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Abstract: We have developed a cosmological model by allowing the speed of light c, gravitational
constant G and cosmological constant Λ in the Einstein filed equation to vary in time, and solved
them for Robertson-Walker metric. Assuming the universe is flat and matter dominant at present, we
obtain a simple model that can fit the supernovae 1a data with a single parameter almost as well as
the standard ΛCDM model with two parameters, and which has the predictive capability superior to
the latter. The model, together with the null results for the variation of G from the analysis of lunar
laser ranging data determines that at the current time G and c both increase as dG/dt = 5.4GH0 and
dc/dt = 1.8cH0 with H0 as the Hubble constant, and Λ decreases as dΛ/dt = −1.2ΛH0. This variation
of G and c is all what is needed to account for the Pioneer anomaly, the anomalous secular increase of
the moon eccentricity, and the anomalous secular increase of the astronomical unit. We also show
that the Planck’s constant h̄ increases as dh̄/dt = 1.8h̄H0 and the ratio D of any Hubble unit to the
corresponding Planck unit increases as dD/dt = 1.5DH0. We have shown that it is essential to consider
the variation of all the physical constants that may be involved directly or indirectly in a measurement
rather than only the one whose variation is of interest.

Keywords: astroparticle physics; astrometric anomaly; supernovae redshift; cosmology theory;
variable physical constants; VSL

PACS: 98.80.-k; 98.80.Es; 98.62.Py

1. Introduction

Variation of physical constants is a subject that is marred with semantics: What exactly is varying
and how is it being measured? There is an ongoing debate about dimensionful and dimensionless
constants (e.g., Uzan [1,2], Duff [3], Chiba [4]). Our approach therefore would be to work mostly
with easily comprehensible dimensionful constants and later on see if a meaningful relationship can
be established for a common dimensionless parameter and how it evolves with time. The physical
constants considered in this work are primarily the speed of light c, the Newton’s gravitational constant
G, the Einstein’s cosmological constant Λ, the Planck’s constant h̄, the Hubble constant H0, and the fine
structure constant α. There is a plethora of literature discussing the variation, or lack thereof, of these
physical constants and others, and there are excellent reviews on the subject [1–6]. We will therefore
limit ourselves to a selected few with direct relevance to our work. In addition, we will focus only on
the time variation of physical constants in the spirit of the cosmological principle, which assumes the
universe to be isotropic and homogeneous in space at large scale.

Varying physical constant theories gained traction after Dirac [7,8] in 1937 suggested such variation
based on his large number hypothesis that related ratios of certain scales in the universe to that of the
forces of nature. Magueijo [6] reviewed the variable speed of light (VSL) theories and their limitations
in 2003 that included theories based on hard breaking of Lorentz invariance, biometric models, local
Lorentz invariance, color dependent speed of light, extra dimension (e.g., brane-world) induced
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variation, and field functions. Farrell and Dunning-Davis [9] discussed in 2004 the VSL theories that
were used as alternatives to the inflationary model of the universe and reviewed evidence for the same.

Maharaj and Naidoo [10] introduced variable G and Λ in Einstein field equation using
Robertson-Walker metric in 1993. Belenchon and Chakrabarty [11] added the variation of c to
develop a perfect fluid cosmological model in 2003. Recently (2017) Franzmann [12] developed an
approach that included space as well as time dependence of the constants. More recently Barrow and
Magueijo [13] proposed that the constants be considered as quantum observables in a kinematical
Hilbert space. These works are mostly theoretical and do not directly offer how much exactly they
vary and if they can directly explain some observations or measurements. Our focus will be to develop
a model that can be used to explain certain anomalies, hitherto not explained satisfactorily, as well as
the redshift vs distance modulus data on supernovae 1a better than alternative models.

The possible variation of the fine structure constant α has been of great interest as it is perhaps
the most basic dimensionless constant in physics. Rosenband et al. [14] have put a constraint on the
.
α/α = (−1.6± 2.3) × 10−17yr−1 derived from the constancy of the ratio of aluminum and mercury
single-ion optical clock frequencies. More recently Gohar [15], using his entropic model of the universe
and data on supernovae 1a, baryon acoustic oscillations, and cosmic microwave background, has
established even more stringent constraint on the variation of α. Additionally, he states that in his
model G and c should be increasing with the evolution of the universe, which corroborates our findings
in this work. Similar constraints on α were shown by Songaila and Cowie [16] from the observation of
narrow quasar absorption lines at redshift z > 1.5. There is a significant amount of work on the subject,
most of it can be found referenced in the papers cited above.

If α does vary, no matter how small the variation, it is normal to ask what causes its
variation—electric charge e, c or h̄? We will show that since c and h̄ variations cancel out, it is e
that should be considered responsible for the variation of α if there is any.

We will solve the Einstein field equation with varying c, G and Λ with Robertson-Walker metric
in Section 2, and show that

.
Λ/Λ = −1.2H and

.
H/H = −0.6H where H is the Hubble parameter.

Based on the Hofmann and Müller’s [17] determination of a very tight constraint on the variation of
G from the analysis of laser lunar ranging data of more than 40 years, we will establish in Section 3
that

.
G/G = 5.4H and

.
c/c = 1.8H. Section 4 is devoted to the derivation of the expression for distance

modulus µ of an intergalactic light emitting source in terms of its redshift z. Section 5 delineates the
methodology for fitting the µ− z data and applying the same to the new model, the variable c, G and
Λ (VcGΛ) model, and for comparison also to the standard ΛCDM model. Having shown that the
VcGΛ model fits the supernovae 1a µ− z data almost as well as the ΛCDM model and has predictive
capability better than the latter, we will proceed to demonstrate that the model can explain the three
astrometric anomalies that have not yet been explained satisfactorily. All we need to explain these
anomalies is

.
G/G = 5.4H0 and

.
c/c = 1.8H0 at current time with H0 as the Hubble constant.

