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Abstract: Thermal conduction plays an important role in bimodal accretion flows consisting of
high-temperature flow and cool flow, especially when the temperature is high and/or has a steep
gradient. For example, in hard-to-soft transitions of black hole accretion flows, thermal conduction
between the high-temperature region and the low-temperature region is appropriately considered.
We conducted two-dimensional magnetohydrodynamic (MHD) numerical simulations considering
anisotropic heat conduction to study condensation of geometrically thick hot accretion flows driven
by radiative cooling during state transitions. Numerical results show that the intermediate region
appears between the hot corona and the cool accretion disk when we consider heat conduction.
The typical temperature and number density of the intermediate region of the 10 M� black hole at
10Rg(Rg = 3.0× 106cm is the Schwarzschild radius) are 4× 1010 < T [K] < 4× 1012 and 5× 1015 <

n [cm−3] < 5× 1017, respectively. The thickness of intermediate region is about half of the radius.
By comparing two models with or without thermal conduction, we demonstrate the effects of
thermal conduction.

Keywords: X-ray binary; accretion disks; black hole

1. Introduction

Black hole X-ray binary systems consisting of either a high-mass X-ray binaries (HMXB) such
as “Cyg X-1” or a low-mass X-ray binaries (LMXB) such as “GX339-4” show two quasi-steady X-ray
spectral states—hard state and soft state—and state transitions between them. X-ray satellites and other
instruments have revealed the hidden nature of X-ray binaries, such as existence of the intermediate
state, jet ejections and quasi-periodic oscillations [1]. Theoretically, accretion flows in the hard state are
explained by optically thin high-temperature accretion flows, “advection-dominated accretion flows
(ADAFs)” [2,3]. On the other hand, the soft state is explained by the optically thick cool accretion disks,
“Shakura Sunyaev disks (SSDs)” [4]. To understand the structural change of accretion flows during
state transitions; however, two-dimensional or three-dimensional numerical studies are necessary.

Hard-to-soft state changes has been studied by Machida et al. by performing three-dimensional
MHD simulations considering radiative cooling by bremsstrahlung [5]. They found that the
magnetically supported mildly cool accretion disk is formed during the vertical contraction of the disk
driven by the loss of internal energy due to radiative cooling.
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Recently hydrodynamical (HD) simulations have been performed using the alpha viscosity.
Das and Sharma carried out two-dimensional HD simulations taking into account bremsstrahlung
and isotropic thermal conduction [6]. By changing the accretion rate, they reproduced transitions
from hard state to soft state and vice versa. Wu et al. carried out two-dimensional HD simulations
including synchrotron and inverse-Compton scattering in addition to thermal bremsstrahlung [7].
Moreover, they studied two-temperature structures of accretion flow, although they assume a simple
equation of ion and electron temperatures. Based on their numerical results, they proposed two-phase
accretion model for the intermediate state of black hole X-ray binaries. HD simulations with
alpha viscosity, however, cannot simulate the formation of low beta (β = p/(B2/8π) � 1) disks.
Magnetohydrodynamical approach is preferable, because the origin of viscosity in accretion disk is
believed to be the angular momentum transport driven by the magneto-rotational instability [8,9].

Thermal conduction is regarded as important in solar astronomy. Yokoyama and Shibata
performed MHD simulations to investigate solar flares by including anisotropic thermal
conduction [10–12]. The heat released by magnetic reconnection above the chromosphere is transported
downward to the chromosphere along the magnetic field line and evaporates them. Protostellar flares
are also studied taking into account thermal conduction [13]. Meyer and Meyer-Hofmeister and their
collaborators intensively studied the role of thermal conduction in accretion disk system, such as dwarf
novae and black hole accretion systems from stellar size to the size of active galactic nuclei [14,15].
Once we consider the coexistence of hot corona and cool accretion disk, inevitably evaporation occurs.
We must include the effect of thermal conduction, when we study the accretion disk surrounded by
hot corona.

