regions of domination of the radiation pressure as defined by
Equation (87). The thin solid line separates the Thomson regime from the free–free regime.
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Figure 6. Dependence of θ/(αm)1/10 on ṁ. The Shakura–Sunyaev accretion regime takes place above
the thick dashed line. Below this line, the regime of “cold” accretion takes place. Thomson scattering
dominates above the thin solid line, while, below this line, free–free absorption gives the major
contribution in the opacity of the medium. The dashed-dotted line (calculated for m = 108) divides the
plane in two parts where radiation pressure (above) and gas pressure (below) dominate.

10. Comparison with Specific Sources

It is interesting to apply the estimated dependencies to specific sources. Below, we consider M87
and the SMBH in the galactic center, Sgr A*. We will see below that both sources are in the free–free
regime. Therefore, we used Equation (111) in our estimations. For ease of calculation, we consider the
case with α = 0.1.

10.1. M 87

For this object, ṁ and m can be easily estimated. The kinetic luminosity of this object is Lkin =

1044 erg/s, which we assume is equal to the total rate of gravitational energy released in the accretion.
The mass of the central black hole is equal to m = 3.5× 09 [89]. With the Eddington luminosity equal
to LEdd = 1.4× 1038m erg/s, we find ṁ = Lkin/LEdd = 2× 10−4. From Equations (111) and (96), we
obtain that θ = 54 and Lkin/Lbol ≈ 95. According to Equation (104), Lbol = 1042 erg/s in accordance
with observations. The optical depth of the disk exceeds τ > 104.

10.2. Sgr A*

The mass of SMBH in Sgr A* is equal to m = 4× 106 while the bolometric luminosity is Lbol ∼
1036 erg/s [34]. The kinetic luminosity of the outflow from the disk around SMBH in Sgr A* is not
known. The flux of TeV gamma-rays from the Galactic Center can be explained by very high energy
accelerated protons with a luminosity close to 1038 erg/s. The kinetic luminosity of the wind has to
be higher. Let us estimate ṁ from the bolometric luminosity of the disk (see Equation (104)). In this
case, ṁ = 8× 10−6 and θ = 1.7 at τ ∼ 103. The value of ṁ agrees with estimates of the accretion rate
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obtained from Bondi accretion of stellar winds of the order of 1021 g/s [90]. From Equation (81), we
obtain that

Lkin = 4.4× 1039 erg/s . (112)

The kinetic luminosity of the wind from the Galactic accretion disk exceeds the bolometric
luminosity of the disk 4.4× 103 times. Remarkably, this power is sufficient to explain the flux of PeV
protons from the Galactic Center.

11. Conclusions

The main energy release in the AGNs occurs as a flux of kinetic energy of the jets. The question
of the energy source of the jets is the main question to which the theory must first answer. There are
two answers to this question. In the first case, the main source of energy of the jet is the energy of
rotation of the black hole which is transformed into energy of e± jets due to the Blandford and Znajek
mechanism [42]. Only a small fraction of the gravitational energy of the accreted matter is released in
the form of radiation of the disk. The major part of the gravitational energy goes into increasing the
mass of the SMBH. This model needs additional assumptions. Accretion has to occur in the ADAF
regime to provide radiatively inefficient disks. The speed of rotation of the SMBH must be close to the
maximal possible and accretion must occur in the regime of the Magnetically Arrested Disks. In this
regime, the magnetic field is so strong that it destroys the disk. Otherwise, it is not possible to provide
the necessary energetics of jets.

In another case of “cold” accretion, the only source of energy is the gravitational energy of the
accreted matter. The major part of this energy goes into the energy of magnetized wind and a small
fraction of the energy is released in the form of radiation from the disk. An attractive feature of this
model is a natural explanation for the high kinetic power of the jets compared to the luminosity of the
accretion disk. As a bonus, the kinetic energy of particles in a jet can be orders of magnitude greater
than the kinetic energy of particles in a Kepler orbit.

“Cold” accretion does not need special conditions or exotic magnetic fields. This regime of
accretion is implemented when a magnetized wind expires from the disk. The existence of the winds
from the disks is confirmed by numerous observations. “Cold” accretion goes into Shakura–Sunyaev
accretion [3] when the loss of the angular momentum due to viscose stresses dominates the loss due
to the wind. Nevertheless, “cold” accretion occurs even when the magnetic field inside the accretion
disk essentially exceeds the magnetic field at the base of the wind. This is explained by geometry.
The angular momentum transport due to viscosity is proportional to the magnetic pressure in the disk
times the thickness of the disk h while the flux of the angular momentum from the disk is proportional
to the magnetic pressure at the base of the wind times the radius r. The ratio of viscous losses to losses
due to the wind is ∼θ · ( h

r ), where θ roughly equals the ratio of magnetic pressures inside and at the
surface of the disk. Therefore, the Shakura–Sunyaev regime of accretion is realized when θ > ( r

h ).
Estimates of the ratio of the kinetic luminosity of the jets to the bolometric luminosity of the disk

show that the current observations can be explained in the framework of “cold” accretion. Of course,
the assumption that θ is constant evidently contradicts observations. Detailed comparison of the
theoretical predictions with the Fundamental plane of the black holes shows that θ has to increase two
orders of magnitude with ṁ. This behavior of θ agrees with the results of modeling of the magnetic field
distribution in the disk [72]. This estimate allows us to obtain certain conclusions about the realization
of the regime of “cold” disk accretion. At small accretion rates ṁ < 10−2, the estimated value of θ lies
in the region well below the line where the Shakura–Sunyaev model is valid. The magnetic pressure
inside the disk appears less than the magnetic pressure estimated in the model [3]. It is reasonable
to assume that, at relatively low rates of accretion, ṁ < 10−2, accretion occurs predominantly in the
regime of “cold” accretion. At higher values of ṁ > 0.1, the accretion occurs in the regime of Shakura
and Sunyaev. The transition between the two regimes takes place at a value of ṁ between 0.01 and 0.1
that agrees well with the transition from very bright to very dim disks around SMBH with powerful
outflows deduced in [41]. Remarkably, the rough estimate of the dependence of θ on ṁ gives good
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agreements with observations of two SMBHs, M87 and Sgr A*. It is highly unlikely that such an
agreement could be accidental.
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