The first anomaly we will consider here is the Pioneer anomaly, which refers to the near constant
acceleration back towards the sun, observed when a spacecraft cruises on a hyperbolic path away
from the solar system (Anderson et al., 1998 [18]). Many explanations have been given for such an
anomaly but none appears to be satisfactory and they are difficult to incorporate in the models used for
real time spacecraft astrodynamics. Principal among these explanations are as follows: (a) Turyshev
et al. [19] in 2012 tried to explain the anomaly as being due to the recoil force associated with an
anisotropic emission of thermal radiation off the spacecraft. However, it is not clear why it should be
the same for Pioneer 10/11, Galileo and Ulysses spacecrafts. (b) Feldman and Anderson [20] in 2015
used “the theory of inertial centers” [21] to develop a model to compute the anomaly. (c) Kopeikim [22]
in 2012 used Hubble expansion of the universe to address the anomaly and gave a reason why one
should see deceleration rather than acceleration of the spacecraft due the expansion of the universe.
These approaches are rather circuitous and depend on many assumptions to explain the anomaly.
Feldman and Anderson [20] allocated 12% of the total anomalous acceleration of 8.74± 1.33× 10−10 m
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s−2 to various thermal contributions, leaving 7.69± 1.17× 10−10 m s−2 that requires other explanations.
In Section 6 we will try to explain this unexplained Pioneer acceleration.

The lunar laser ranging technique has improved to the extent that it can determine the lunar
orbit with an accuracy of better than a centimeter. The moon’s orbit has an eccentricity that depends
on the tidal forces due to surficial and the geophysical processes interior to Earth and the moon.
After all the known sources responsible for the eccentricity e were included, Williams and Dickey [23] in
2003 estimated that there remained a discrepancy of ∆

.
e = (16± 5) × 10−12 yr−1 between the observed

and calculated values. This value was revised downward by Williams and Boggs [24] in 2009 to
∆

.
e = (9± 3)× 10−12 yr−1 and by Williams, Turyshev and Boggs [25] in 2014 to ∆

.
e = (5± 2)× 10−12 yr−1

with updated data and tidal models. With additional terrestrial tidal modeling, William and Boggs [26]
in 2016 were able to further reduce the number and stated that it might even be negative. While these
authors possibly felt that unexplained secular increase of the eccentricity was due to the deficiency
in their model and therefore a better tidal modeling should eliminate it, others feel that the anomaly
may be pointing to some unknown physical process. There have been attempts to resolve the
anomaly using Newtonian, relativistic and modified gravity approaches [27–29] as well as using some
unfamiliar gravitational effects [27]. Reviews by Anderson and Nieto [30] in 2009 and Iorio [31] in
2015 have covered the above and additional attempts to solve the problem. It appears that none
of the models secularly affect the lunar eccentricity. Attempts of cosmological origin were also not
successful [22,29,32,33]. We attempt to explain this anomaly in Section 7 with the varying G and c
approach developed here.

The anomalous secular increase of astronomical unit AU was first reported by Krasinsky and
Brumberg [34] in 2004 as dAU/dt = (15 ± 4) m cy−1 from the analysis of all radiometric measurements
of distances between Earth and the major planets they had available over the period 1971–2003, which
included the observations of Martian landers and orbiters. They noted that unexplained secular
increase in AU might point to some fundamental features of space time that are beyond the current
cosmological understanding according to which the Hubble expansion yields dAU/dt = 1 km cy−1.
This value is almost two orders of magnitude higher than observed. Their theoretical analysis revealed
that the relativistic calculations that included the gravitational shift of proper time gave null results.
Anderson and Nieto [30] in 2009 corroborated Krasinsky and Brumberg’s [34] findings. They showed
that the effect of the loss of solar mass on AU is miniscule and will cause the AU to shrink rather
than increase (dAU/dt = −0.34 cm cy−1). Iorio [31] in 2015 reviewed the status of the AU anomaly in
significant details and concluded that, considering the various unsatisfactory attempts to explain the
anomaly and the new IAU definition of astronomical unit, the anomaly no longer exists (just by virtue
of new definition). We show in Section 8 that the AU anomaly based on the old definition can be easily
explained with the new approach.

Section 9 shows how we obtain the variation of } from the null result on the variation of fine
structure constant. We explore the relationship between Planck units and Hubble units in Section 10,
and show that all units have the same constant relating them, and then determine how this constant
evolves in time. Section 11 is devoted to discussion and Section 12 to conclusions.

2. Evolutionary Constants Model

We will develop our model in the general relativistic domain starting from the Robertson-Walker
metric with the usual coordinates xµ (ct, r, θ, φ) :

ds2 = c2dt2
− a(t)2[

dr2

1− ksr2 + r2(dθ2 + sin2 θdφ2)] (1)

where a(t) is the scale factor and ks determines the spatial geometry of the universe: ks = −1 (closed),
0 (flat), +1 (open). The Einstein field equations may be written in terms of the Einstein tensor Gµν,
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metric tensor gµν, energy-momentum tensor Tµν, cosmological constant Λ, gravitational constant G
and speed of light c, as:

Gµν + Λgµν = −
8πG

c4
Tµν (2)

When solved for the Robertson-Walker metric, we get the following non-trivial equations for the
flat universe (kS = 0) of interest to us here, with p as the pressure and ε as the energy density [10]:

..
a
a
+

1
2

( .
a
a

)2

= −
4πG

c2 p +
1
2

Λ (3)

.
a2

a2 =
8πG
3c2 ε+

1
3

Λ (4)

If we do not regard G, c and Λ to be constant and define K ≡ G
c2 , we may easily derive the continuity

equation by taking time derivative of Equation (4) and substituting in Equation (3) (see Appendix A):

.
ε+

3
.
a
a
(ε+ p) +

.
K
K
ε+

.
Λ

8πK
= 0 (5)

This reduces to the standard continuity equation when K and Λ are held constant. And since the
Einstein field equations require that the covariant derivative of the energy-momentum tensor Tµν be
zero, we can interpret Equation (5) as comprising of two continuity equations [10], viz:

.
ε+

3
.
a

a
(ε+ p) = 0 (6)

8πε
.
K +

.
Λ = 0 (7)

This separation simplifies the solution of the field equations (Equations (3) and (4)). Equation (6)
yields the standard solution for the energy density ε = ε0a−3(1+w). Here w is the equation of state
parameter defined as p ≡ wε with w = 0 for matter, 1/3 for radiation and −1 for Λ.

As has been explicitly delineated by Magueijo in several of his papers (e.g., reference [35]), this
approach is not generally Lorentz invariant albeit relativistic. Strictly speaking we should have used
the Einstein-Hilbert action to obtain correct Einstein equations with variable G and c as scalar fields.
Thus, one may consider the current formulation quasi-phenomenological.