We perform two-dimensional MHD simulations including thermal conduction to study the
transition from hard state to soft state, in other words, to vertical contraction of the hot accretion flow
by extracting the energy by radiative cooling. Our purpose is to study the effect of thermal conduction
for the coexistence of hot and cool region. In Section 2 we introduce the basic equations and initial and
boundary conditions. In Section 3 we present numerical results. In Section 4 we discuss and compare
the results with previous works.

2. Numerical Methods

We adopt the cylindrical coordinate (r, ϕ, z).The rotational axis is z axis. We assume axisymmetry,
therefore partial derivatives in the azimuthal direction are set equal to zero. We use the “Coordinated
Astronomical Numerical Software (CANS)” to solve the equations of resistive MHD including thermal
conduction [16]. The CANS integrates differential equations by the operator-splitting method dividing
calculations into the MHD part and thermal conduction part [12]. We adopt the modified Lax-Wendroff
method with artificial viscosity for the MHD part. For thermal conduction part, we choose the
Biconjugate gradient stabilized method (Bi-CGSTAB method) which is an implicit method to solve the
large, sparse, unsymmetrical and linear systems of equations [17,18]. The implicit method is necessary
to calculate our model because the time scale of thermal conduction is much shorter than one of the
other time scales in high-temperature regions.

2.1. Basic Equations

The basic equations are as follows:

∂ρ

∂t
+∇ · (ρv) = 0, (1)

∂ρv
∂t

+∇
(

ρvv + pI− BB
4π

+
B2

8π
I
)
− ρg = 0, (2)

∂

∂t

(
p

γ− 1
+

1
2

ρv2 +
B2

8π

)
+∇ ·

[(
γp

γ− 1
+

1
2

ρv2
)

v +
c

4π
E× B

]
− ρg · v−Qhc + Qbr = 0, (3)
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∂B
∂t

= −c∇× E, (4)

p =
ρkBT
µmH

, (5)

E = −v× B
c

+
αDB

c
+ ηj, (6)

j =
c

4π
∇× B, (7)

where ρ is the density, v is the velocity, p is the pressure, I is the unit tensor, B is the
magnetic field, g = −∇ψ is the gravitational acceleration of pseudo-Newtonian potential ψ(r, z) =
−GM/(

√
r2 + z2 − Rg) [19], G is the gravitational constant, M = 10M� is the black hole mass,

Rg = 2GM/c2 is the Schwarzschild radius, c is the speed of light, γ = 5/3 is specific heat ratio, E
is the electric field, Qhc is the heating rate due to thermal conduction, Qbr is the radiative cooling
rate by bremsstrahlung, kB is the Boltzmann constant, T is the temperature, µ = 0.5 is the mean
molecular weight of pure hydrogen medium, mH is the hydrogen mass, αD is the dynamo alpha, η is
the resistivity, j is the current density.

Let us explain Qhc, Qbr, αD and η in more detail. We employ the formula derived by Spizter for
the coefficient of thermal conduction [20]. The heating rate of thermal conduction is written as

Qhc = −∇ ·
[
−κ‖b(b · ∇)T

]
, (8)

κ‖ = 6.0× 10−7T5/2erg/(cm ·K · s). (9)

Here κ‖ is the coefficient of thermal conduction parallel to the magnetic field, b is the unit vector of
magnetic field. We ignore κ⊥ which is the tangential coefficient of thermal conductivity, since it is
much smaller than κ‖. We set the upper limit of temperature to evaluate the coefficient of thermal
conduction, T < 0.03T0.

The Radiative cooling rate by bremsstrahlung is written as

Qbr = 6.2× 1020ρ2T
1
2 erg/

(
cm3 · s

)
. (10)

The parameter of dynamo alpha αD is derived from the mean field theory of galactic dynamo [21,22].