Since the expansion of the universe is determined by H(t) ≡
.
a/a, it is natural to assume the

time dependence of any time dependent parameter to be proportional to
.
a/a (the so called Machian

scenario—Magueijo [6]). Let us therefore write:

.
K
K

= k
( .

a
a

)
,

.
Λ
Λ

= l
( .

a
a

)
and

.
H
H

= m
( .

a
a

)
, i.e., (8)

K = K0ak, Λ = Λ0al and H = H0am. (9)

where k, l and m are the proportionality constants, and subscript zero indicates the parameter value at
present (t = t0). With this substitution in Equation (4) we may write:

.
a2

a2 = H2
0a2m =

8π
3
(K0ak)ε0a−3(1+w) +

1
3

Λ0al. (10)

Comparing the exponents of the only time dependent parameter a of all the terms, we may write
2m = k− 3− 3w = l, and with w = 0 for matter, we have 2m = k− 3 = l. Thus, if we know k, we know
l and m.
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We can now have a closed analytical solution of Equation (10) as follows (since a(t0) ≡ 1):

a(t) =
a(t)
a(t0)

=

(
t
t0

) 2
3+3w−k

;
.
a
a
=

2
3 + 3w− k

t−1; (11)

..
a
.
a
=

( .
a
a

)(
1−

3 + 3w− k
2

)
; and − q ≡

..
aa
.
a2 =

−1− 3w + k
2

(12)

where q is the deceleration parameter. It may be noticed that q does not depend on time, i.e., q0 = q.
As we know the radiation energy density is negligible at present, and dark energy Λ is implicitly
included in the above formulation, so we need to be concerned with the matter only solutions, i.e.,
with w = 0.

The deceleration parameter q0 has been analytically determined on the premise that expansion of
the universe and the tired light phenomena are jointly responsible for the observed redshift, especially
in the limit of very low redshift [36]. One could see it as if the tired light effect is superimposed on
the Einstein de Sitter’s matter only universe rather than the cosmological constant [37]. By equating
the expressions for the proper distance of the source of the redshift for the two, one gets q0 = −0.4.
Then from Equation (12) we get k = 1.8, and also l = −1.2 and m = −0.6. We thus have from
Equation (8)

.
K/K = 1.8H,

.
Λ/Λ = −1.2H and

.
H/H = −0.6H.

3. Varying G and c Formulation

Having determined the value of k = 1.8, and since the Hubble parameter is defined as H =
.
a/a,

we may write from Equations (8) and (9):

K = K0a1.8, and

.
K
K

= 1.8H. (13)

We may also write explicitly:
.
K
K

=

.
G
G
−

2
.
c
c

= 1.8H. (14)

Taking H at the present time as H0 ' 70 km s−1 Mpc−1 (2.27 ×10−18 s−1) we get
.
K
K = 4.09 ×

10−18 s−1 = 1.29 ×10−10 yr−1.
The findings from the Lunar Laser Ranging (LLR) data analysis provides the limits on the variation

of
.

G/G (7.1± 7.6 ×10−14) [17], which is considered to be about three orders of magnitude lower than
was expected [7,8,38]. However, the LLR data analysis is based on the assumption that the distance
measuring tool, i.e., the speed of light, is constant and non-evolutionary. If this constraint were dropped
then the finding would be very different.

As is well known [39], a time variation of G should show up as an anomalous evolution of the
orbital period P of astronomical bodies expressed by Kepler’s 3rd law:

P2 =
4π2r3

GM
, (15)

where r is semi-major axis of the orbit, G is the gravitational constant and M is the mass of the bodies
involved in the orbital motion considered. If we take time derivative of Equation (15), divide by P2

and rearrange, we get:
.

G
G

=
3

.
r

r
−

2
.
P

P
−

.
M
M

(16)
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If we write r = ct then
.
r
r = 1

t +
.
c
c . Here t may be considered associated with the Hubble time (i.e.,

1/H), as are other quantities. We may now rewrite Equation (16) as:

.
G
G
−

3
.
c

c
=

3
t
−

2
.
P

P
−

.
M
M

. (17)

Since LLR measures the time of flight of the laser photons, it is the right hand side of Equation (17)
that is determined from LLR data analysis [17] to be 7.1± 7.6 × 10−14 and not the right hand side of
Equation (16).

Then, taking the right hand side of Equation (17) as 0 and combining it with Equation (14), one
can solve the two equations and get

.
G/G = 5.4H and

.
c/c = 1.8H. It should be emphasized that both

.
G/G and

.
c/c are positive and thus both of them are increasing with time rather than decreasing, as is

generally believed (e.g., [7,8,40]). This may be considered as the most significant observational finding
of cosmological consequences just by studying the Earth–moon system.

4. Redshift vs. Distance Modulus

The distance d of a light emitting source in a distant galaxy is determined from the measurement
of its bolometric flux f and comparing it with a known luminosity L. The luminosity distance dL is
defined as:

dL =

√
L

4π f
(18)

In a flat universe the measured flux could be related to the luminosity L with an inverse square
relation f = L/

(
4πd2

)
. However, this relation needs to be modified to take into account the flux losses

due to the expansion of the universe through the scale factor a, the redshift z and all other phenomena
that can result in the loss of flux. Generally accepted flux loss phenomena are as follows [41]:

a. Increase in the wavelength causes a flux loss proportional to 1/(1 + z).
b. In an expanding universe, an increase in detection time between two consecutive photons

emitted from a source leads to a reduction of flux proportional to a, i.e., proportional to 1/(1 + z).

Therefore, in an expanding universe the necessary flux correction required is proportional to
1/(1 + z)2. The measured bolometric flux fB and the luminosity distance dL may thus be written as:

fB = L/[4πd2(1 + z)2] and, (19)

dL = d(1 + z). (20)

How does d compare with and without varying c? Let us first consider the case of non-expanding
universe. The distance from the point of emission at time te to the point of observation at time t0 may
be written as dc =

∫ t0

te
c dt. Therefore for constant c = c0:

dc0 = c0t0(1−
te

t0
) (21)

When c = c0a1.8, and since a =
(

t
t0

) 2
1.2 from Equation (11), we may write:

dc = c0

∫ t0

te

(
t
t0

)3

dt =
c0

t3
0

∫ t0

te

t3dt =
1
4

c0t0

1−
t4
e

t4
0

. (22)
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The ratio of the two distances may be considered the normalization factor F when using the
variable c in calculating the proper distance of a source. Since a ≡ 1/(1 + z), we may write for the
source of redshift z with emission time te :

te

t0
= a(z)0.6, or (23)

te

t0
= (1 + z)−0.6. (24)

Now the proper distance of the source with variable c may be defined as [41] (page 105):

dPc =

∫ t0

te

(
c
a
) dt =

∫ t0

te

(
c0a1.8

a
) dt = c0

∫ t0

te

a0.8 dt= c0

∫ t0

te

(
t
t0

) 4
3

dt =
3
7

c0t0[1−
(

te

t0

) 7
3

]. (25)

From Equation (11) H0 ≡
.
a/a = (2/1.2)t−1

0 . Therefore:

dPc =
1

1.4
(c0/H0)[1− (1 + z)−1.4]. (26)

Thus the expression for d to be substituted in Equation (20) to determine the luminosity distance
of the source is d = dPcF.