αD =

{
−5.0× 10−3min(VS, VA)

5.0× 10−3min(VS, VA)

f or
f or

z > 0
z < 0

, (11)

where, VS =
√

γp/ρ is the sound speed, VA =
√

B2/(4πρ) is the Alfvén velocity. According to our
assumption of axisymmetry, our models cannot regenerate the poloidal components of magnetic field
enough. Therefore, we refer the mean field theory and mimic the dynamo action for poloidal magnetic
field. We assume anomalous resistivity [11,12]. The resistivity is written as follows:

η = 4π × 10−5
{

0.01 + [max(Vdrift/Vcrit − 1, 0)]2
}

, (12)

where Vdrift = j/(en) is the drift velocity, e is the elementary electric charge, n = ρ/(µmH) is the
number density, Vcrit = 0.9c is the threshold of this anomalous resistivity. We assume that there is the
upper limit of resistivity, ηmax = 4π × 10−7.
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2.2. Initial Conditions

The initial state is a torus surrounded by low-density halo. The initial gas halo is assumed to be
isothermal and non-rotating in hydrostatic equilibrium. The density of the halo is written as follows:

ρhalo = ρC exp
(
−ψ− ψ0

kThalo

)
, (13)

where ψ0 = −GM/(R0 − Rg) is the potential at (R0, 0), ρC = 3 × 10−4ρ0 = 1.1 × 10−9 g/cm3 is
the halo density at (R0, 0), Thalo = 15T0 = 5.1× 1012 K is the uniform halo temperature, T0 is the
temperature of initial torus at (R0, 0).

Initial gas torus which is embedded in the halo satisfy the polytropic relation ptorus = Kρtorus
γ =

Kρtorus
1+1/n, K being constant, n = 1/(γ− 1) = 3/2 being polytropic index [6,7]. We assume that the

gas torus has the constant angular momentum. Moreover, it is in dynamical equilibrium. From the
conditions of rotational equilibrium, we obtain

ptorus

ρtorus
= Kρtorus

γ−1 =
GM

(n + 1)R0

[
R0√

r2 + z2 − Rg
− 1

2
R0

4

(r2 + z2)
(

R0 − Rg
)2 −

1
2d

]
, (14)

where d is the distortion parameter [23]. We employ d = 1.5. The torus has the maximum density ρ0 at
(R0, 0). We obtain K by substituting above values into the Equation (13).

K =
GM

(n + 1)R0ρ0γ−1

[
R0

R0 − Rg
− 1

2
R0

2(
R0 − Rg

)2 −
1

2d

]
. (15)

Initial magnetic field is obtained according to the following manner. At first, we assume the
azimuthal component of vector potential is proportional to the torus density.Aφ = Cρtorus, C being
constant. Therefore, magnetic field is calculated as, Br = −C∂Aφ/∂z and Bz = C(Aφ/r + ∂Aφ/∂r).
Next, we rearrange the strength of magnetic field to satisfy plasma beta β = ptorus/(B2/8π) = 1000 in
the torus.

2.3. Grids and Boundary Conditions

We take a rectangular computation domain in the r-z plane. The region is rmin < r < rmax and
zmin < z < zmax, where rmin = −0.15rg, rmax = 100rg, zmin = −100rg and zmax = 100rg. We assume
that r = 0 is the rotational axis. A logarithmic grid spacing is adopted along the both r and z directions.
Here 256× 512 grids are used. At the cell-surface boundary at r = 0 between grids which are next to
each other across the rotational axis, symmetric-boundary conditions are imposed. For ρ, p, vz and Bz,
we do not change signs at the boundary. On the other hand, for vr, vφ, Br and Bφ, we change signs
at the boundary. At the boundaries at r = rmax, z = zmin and z = zmax, free-boundary conditions
are imposed. Physical quantities are extrapolated from the values inside the boundary. We impose
damping condition in the shell, rin = rg <

√
r2 + z2 < rout = 2rg, as

q′ = q− fdamp(q− qinit), (16)

fdamp =


0{

1− tanh
[
5
(

2
√

r2 + z2 − rin − rout

)
/(rout − rin)

]}
/2

1

f or
f or
f or

rout <
√

r2 + z2

rin <
√

r2 + z2
√

r2 + z2 < rin

< rout, (17)
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where q is the original value, q′ is the value modified by the damping treatment, qinit is the initial value
at t = 0, fdamp is the coefficient of damping which depends on the distance from the origin, rin = rg is
the inner radius of the shell, rout = 2rg is the outer radius of the shell.

3. Results

We carried out numerical simulations of two models. One is for a model which does not include
thermal conduction (Model 1). The other is for a model which includes thermal conduction (Model 2).
To include the heating by dissipation of magnetic energy, we carry out simulations without including
radiative cooling until t/t0 = 10. At t/t0 > 10, we incorporate radiative cooling in both cases.
The variables are normalized by the units shown in Table 1 in calculations. Results also are shown in
the units of Table 1.

Table 1. Normalization units.

Variable Quantity Unit Value

r, z Length R0 = 10rg 3.0× 107cm
vr, vφ, vz Velocity V0 = VK 7.4× 109cm/s

t Time t0 = 2πR0/Vk 2.5× 10−2s
ρ Density ρ0 3.8× 10−6g/cm3

n Number Density n0 = ρ0/µmH 4.5× 1018cm−3

T Temperature T0 = µmHVK
2/kB 3.4× 1011K

p Pressure p0 = ρ0Vk
2 2.1× 1014erg/cm3

Br, Bφ, Bz Magnetic field B0 =
√

ρ0Vk
2 1.4× 107G

VK is the Keplerian velocity at (r, z) = (R0, 0)

3.1. Results of Model 1

Figure 1 shows the results of Model 1. Upper panel shows the density distribution. Middle
panel is the distribution of temperature. Lower panel shows the distribution of magnetic energy
density. Left column is distribution at t/t0 = 10. The initial torus and magnetic field evolve and
mass accretion proceeds. After 10 rotations at the fiducial radius r/R0 = 1, the hot accretion flow
formed is geometrically thick and has the low density. It is regarded as ADAF. Middle column is the
distribution of physical quantities at t/t0 = 30. After radiative cooling is included, the accretion flow
begins to condense and settle down to the midplane (z/R0 = 0). Hot component of ADAF disappears
by t/t0 = 15. After that, the hot corona and the cool accretion disk co-exist. The temperature and
density of the cool disk is about T ∼ 10−6T0 ∼ 3× 105 K and n ∼ 10n0 ∼ 5× 1019cm−3 respectively.
The interface between the cool disk and the hot corona has steep gradients of density and temperature.
Right column shows the vertical distributions of density, temperature, and magnetic energy density
at t/t0 = 30 and of the radius r/R0 = 0.8. Black lines show the initial distributions. Blue lines show
the distribution at t/t0 = 10. We can identify the geometrically thick ADAF whose density is low,
and temperature is high. Red lines show the results at t/t0 = 30. The density of cool accretion disk
around the midplane increases. The cool accretion disk decreases the geometrical thickness. On the
other hand, the temperature of the cool accretion disk decreases. The quasi-steady state is achieved
in the cool accretion disk, where radiative cooling is balanced with heating by Joule heating and
compression. There is the steep gradient of temperature. We expect that thermal conduction plays an
important role. The region which has the large magnetic energy was confined into the cool accretion
disk. In this region plasma beta become smaller than unity. The magnetic pressure is dominant in the
cool accretion disk.
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Figure 1. Results of Model 1. (a) Distribution of number density at t/t0 = 10 before cooling term is
included. (b) Distribution of number density at t/t0 = 30. (c) Vertical distribution of number density
at three different time and at r/R0 = 0.8. Black line shows initial condition at t/t0 = 0. Blue line shows
result at t/t0 = 10. Red line shows result at t/t0 = 30. (d) Distribution of temperature at t/t0 = 10.
(e) Distribution of temperature at t/t0 = 30. (f) Vertical distribution of temperature. Color scale is the
same as (c). (g) Distribution of magnetic energy density (B/B0)

2/8π at t/t0 = 10. (h) Distribution of
magnetic energy density at t/t0 = 30. (i) Vertical distribution of magnetic energy density. Colors have
the same meaning as (c) and (f).