Since the observed quantity is distance modulus µ rather than the luminosity distance dL, we will
use the relation:

µ = 5 log(dL) + 25, (27)

µ = 5 log(
1

1.4
R0(1− (1 + z)−1.4) + 5 log(F(z)) + 5 log(1 + z) + 25, (28)

where R0 ≡ c0/H0 and all the distances are in Mpc. It is the only free parameter in Equation (28).
We will compare the new model, hereafter referred to as the VcGΛ (variable c, G and Λ) model,

with the standard ΛCDM model, which is the most accepted model for explaining cosmological
phenomena, and thus may be considered the reference models for all the other models. Ignoring the
contribution of radiation density at the current epoch, we may write the distance modulus µ for redshift
z in a flat universe for the ΛCDM model as follows [42]:

µ = 5 log[R0

∫ z

0
du/

√
Ωm,0(1 + u)3 + 1−Ωm,0]+5 log(1 + z) + 25. (29)

Here Ω0,m is the current matter density relative to critical density and 1 −Ωm,0 ≡ ΩΛ,0 is the
current dark energy density relative to critical density.

5. Supernovae Ia z-µ Data Fit

We tried the VcGΛ model developed here to see how well it fits the best supernovae Ia data [43] as
compared to the standard ΛCDM model. The data fit is shown in Figure 1. The VcGΛ model requires
only one parameter to fit all the data (H0 = 68.90± 0.26 km s−1 Mpc−1), whereas the ΛCDM model
requires two parameters (H0 = 70.16± 0.42 km s−1 Mpc−1 and Ωm,0 = 0.2854± 0.0245).

The data used in this work is the so-called Pantheon Sample of 1048 supernovae Ia in the range of
0.01 < z < 2.3 [43]. The data is in terms of the apparent magnitude and we added 19.35 to it to obtain
normal luminosity distance numbers as suggested by Scolnic [43]. To test the fitting and predictive
capability of the two models, we divided the data in 6 subsets: (a) z < 0.5; (b) z < 1.0; (c) z < 1.5; (d)
z > 0.5; (e) z > 1.0; and (f) z > 1.5. The idea is to parameterize a model with a low redshift data subset
and then see how the model, using parameters thus obtained, fits the remaining redshift data. In
addition, we considered the fits for the whole data. The models were parameterized with subsets (a),
(b) and (c). The parameterized models were then tried to fit the data in the subsets that contained data
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with z values higher than in the parameterized subset. For example if the models were parameterized
with data subset (a) z < 0.5, then the models were fitted with the data subsets (d) z > 0.5, (e) z > 1.0
and (f) z > 1.5 to examine the models’ predictive capability.
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The Matlab curve fitting tool was used to fit the data by minimizing χ2 and the latter was used
for determining the corresponding χ2 probability [44] P. Here χ2 is the weighted summed square of
residual of µ:

χ2 =
N∑

i=1

wi
[
µ(zi; R0, p1, p2 . . .) − µobs,i

]2
, (30)

where N is the number of data points, wi is the weight of the ith data point µobs,i determined from the
measurement error σµObs,i in the observed distance modulus µobs,i using the relation wi = 1/σ2

µObs,i
, and

µ(zi; R0, p1, p2, . . .) is the model calculated distance modulus dependent on parameters R0 and all
other model dependent parameter p1, p2, etc. As an example, for the ΛCDM models considered here,
p1 ≡ Ωm,0 and there is no other unknown parameter.

We then quantified the goodness-of-fit of a model by calculating the χ2 probability for a model
whose χ2 has been determined by fitting the observed data with known measurement error as above.
This probability P for a χ2 distribution with n degrees of freedom (DOF), the latter being the number
of data points less the number of fitted parameters, is given by:

P(χ2, n) =

 1

Γ
(

n
2

) 
∫
∞

χ2
2

e−uu
n
2−1du, (31)

where Γ is the well know gamma function that is generalization of the factorial function to complex and
non-integer numbers. The lower the value of χ2, the better the fit, but the real test of the goodness-of-fit
is the χ2 probability P; the higher the value of P for a model, the better the model’s fit to the data.
We used an online calculator to determine P from the input of χ2 and DOF [45]. Our primary
findings are presented in Table 1. The unit of the Hubble distance R0 is Mpc and that of the Hubble
constant H0 is km s−1 Mpc−1. The table is divided into four categories vertically and four categories
horizontally. Vertical division is based on the parameterizing data subset indicated in the second row
and discussed above. The parameters determined for each model are in the first horizontal category.
The remaining horizontal categories show the goodness-of-fit parameters for higher redshift subsets
than those used for parameterizing the models. Thus this table shows the relative predictive capability
of the two models. The model cells with the highest probability in each category are shown in bold
and highlighted.
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Table 1. Parameterizing and prediction table for the two models. This table shows how well a model is able to fit the data that is not used to determine the model
parameters. The unit of R0 is Mpc and of H0 is km s−1 Mpc−1. P% is the χ2 probability in percent that is used to assess the best model for each category; the higher the
χ2 probability P, the better the model fits to the data. R2 is the square of the correlation between the response values and the predicted response values. RMSE is the
root mean square error. Highest P% value in each category is shown in bold and the cell highlighted.