3.2. Results of Model 2

Figure 2 shows the results of Model 2 carried out by including thermal conduction. Upper, middle,
and lower panels, and left, center, and right columns have same meaning as Figure 1. Although we
include thermal conduction, almost the same hot accretion flow appears as Model 1. After the time
passes t/t0 = 10, the hot accretion flow condenses and produces a cool accretion disk inside. However,
the hot accretion flow does not disappear perfectly in Model 2. The hot accretion flow changes its
appearance to the intermediate region between the hot corona and the cool accretion disk. We see
the sandwich structure of three components. The intermediate region becomes denser and has lower
temperature than the corona surrounding the intermediate region. At this stage, the heat is transported
from the corona to the cool accretion flow. Temporarily the cool accretion disk is formed; however,
according to thermal conduction the disk partially evaporates gradually. In the intermediate region,
magnetic field at t/t0 = 30 is weaker than that at t/t0 = 10; however it remains stronger than Model 1
at same time.
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Figure 2. Results of Model 2. Same quantities and conditions of visualization as Figure 1.

Figure 3 shows the vertical distributions of nine physical quantities averaged between r/R0 = 0.75
and r/R0 = 0.85 at t/t0 = 30. Dashed and Solid lines represent the results of Model 1 and Model 2
respectively. Figure 3a–c show the number density, the temperature, and the pressure, respectively.
The pressure does not vary very much in the intermediate region. Therefore, the density decreases
with height (∂ ln n/∂ ln z ∼ −2) in Model 2. Meanwhile, the temperature increases with height
(∂ ln T/∂ ln z ∼ 2).

In Model 1, the density and temperature show steep gradient. The difference between Model 1
and Model 2 indicate the existence of the intermediate region. The number density and temperature
of the intermediate region are 5 × 1015 < n [cm−3] < 5 × 1017 and 4 × 1010 < T [K] < 4 × 1012,
respectively. The thickness of intermediate region is about 0.5R0. Figure 3d–f show the components
of velocity. The azimuthal component of velocity simply shows the Keplerian rotation from the cool
accretion disk to the outer corona. The radial and vertical components show the exchange of their
signs. It means that there is inflow and outflow component of the intermediate region and the lower
corona. Figure 3g–i show the vertical distributions of three components of magnetic field. Figure 3h
shows that the azimuthal component of magnetic field is dominant. This has important meaning.
If the magnetic field lines are wound tightly, it reduces the coefficient of thermal conduction in vertical
direction. Effective optical depth integrated vertically is much smaller than unity, τeff < 0.052 at
r/R0 = 0.8. The integration was done as follows:

τeff =
∫ 10R0

−10R0

ρ
√

κesκ f f dz, (18)
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where κes = 0.34 cm2g−1 is the electron scattering opacity, κ f f = 6.4 × 1022ρT−7/2cm2g−1 is the
free-free absorption opacity. The system that include intermediate region and cool accretion disk is
optically thin enough.
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Figure 3. Results of Model 1 and Model 2 at t/t0 = 30. Dashed lines represent the result of Model 1.
Solid Lines represent the results of Model 2. These panels show the vertical distributions of the nine
physical quantities averaged between r/r0 = 0.75 and r/r0 = 0.85. Black lines indicate positive values.
Red lines indicate negative values, that is, mean the absolute values of quantities. (a) Number density.
(b) Temperature. (c) Pressure. (d) Radial component of velocity. (e) Azimuthal component of velocity.
(f) Vertical component of velocity. (g) Radial component of magnetic field. (h) Azimuthal component
of magnetic field. (i) Vertical component of magnetic field.

4. Discussion

We solved the 2D MHD equations including the thermal conductivity. Previous works done by
Das and Sharma, and Wu et al. are not MHD simulations but HD simulations using alpha viscous
parameter [6,7]. We did not assume alpha viscosity. We assume that the angular momentum is
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transported mainly by the rϕ element of the magnetic stress in the rotating gas. We define viscous
alpha parameter αMHD as