Action/Item ΛCDM VcGΛ ΛCDM VcGΛ ΛCDM VcGΛ ΛCDM VcGΛ

Parameterized Model Dataset z < 0.5; 832 Points Model Dataset z < 1.0; 1025 Points Model Dataset z < 1.5; 1042 Points Model Dataset all; 1048 Points

R0 4259 ± 34 4337 ± 18 4269 ± 27 4351 ± 17 4271 ± 26 4352 ± 17 4273 ± 26 4351 ± 16

Ωm,0 0.2601 ± 0.0457 NA 0.2793 ± 0.0261 NA 0.2818 ± 0.0249 NA 0.2845 ± 0.0245 NA

H0 70.39 ± 0.56 69.13 ± 0.29 70.23 ± 0.44 68.90 ± 0.27 70.19 ± 0.42 68.89 ± 0.27 70.16 ± 0.42 68.90 ± 0.25

χ2 863.5 889.4 1018 1060 1033 1074 1036 1076

DOF 830 831 1023 1024 1040 1041 1046 1047
P% 20.39 7.83 53.82 21.15 55.53 23.26 58.11 26.02
R2 0.9961 0.9960 0.9969 0.9968 0.9970 0.9969 0.9970 0.9969

RMSE 1.020 1.035 0.9977 1.017 0.9965 1.016 0.9951 1.014

Model Fit Dataset z > 0.5; 216 points Dataset z > 0.5; 216 points Dataset z > 0.5; 216 points Dataset z > 0.5; 216 points

χ2 176.9 190
NOT APPLICABLE SINCE THIS

DATASET INCLUDES THE
DATASET USED TO

PARAMETERIZE THE MODEL

NOT APPLICABLE SINCE THIS
DATASET INCLUDES THE

DATASET USED TO
PARAMETERIZE THE MODEL

NOT APPLICABLE SINCE THIS
DATASET INCLUDES THE

DATASET USED TO
PARAMETERIZE THE MODEL

DOF 216
P% 97.59 89.84
R2 0.9605 0.9575

RMSE 0.905 0.938

Model Fit Dataset z > 1.0; 23 points

χ2 19.54 17.01 17.59 16.75
NOT APPLICABLE SINCE THIS

DATASET INCLUDES THE
DATASET USED TO

PARAMETERIZE THE MODEL

NOT APPLICABLE SINCE THIS
DATASET INCLUDES THE

DATASET USED TO
PARAMETERIZE THE MODEL

DOF 23
P% 66.94 80.43 77.93 82.13
R2 0.8741 0.8904 0.8867 0.8921

RMSE 0.9216 0.86 0.8746 0.8533

Model Fit Dataset z > 1.5; 6 points

χ2 4.090 1.946 3.167 1.983 3.076 1.986
NOT APPLICABLE SINCE THIS

DATASET INCLUDES THE
DATASET USED TO

PARAMETERIZE THE MODEL

DOF 6
P% 66.44 92.45 78.76 92.12 79.92 92.09
R2 0.5993 0.8093 0.6897 0.8057 0.6986 0.8054

RMSE 0.8256 0.5696 0.7265 0.5749 0.716 0.5754
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6. Pioneer Anomaly

Having determined the values of
.

G/G and
.
c/c we can now proceed to calculate the anomalous

acceleration towards the sun of Pioneer 10 and 11 spacecraft [20]. Since the gravitational pull of the sun

on the spacecraft decreases according the inverse square law,
.

G
G cannot be expected to give a constant

acceleration independent of the distance of the spacecraft. If the acceleration is denoted by f , one can
easily work out, using the Newtonian relation f = GM/r2, that

.
f / f = −3.74 × 10−19 s−1, which yields

negligible anomalous acceleration. Thus, we need to only consider the effect of
.
c/c from a different

perspective. If the spacecraft is at a distance r0 from Earth then the signal from Earth will have a two
way transit time ∆t given by 2r0 = c0∆t, assuming c0 as the speed of light. But, if the speed of light is
evolving as

.
c/c = 1.8H0 near t = t0, i.e., as c = c0e1.8H0(t−t0) during the transit time, then the actual

transit time will be shorter than ∆t (since c > c0 for t > t0). Because of the shorter actual transit time, an
observer would consider the spacecraft to be nearer to Earth than it actually is and thus would think
that there is a deceleration of the spacecraft due to some unaccounted-for cause.

We could write the proper distance of the spacecraft rp and its apparent distance ra as:

2ra = c0∆t, and

2rp = c0
∫ ∆t

0 e1.8H0tdt = c0
1.8H0

(
e1.8H0∆t

− 1
)
,

and since 1.8H0∆t� 1,
2rp = c0

1.8H0
[
(
1 + 1.8H0∆t + 1

2 (1.8H0)
2∆t2 . . . .

)
− 1], or

rp = 1
2 c0∆t + 1.8H0

4 c0∆t2 = ra +
1
2 (0.9H0c0)∆t2, or

(32)

ra = rp −
1
2
(6.129× 10−10 m s−2)∆t2. (33)

Thus the acceleration is −6.129 × 10−10 ms−2, and since it is negative, it is towards the observer
at Earth.

Out of 7.69 ± 1.17 × 10−10 ms−2 anomalous acceleration of Pioneer 10 and 11 towards the
sun (truly towards Earth) we are able to analytically account for 6.129 × 10−10 ms−2, leaving only
1.56± 1.17 × 10−10 ms−2 as the anomaly.

It should be mentioned that Kopeikin [22] has obtained essentially the same result and explained it
as due to the cosmological effect of quadratic divergence between the electromagnetic and atomic time
scales governing the propagation of radio waves in the Doppler tracking system and the atomic clock
on Earth, respectively. However, his approach is not conducive to explaining the other two anomalies.

7. The Moon’s Eccentricity Anomaly

The eccentricity e of the orbit of the moon may be written as [46]:

e =

√
1 +

2εh2

µ2 , or e2
− 1 =

2εh2

µ2 . (34)

where ε = −µ/2am is the specific orbital energy, µ = G(me + mm); here the gravitational parameter
for the Earth–moon system, h = r × v me/Mr is the specific relative angular momentum, am is the
semi-major axis of the orbit, me is mass of Earth, mm is the mass of the moon, r is the radius vector and
v is the velocity vector of the moon, and Mr = memm/(me + mm) is the reduced mass. Taking am = r
and assuming r is normal to v, we may write Equation (34) as:

1− e2 =
rv2

G

(
me + mm

m2
e

)
. (35)
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Differentiating this equation with respect to time, assuming the mass factor to be constant, and
dividing by the same equation, we get:

−
e

.
e

1− e2 =

.
r
r
+

2
.
v

v
−

.
G
G

(36)

and, since e� 1:

e
.
e =

.
G
G
−

.
r
r
−

2
.
v

v
. (37)

Since r is measured by electromagnetic waves, the measuring tool for distance, the speed of light,
enters in it, i.e., r = ct, or