αMHD =

〈
Br Bφ

4π

〉
〈p〉 =

t

Domain

Br Bφ

4π dV
t

Domain
pdV

, (19)

where “Domain” is the region of integration, 0.4 < r/R0 < 1.2, 0 < ϕ < 2π and −0.3 < z/R0 < 0.3.
Figure 4a shows the time evolution of viscous parameter αMHD. Black and red lines show the results of
Model 1 and Model 2, respectively. Before radiative cooling is included (t/t0 < 10), both calculations
exhibit the magnitude is around αMHD ∼ 0.01. This is a typical value used in hot accretion flows [6,7].
There is no large difference between our alpha parameter and ones of previous works. Hot accretion
flows do not have large difference between models with thermal conduction or not. After radiative
cooling is taken into account, the cool and dense accretion disk appears and αMHD rises and drops in
a short time. There is the maximum αMHD ∼ 0.1. In the early stage of transition, the magnetic field
changes the structure drastically and azimuthal magnetic field becomes strong by condensation [5].
That is the reason parameter αMHD shows rapid variation. The evolution of alpha parameter is not
considered in previous works. Further analysis of the angular momentum transportation will be done
in future.
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Figure 4. Evolutions of the averaged magnetic stress and integrated luminosity. Black lines show
the results of Model 1 without thermal conduction. Red lines show the results of Model 2 including
thermal conduction. (a) Averaged viscous alpha parameter αMHD =

〈
(Br/B0)

(
Bφ/B0

)
/4π

〉
/〈p/p0〉.

Integration is done in the domain of 0.4 < r/R0 < 1.2, 0 < ϕ < 2π and −0.3 < z/R0 < 0.3. (b)
Integrated luminosity normalized by the Eddington luminosity. Integration is done in the domain of
r/R0 < 10, 0 < ϕ < 2π and −10 < z/R0 < 10 excluding the region of

√
r2 + z2/R0 < 0.3. Colors

denote same meaning as (a).

Figure 4b shows the evolution of the luminosity normalized by the Eddington luminosity
LEdd = 4πGMmpc/σT = 1.26× 1039erg/s. Here mp is the proton mass and σT is the Thomson cross
section. We calculate the luminosity as

L =
y

Domain

QbrdV. (20)

Where the “Domain” means the region as 0 < r/R0 < 10, 0 < ϕ < 2π and −10 < z/R0 < 10. Black
and red lines show the results of Model 1 and Model 2, respectively, as well as Figure 4a. Despite
the appearance of the intermediate region, there is no difference between Model 1 and Model 2.
Since mainly the cool accretion disk plays a role of the radiation of bremsstrahlung, we cannot
distinguish the two models.

Figure 5a shows the radiative cooling rate of Model 2 at t/t0 = 30. Region where radiative
cooling is strong is localized in the cool accretion disk whose density is high. There is the temperature
minimum at the midplane. Therefore, the radiative cooling rate at midplane become smaller than
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accretion flows around midplane. Figure 5b shows the thermal conduction rate of Model 2 at t/t0 = 30.
Thermal conduction works at the large temperature gradient. In this region z/R0 ∼ 0.05, the vertical
magnetic field is greater than the radial magnetic field (Figure 3d,f). Heat is transported from the
intermediate region to the cool accretion disk effectively.

Galaxies 2019, 6, x FOR PEER REVIEW  10 of 14 

 


0

/ 30t t . Thermal conduction works at the large temperature gradient. In this region 0
/ 0.05z R , 

the vertical magnetic field is greater than the radial magnetic field (Figure 3d and f). Heat is 

transported from the intermediate region to the cool accretion disk effectively. 

 

(a) 

 

(b) 

Figure 4. Evolutions of the averaged magnetic stress and integrated luminosity. Black lines show the 

results of Model 1 without thermal conduction. Red lines show the results of Model 2 including 

thermal conduction. (a) Averaged viscous alpha parameter   MHD 
 

0 0 0
/ / / 4 / /

r
B B B B p p . 

Integration is done in the domain of  
0

0.4 / 1.2r R , 0 2    and   
0

0.3 / 0.3z R . (b) 

Integrated luminosity normalized by the Eddington luminosity. Integration is done in the domain of 


0

/ 10r R , 0 2    and   
0

10 / 10z R  excluding the region of  2 2

0
/ 0.3r z R . Colors 

denote same meaning as (a). 

 

(a)  

 

(b) 

Figure 5. (a) Distributions of radiative cooling rate br


0
/Q Q  of Model 2 at 

0
/ 30t t . 

 erg cm s   3 16 3

0 0 0 0
/ 5.1 10 /Q V R is normalization unit. (b) Distributions of thermal conduction 

rate hc 0
/Q Q  at 

0
/ 30t t . 

Figure 5. (a) Distributions of radiative cooling rate −Qbr/Q0 of Model 2 at t/t0 = 30. Q0 =
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)
is normalization unit. (b) Distributions of thermal conduction rate
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To compare the efficiency of thermal conduction and radiative cooling, we computed the Field
length λF without including the heating term [24,25]. When the Field length is longer than the scale
of the medium, thermal conduction dominates radiative cooling. On the other hand, when the Field
length is shorter than the scale of the medium, radiative cooling dominates thermal conduction.
Our numerical results show the magnetic field changes temporally and spatially in the r− z plane.
Since magnetic turbulence develops in the disk, we simply assume that heat conduction isotropic in
the r− z plane. The Field length computed without including the heating term is

λF =

[
κ(T)T
n2LM

] 1
2

=

[
6.0× 10−7T

5
2 T

6.2× 1022ρ2T
1
2

] 1
2

= 1.6× 108

[
(T/T0)

3

(ρ/ρ0)
2

] 1
2

cm = 5.3R0

[
(T/T0)

3

(ρ/ρ0)
2

] 1
2

. (21)

Figure 6a,b show the distribution of the Field length λF/R0 of Model 2 at t/t0 = 10 and t/t0 = 30,
respectively. In the coronal region at t/t0 = 10, since the Field length is longer than the size of the
simulation region, thermal conduction dominates radiative cooling. However, in the region r > z,
since radiative cooling becomes dominant over heat conduction, hot accretion flows can condensate by
the cooling instability. On the other hand, thermal conduction suppresses the cooling instability in the
intermediate region at t/t0 = 30.
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Figure 6. Distributions of the Field length λF/R0 of Model 2. (a) Result at t/t0 = 10 (b) Result at
t/t0 = 30.

Figure 7 shows the evolutions of mass and volume whose medium is in three temperature ranges
in the cylinder defined as 0 < r/R0 < 1.6, 0 < ϕ < 2π and −1.6 < z/R0 < 1.6 except for the sphere√

r2 + z2/R0 < 0.3. Three temperature range are T/T0 > 10 (denoted by red line), 0.1 < T/T0 < 10
(denoted by green line) and T/T0 < 0.1 (denoted by blue line), these temperature ranges are supposed
to be the hot corona, the intermediate region and the cool accretion disk, respectively. Figure 7a,b show
that the intermediate region remains by thermal conduction against radiative cooling. Although the
mass of intermediate region is small compared to cool accretion disk, the volume of intermediate region
is large compared to other temperature region (Figure 7c,d). These situations and sandwich structure
of three components is helpful to produce the hard X-ray spectral component by inverse-Compton
processes. Post process calculations by a Monte Carlo simulation for X-ray spectrum will be presented
in subsequent papers.

In this study, we considered radiative cooling by bremsstrahlung. Synchrotron radiation and
inverse-Compton scattering can change the structure of accretion disks in the equatorial region and
the intermediate region. Das and Sharma pointed out the possibility that synchrotron radiation and
inverse-Compton scattering have same dependency on the density as bremsstrahlung [6]. We think
that increase of the density may compensate the lack of radiative cooling. When we consider radiative
cooling by synchrotron radiation and inverse-Compton scattering, the formed cool accretion disk has
lower temperature and higher number density than the results of our present study. Inverse-Compton
scattering reduces the thickness of the intermediate region. On the other hand, thermal conduction
suppresses the shrinks of the intermediate region. We will perform the parameter survey of density
in future.