.
r = v =

.
ct + c

.
t, or

.
r
r =

.
c
c +

1
t . Since all the parameters are expressed at

current time, t in the denominator must be expressed in terms of the Hubble time 1/H0. However, it
is better to write t = pH−1

0 where (1− p) is the small factor very close to 0 that may be considered to

correct for the approximations made in our model (p here is not pressure). We can also determine
.
v
v :

.
v =

..
r =

..
ct +

.
c +

.
c = 2

.
c, assuming

.
c as constant. Thus

.
v
v = 2

.
c.

ct+c
= 2

.
c

c /(
.
c
c t + 1). We may therefore write

Equation (37) as:

e
.
e =

.
G
G
−

( .
c
c
+

1
t

)
−

4
.
c

c
/(

.
c
c

t + 1), or (38)

e
.
e

H0
= 5.4−

(
1.8 +

1
p

)
−

7.2
1.8p + 1

. (39)

For p = 1, e
.
e/H0 = 0.0285715 and taking H0 = 0.716 × 10−10 yr−1, and e = 0.0549 for the

moon, we get
.
e = 37 × 10−12 yr−1. This is about twice the original value of the anomalous rate of

eccentricity increase.
The value determined is very sensitive to the value of the parameter p. We have therefore plotted

dimensionless eccentricity variation e
.
e/H0 against p in Figure 2. It can be approximated near p = 1

with the expression:
e

.
e

H0
= 0.0285714 + 2.65306(p− 1). (40)

Galaxies 2019, 7, x FOR PEER REVIEW 11 of 17 

 

a. 𝑒̇ = 16 ± 5 × 10−12 yr−1 originally estimated by Williams and Dickey in 2003 [23]; it gives 

𝑝 = 0.993855 ± 0.001445. 

b. 𝑒̇ = 9 ± 3 × 10−12 yr−1, the updated value using more data and ‘better’ tidal effect model by 

Williams and Boggs in 2009 [24]; it gives 𝑝 = 0.991832 ± 0.000867. 

c. 𝑒̇ = 5 ± 2 × 10−12 yr−1, the updated value with even more data and ‘even better’ tidal effect 

model by Williams et al. in 2014 [25]; it gives 𝑝 = 0.990676 ± 0.000578. 

All the values of 𝑝 are very close to 1, indicating that our model is a very good approximation 

to the exact solution of the Einstein field equations, at least locally, with variable 𝑐 and 𝐺. Even 

lower and negative values of 𝑒̇ derived by Williams and Boggs in 2016 [26] can be easily explained 

with this approach. The question remains—is it the tidal model's deficiency that is being corrected 

or is it presumed that there could be no other cause for the anomaly? 

 

Figure 2. Dimensionless eccentricity variation 𝑒𝑒̇/𝐻0 plotted against age of the universe parameter 𝑝. 

8. Astronomical Unit (AU) Anomaly 

The orbit of Earth around the sun is Keplerian and thus is governed by Equation (15). A 

radiometric measurement will therefore yield a null result in our approach using evolutionary 

G and c. However, the eccentricity evolution is equally valid for the moon and Earth. Thus applying 

Equation (39) to Earth’s orbit, and assuming 𝑝 = 1 and 𝑒 = 0.0167, we get 𝑒̇ = 122.5 × 10−12 yr−1. 

This can be translated easily into AU increase as follows. The semi-major axis 𝑎 and semi-minor 

axis 𝑏 of an orbit may be written as [46]: 

𝑎 =
𝑝𝑠

1−𝑒2, and 𝑏 =
𝑝𝑠

√1−𝑒2
. (41) 

where, 𝑝𝑠 = 𝑎 = 𝑏 defines a circle when 𝑒 = 1. AU may then be written as: 

AU =
𝑎+𝑏

2
=

𝑝𝑠

2
(

1

1−𝑒2 +
1

√1−𝑒2
) = 𝑝𝑠(1 +

3

4
𝑒2 +

11

16
𝑒4 + 𝑂(𝑒6)). (42) 

Suppose now that the eccentricity 𝑒 increases by 𝛥𝑒 to 𝑒′ in a time period 𝛥𝑡. Then 𝑒′ = 𝑒 +

𝛥𝑒 and 𝑒′2 = 𝑒2 + 2𝑒2𝛥𝑒  when we ignore higher order terms in 𝛥𝑒 . We may now write the 

increase in AU as ΔAU: 

ΔAU =
3

2
𝑝𝑠𝑒2𝛥𝑒, or 

𝑑𝐴𝑈

𝑑𝑡
=

3

2
𝑒2𝑒̇ × AU. (43) 

Here we have approximated 𝑝𝑠 = AU since 𝑒2 ≪ 1. Taking AU = 1.496 × 1011 m and using 

Equation (39) for 𝑒𝑒̇ with 𝑝 = 1, we get dAU/dt = 0.77 m cy−1 against its measured value of 

1.5 m cy−1. As can be seen from Equation (40) and Figure 2, if we took 𝑝 = 1.010 instead of 1, we 

would get the desired value. The reason could be the same as discussed at the end of the previous 

section. Alternatively, there may be other phenomena contributing to the anomalous AU. 

Figure 2. Dimensionless eccentricity variation e
.
e/H0 plotted against age of the universe parameter p.

There are three values of
.
e that are significant here:

a.
.
e = 16 ± 5 × 10−12 yr−1 originally estimated by Williams and Dickey in 2003 [23]; it gives
p = 0.993855± 0.001445.
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b.
.
e = 9 ± 3 × 10−12 yr−1, the updated value using more data and ‘better’ tidal effect model by
Williams and Boggs in 2009 [24]; it gives p = 0.991832± 0.000867.

c.
.
e = 5± 2× 10−12 yr−1, the updated value with even more data and ‘even better’ tidal effect model
by Williams et al. in 2014 [25]; it gives p = 0.990676± 0.000578.

All the values of p are very close to 1, indicating that our model is a very good approximation to
the exact solution of the Einstein field equations, at least locally, with variable c and G. Even lower
and negative values of

.
e derived by Williams and Boggs in 2016 [26] can be easily explained with

this approach. The question remains—is it the tidal model’s deficiency that is being corrected or is it
presumed that there could be no other cause for the anomaly?