We set the upper limit of temperature to evaluate the coefficient of thermal conductivity, since
we solve one-temperature MHD equations. We suppose that the upper limit of temperature is
electron temperature in two-temperature accretion flows [2]. It is also useful to avoid the unusual
thermal conductivity in high-temperature and low-density corona. As is well known, ADAFs has
the two-temperature structures. The electron temperature is suppressed to be lower than the ion
temperature since the energy exchange rate between ions and electrons by the Coulomb coupling
is low due to the low density and the short free-fall time scale. It is preferable to simulate the
two-temperature MHD to consider the state transition when the intermediate region exists. Wu et al.
consider the two-temperature HD models; however, they do not calculate the two energy equations for
ions and electrons independently [7]. We are seeking to update our codes which solve two-temperature
MHD equations.
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Figure 7. Time evolution of mass and volume of Model 1 and Model 2. Results are obtained by the
integration in the domain of 0 < r/R0 < 2, 0 < ϕ < 2π and −1 < z/R0 < 1 except for the region
of
√

r2 + z2/R0 < 0.3. These are normalized by initial total mass and volume of the above domain,
respectively. (a) Model 1. Blue line shows the mass of gas whose temperature range is T/T0 < 0.1.
Green line shows the mass of 0.1 < T/T0 < 10. Red line shows the mass of 10 < T/T0. Black line
shows sum of three components. (b) Model 2. Same as (a). (c) Model 1. Time evolution of volume of
each temperature range same as (a). Colors mean same as (a). (d) Model 2. Same as (c).

The state transition is driven by the variation of the mass accretion rate. However, we do not
include the mass supply calculation in our codes. We studied the various initial condition of density,
1.0 × 10−8 < ρ0 [g/cm3] < 1.0 × 10−4. Instead of the mass supply, we choose the critical initial
condition of the density which can make the hot accretion flow condense. It is easy to obtain the results
of the MHD simulation of the state transition. Machida et al. and Wu et al. adopt this concept [5,7].
However, it is preferable to implement the subroutine of the mass supply to achieve the cycle of the
state transition in simulations by controlling the mass accretion rate [6]. This difficulty should be
solved in future.
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19. Pacyńsky, B.; Wiita, P.J. Thick accretion disks and supercritical luminosities. Astron. Astrophys. 1980, 88, 23–31.
20. Priest, E.R. Solar Magnetohydrodynamics; D. Reidel Publishing Company: Dordrecht, The Netherlands, 1982;

pp. 84–91, ISBN 9027718834.
21. Shukurov, A. Introduction to galactic dynamos. In Mathematical Aspects of Natural Dynamos; Dormy, E.,

Soward, A.M., Eds.; Taylor and Francis: New York, NY, USA, 2007; pp. 319–366. ISBN 9781420055269.
22. Oliver, G.; Elstner, D.; Ziegler, U. Towards a hybrid dynamo model for the Milky Way. Astron. Astrophys.

2013, 560, A93.
23. Papaloizou, J.C.B.; Pringle, J.E. The dynamical stability of differentially rotating discs with constant specific

angular momentum. Mon. Not. R. Astron. Soc. 1984, 208, 721–750. [CrossRef]
24. Field, G.B. Thermal instability. Astrophys. J. 1965, 142, 531–567. [CrossRef]
25. Begelman, M.C.; McKee, C.F. Global effects of thermal conduction on two-phase media. Astrophys. J.

1990, 358, 375–391. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1146/annurev.astro.44.051905.092532
http://dx.doi.org/10.1086/176343
http://dx.doi.org/10.1086/187709
http://dx.doi.org/10.1093/pasj/58.1.193
http://dx.doi.org/10.1093/mnras/stt1452
http://dx.doi.org/10.1093/mnras/stw742
http://dx.doi.org/10.1086/170270
http://dx.doi.org/10.1086/170271
http://dx.doi.org/10.1086/310429
http://dx.doi.org/10.1086/311174
http://dx.doi.org/10.1086/319440
http://dx.doi.org/10.1093/pasj/55.5.967
http://www-space.eps.s.u-tokyo.ac.jp/~{}yokoyama/etc/cans/index-e.html
http://www-space.eps.s.u-tokyo.ac.jp/~{}yokoyama/etc/cans/index-e.html
http://dx.doi.org/10.1137/0913035
http://www.netlib.org/templates/double/
http://dx.doi.org/10.1093/mnras/208.4.721
http://dx.doi.org/10.1086/148317
http://dx.doi.org/10.1086/168994
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Numerical Methods 
	Basic Equations 
	Initial Conditions 
	Grids and Boundary Conditions 

	Results 
	Results of Model 1 
	Results of Model 2 

	Discussion 
	References