8. Astronomical Unit (AU) Anomaly

The orbit of Earth around the sun is Keplerian and thus is governed by Equation (15). A radiometric
measurement will therefore yield a null result in our approach using evolutionary G and c. However,
the eccentricity evolution is equally valid for the moon and Earth. Thus applying Equation (39) to
Earth’s orbit, and assuming p = 1 and e = 0.0167, we get

.
e = 122.5× 10−12 yr−1. This can be translated

easily into AU increase as follows. The semi-major axis a and semi-minor axis b of an orbit may be
written as [46]:

a =
ps

1− e2 , and b =
ps

√

1− e2
. (41)

where, ps = a = b defines a circle when e = 1. AU may then be written as:

AU =
a + b

2
=

ps

2
(

1
1− e2 +

1
√

1− e2
)= ps(1 +

3
4

e2 +
11
16

e4 + O(e6)). (42)

Suppose now that the eccentricity e increases by ∆e to e′ in a time period ∆t. Then e′ = e + ∆e
and e′2 = e2 + 2e2∆e when we ignore higher order terms in ∆e. We may now write the increase in AU
as ∆AU:

∆AU =
3
2

pse2∆e, or
dAU

dt
=

3
2

e2 .
e×AU. (43)

Here we have approximated ps = AU since e2
� 1. Taking AU = 1.496 × 1011 m and using

Equation (39) for e
.
e with p = 1, we get dAU/dt = 0.77 m cy−1 against its measured value of 1.5 m cy−1.

As can be seen from Equation (40) and Figure 2, if we took p = 1.010 instead of 1, we would get
the desired value. The reason could be the same as discussed at the end of the previous section.
Alternatively, there may be other phenomena contributing to the anomalous AU.

It should be mentioned that recently the AU has been redefined (e.g., [47]) and just by definition
the AU anomaly has been eliminated. One has to resort to the old definition of AU to appreciate the
AU anomaly and its resolution.

9. Variation of Planck’s Constant h̄

The variation of the fine structure constant α = (1/4πε0)e2/h̄c (here ε0 is the vacuum permittivity
and e is electron charge) has been studied extensively. Since ε0 = 1/µ0c2, where µ0 is the vacuum
permeability, α = (µ0/4π)e2c/h̄. Recent estimates put a very low value on

.
α [14,15]. We may write

.
α
α = 2

.
e
e −

.
h̄
h̄ +

.
c
c . If

.
α/α and

.
e/e are zero, or varying very little compared to

.
h̄/h̄ and

.
c/c, and µ0 is

a constant, then it is implied that
.
h̄/h̄ =

.
c/c = 1.8H. This possibly answers the question posed by

Magueijo et al. [48]: Is it e or is it c?

10. Planck Units and Hubble Units

We will now review the Plank and Hubble units of time, length, mass, charge and temperature
and then explore how the dimensionless constant relating the two units evolves in time.
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Plank time tP =
√

h̄G
c5

Planck length lP =
√

h̄G
c3

Planck mass mP =
√

h̄c
G

Planck charge qP =
√

4πε0h̄c

Planck temperature TP =

√
h̄c5

Gk2
B

Hubble time tH = 1/H0

Hubble length lH = c/H0

Hubble mass mH = c3

GH0

Hubble charge qH =

√
4πε0c6

GH2
0

Hubble temperature TH = c5

GH0kB

where ε0 is the permittivity of space, h̄ is the Planck’s constant and kB is the Boltzmann constant.
If we divide any of the Hubble units by the corresponding Planck unit we always get the dimensionless
quantity, say D, as:

D ≡

√
c5

H2
0Gh̄

= 0.818× 1061. (44)

Every Hubble unit is 61 orders of magnitude larger than the corresponding Planck unit. Taking
time derivative of the equation and dividing by itself, we get:

.
D
D

=
1
2

5
.
c
c
−

2
.

H0

H0
−

.
h̄
h̄
−

.
G
G

 = 1.5H0. (45)

This means that the dimensionless D that relates Hubble units and Planck units is increasing
in time.

11. Discussion

As should be expected, the two-parameter ΛCDM model is able to fit any data set better than
the one-parameter VcGΛ model. What is unexpected is that when parameterized with a relatively
low redshift data the VcGΛ model is able to fit the higher redshift data better than the ΛCDM model.
This shows that the second parameter in the latter, while trying to fit a limited dataset as best as
possible, compromises the model fit for data not used for parameterizing. This means that the ΛCDM
model does not have as good a predictive capability (i.e., the capability to fit the data that is not
included for determining the model parameters) as the VcGΛ model, despite having twice as many
parameters as the VcGΛ model. In addition, the VcGΛ model has the analytical expression for the
distance modulus µ unlike the ΛCDM model, which must be evaluated numerically.

One would notice that while R0 (and hence H0) values are relatively stable with the parameterizing
dataset containing higher and higher redshift values, varying no more than 0.35%, the variation in the
Ωm,0 is up to 9.4%, i.e., 27 time larger. This confirms that the Ωm,0 parameter, and hence Λ through
ΩΛ,0, is an artificially introduced parameter to fit the data rather than being fundamental to the ΛCDM
model. In contrast, Λ is an integral part of the VcGΛ model. Since K (≡ G/c2) and Λ are related
through Equation (7), one could easily derive that the Λ term contributes 60% for the VcGΛ model
against 70% for the ΛCDM model.

We have established that the supernovae 1a data is compatible with the variable constants
proposition. This is contrary to the findings of Mould and Uddin [49] in 2014 who considered only
the variation of G in their work. We believe most of the negative findings on the variation of physical
constants are possibly due to the variation of a constant being considered in isolation rather than
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holistically for all the constants involved. We have established that the physical constants not only
vary but also how much they vary:

.
c/c = 1.8H,

.
G/G = 5.4H,

.
Λ/Λ = −1.2H and

.
H/H = −0.6 H.

In addition, from the null results on the variation of the fine structure constant [14,15], we have shown
that

.
h̄/h̄ = 1.8H. We urge that they be used in union rather than in isolation. This indeed was not

possible until now when one knows the exact form of the variation of each as above.
One basic question naturally arises—what is the consequences of the findings here? It is clear

from the above that at time t = 0 the dark energy parameter Λ was infinity, whereas c, G and h̄ were
zero. Existence of any baryonic matter and radiation was irrelevant since they did not provide any
energy density due to c, G and h̄ all being zero. We may need to explore how the universe would
evolve from such a state against the state assumed in the standard model.

One may wonder how the physical constants’ variation could be measured experimentally.
The most accurate device developed to date to measure the variation of fine structure constant
α is atomic clock based on the hyperfine trasitions of certain atoms at microwave and optical
frequencies. The transitions are also used for tests of quantum electrodynamics, general relativity
and the equivalence principle, searches for dark matter, dark energy and extra forces, and tests of the
spin-statistics theorem [50–52]. However, tests related to the variation of c, G and } as presented here
are not possible using the atomic transitions since the latter are dependent on the variation of α, which
is already assumed to be zero in our theory.

Spinning bodies cause spacetime to rotate around it causing the nearby angular momentum vector
to precess. This so-called frame-dragging phenomenon causes the electromagnetic signal from an
orbiting spacecraft to register a redshift ∆z, given by [53]:

∆z ∼
GM
c3P

,

where M is the mass of the spinning body and P is its spinning period. If c and G evolve in time as
determined in this paper then ∆z will not vary in time due to the variation of these constants, and
therefore this method is not suitable for measuring their variation.

If we could isolate all the perturbative and relativistic effects on a high eccentricity satellite orbit
then any residual increase in its eccentricity and orbit size may be attributed to the variation of G and c,
and Equations (40) and (43) may be adapted to the satellite parameters. In addition, any spacecraft
receding from Earth should experience anomalous deceleration similar to Pioneer’s. The spacecraft
may be designed to eliminate or minimize the thermal radiation anisotropy. One could possibly design
other experiments that could test the variability of constants when all the constants discussed here are
simultaneously varying.

Existence of the parameter p in estimating eccentricity increase can be seen as a deficiency of
the quasi-phenomenological model we have used. Since the Moon eccentricity involves Earth and
Moon whereas the AU increase involves Earth and Sun, and since the masses of the two systems are
enormously different, the parameter p may be considered to take this difference into account. We will
need to develop a fully relativistic theory to eliminate this arbitrariness in p for estimating the two
anomalies with varying c and G. Until then it would be prudent to leave p = 1 and just be contended
that the variable c and G theory is able to estimate the anomalies within a factor of 2.

12. Conclusions

Salient points of the finding in this work are:

1. The single-parameter VcGΛ model fits the supernovae 1a data almost as well as the two-parameter
standard ΛCDM model. The VcGΛ model has better predictive capability than the ΛCDM model.

2. One could see that the approach taken here to explain the three anomalies is based on a very
simple analytically derived expression for the evolution of the speed of light and gravitational
constant. Thus one could infer that the Occam’s razor principle would favour the new approach
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over other approaches. In the case of the Pioneer anomaly, it should be rather easy to implement
it in the real time modeling of the astrodynamics of long-range spacecraft.

3. The expression of eccentricity variation involves G and c in a manner that the contributions of
.

G/G and
.
c/c almost cancel each other except for a small residual. This may be compared with

the case of using Kepler’s Equation (15) when the two contributions cancel out entirely.
4. Based on G variation alone, one can see from Equations (37)–(39) that calculated

.
e is more than two

orders of magnitude higher than measured
.
e. Current work corrects this by including

.
c variation.

5. There may be bias factors in the models (say in favour of tidal effects) used for data analysis,
since a model is not considered good enough unless it can account for all the observed value. We
believe that one may be able to remove this bias by the inclusion of the local effect of cosmology,
as presented here, in the data analysis models.

6. As mentioned above, both
.

G/G and
.
c/c are positive and thus both of them are increasing with

time rather than decreasing. The simple model presented above is effectively inclusive of the
cosmological constant. The existence of cosmological constant Λ in standard ΛCDM model leads
to a continuous addition of dark energy to the universe as the universe expands, i.e., it causes the
total energy of the universe to increase. The same is achieved by the increase of G and c through
the second continuity equation (Equation (7)).

7. Variability of all the constants is expressed in terms of the Hubble parameter H(t), and at the
present time, relative to the Hubble constant H0. In summary, the physical constants evolve as
follows:

.
c/c = 1.8H,

.
G/G = 5.4H,

.
h̄/h̄ = 1.8H,

.
Λ/Λ = −1.2H, and

.
H/H = −0.6H.

8. There is an exact proportionality between the quantum Planck units and cosmological Hubble
units and the proportionality is evolutionary. All Hubble units are 61 orders of magnitude larger
than the corresponding Planck units. The factor determining the same, i.e., D ≡ √

[
c5/

(
H2

0Gh̄
)]

,

varies as
.

D/D = 1.5H0 ' 1.07× 10−10 yr−1.
9. The model limitation is that it does not use Einstein-Hilbert action with c and G as scalar fields

rather than constants to determine variable constants compliant with field equations [54]. Thus,
the VcGΛ model, albeit simple, can only be considered quasi-phenomenological as it does not
fully account for the variability of c, G, and Λ.
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Appendix A

We may write Equation (4) with K ≡ G/c2 as follows:

.
a2

=
(8πKε

3
+

1
3

Λ
)
a2. (A1)

Differentiating it with respect to time gives:

2
.
a

..
a =

(8πKε
3

+
1
3

Λ
)
2a

.
a +

8π
.
Kε
3

+
8πK

.
ε

3
+

1
3

.
Λ

a2. (A2)
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Dividing it by 2
.
aa yields:

..
a
a
=

(8πKε
3

+
1
3

Λ
)
+

8π
.
Kε
3

+
8πK

.
ε

3
+

1
3

.
Λ

( a
2

.
a
) (A3)

Substituting
..
a/a from Equation (3):

−
1
2

( .
a
a

)2

− 4πKp +
1
2

Λ =
(8πKε

3
+

1
3

Λ
)
+

8π
.
Kε
6

+
8πK

.
ε

6
+

1
6

.
Λ

(a
.
a
) (A4)

Substituting
( .

a
a

)2
from Equation (4):

−

(8πKε
6

+
1
6

Λ
)
− 4πKp +

1
2

Λ −
(8πKε

3
+

1
3

Λ
)
−

8π
.
Kε
6

+
8πK

.
ε

6
+

1
6

.
Λ

(a
.
a

)
= 0, or (A5)

4πKε+ 4πKp +
(a

.
a

)(8π
6

.
Kε+

8π
6

K
.
ε+

1
6

.
Λ
)
= 0, or (A6)

.
a
a
(24πKε+ 24πKp) + 8π

.
Kε+ 8πK

.
ε+

.
Λ = 0. (A7)

Dividing it by 8πK and rearranging we get:

.
ε+ 3

( .
a
a

)
(ε+ p) +

.
K
K
ε+

.
Λ

8πK
= 0. (A8)

This is the same equation as Equation (5).
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