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Abstract: This paper reviews the Lindley distribution and then introduces the scale and the double
truncation. The unknown parameters of the truncated Lindley distribution are evaluated with the
maximum likelihood estimators. An application of the Lindley distribution with scale is done to the
initial mass function for stars. The magnitude version of the Lindley distribution with scale is applied
to the luminosity function for the Sloan Digital Sky Survey (SDSS) galaxies and to the photometric
maximum of the 2MASS Redshift Survey (2MRS) galaxies. The truncated Lindley luminosity function
allows to model the Malquist bias of the 2MRS galaxies.

Keywords: stars: normal; galaxy: groups, clusters, and superclusters; large scale structure of the
Universe; Cosmology

1. Introduction

The Lindley distribution is defined by one parameter and was introduced to study the difference
between fiducial distribution and posterior distribution, see [1,2]. Its detailed properties such as
moments, cumulants, characteristic function, failure rate function and . . . can be found in [3]. We now
briefly outline some new trends, among others, for this distribution. A three parameter generalization
of the Lindley distribution has been analyzed by [4], the truncated versions of the Lindley distribution
has been studied by [5], and the estimation of the parameters of the generalized Lindley distribution
has been done by [6] and a three-parameter Lindley distribution has been introduced by [7]. A careful
analysis of these applications in the various fields of the natural sciences has revealed that the Lindley
distribution has not yet been applied to astrophysics. Usually the mathematicians introduce many
parameters, which characterize statistical distributions. In contrast, applications in the real world
require fewer parameters, such as mean value and variance. The rapid development of computers has
allowed to simulate the statistical distributions through the generation of random numbers, but this
requires the evaluation of the inverse of the distribution function. A first example of an astrophysical
application for a probability density function (PDF) is represented by the initial mass function for the
stars (IMF). The distribution in mass of the stars has been fitted with a power law. This started with [8],
who suggested that ξ(m) ∝ m−α where ξ(m) represents the probability of having a mass between m
and m + dm; He found α = 2.35 in the range 10 M� > M ≥ 1 M�. Subsequent research has started
to analyze the initial mass function (IMF) with three power laws, see [9–11], and four power laws,
see [12]. The approach to the IMF using a continuous distribution has been modeled by the lognormal
distribution in order to fit both the range of the stars and the brown dwarfs (BDs) regime, see [13],
by the beta distribution, see [14], by the truncated gamma distribution, see [15] and by the truncated
lognormal distribution, see [16]. The previous analysis raises the following questions:

• Is it possible to find the constant of normalization for a left and right truncated Lindley PDF?
• Is it possible to derive an analytical expression for the mean of a left and right truncated

Lindley PDF
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• Is a left and right truncated Lindley PDF a model for the IMF and for a sample of masses?

A second example of an astrophysical application for a PDF is given by the luminosity function
(LF) for galaxies. The Schechter function was the first LF for galaxies to be introduced, see [17].
Over the years, other LFs for galaxies have been suggested, such as a two-component Schechter-like LF,
see [18], the hybrid Schechter+power-law LF to fit the faint end of the K-band, see [19], and the double
Schechter LF, see [20]. To improve the flexibility at the bright end, a new parameter η was introduced
in the Schechter LF, see [21]. A third astrophysical application is in the photometric maximum visible
in the number of cluster of galaxies as function of the redshift; for example, see Figure 7 in [22] where
the number of galaxies as function of the redshift is plotted and Figure 2 in [23] where the number
of clusters for three catalogs are reported as function of the redshift. The theoretical explanation of
this effect is the joint distribution in redshift and and flux for galaxies; see formula (5.133) in [24] or
formula (1.104) in [25] or formula (1.117) in [26]. Despite this theoretical background, the photometric
maximum has been poorly analyzed. A fourth astrophysical application is in the range in absolute
magnitude of galaxies versus the redshift visible in the various catalogs; for example, see Figure 9
in [22]. The mass of the stars in the IMF, the luminosity of galaxy in the LF and the absolute magnitude
of galaxy in a given range of redshift vary between a minimum and a maximum value. This discussion
suggests the introduction of finite boundaries for the Lindley IMF and LF rather than the usual zero
and infinity following a pattern similar to the introduction of a left truncated beta LF; see [27], and for
a left and right truncated Schechter LF luminosity function, see [28].

This paper reviews the original Lindley distribution in Section 2.1. It introduces the scaling in
Section 2.2 and the double truncation in Section 2.3. The applications to the astrophysics are developed
for the IMF, see Section 3, and for the luminosity function (LF) for galaxies, see Section 4.

2. The Lindley Family

We present a family of distributions of gradually increasing complexity.

2.1. Lindley Distribution

Let X be a random variable defined in [0, ∞]; the Lindley probability density function (PDF),
f (x), is

f (x; c) =
c2e−cx (x + 1)

1 + c
, (1)

the distribution function (DF), F(x), is

F(x; c) = 1−
(

1 +
cx

1 + c

)
e−cx, (2)

where c > 0. At x = 0 f (0) = c2

1+c and not zero.
The average value or mean, µ, is

µ(c) =
2 + c

c (1 + c)
, (3)

the variance, σ2, is

σ2(c) =
c2 + 4 c + 2

c2 (1 + c)2 . (4)

The rth moment about the origin and an approximation of the median are reported in Appendix A.
The random generation of the Lindley variate X:c is given by

X : c ≈ −
W
(
(R− 1) (1 + c) e−1−c)+ 1 + c

c
, (5)
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where W is the Lambert W function, after [29], and R the unit rectangular variate R. The Lambert W
function according to [30] is defined as

WeW = x. (6)

The principal branch, W p(x), and the other branch, Wm(x), of the Lambert W-function can
evaluated with the Halley method

wn+1 = wn −
(wnewn − x)(

(wn + 1) ewn − (wn+2)(wnewn−x)
2 wn+2

) , (7)

see [31–33]. The two branches of the Lambert W-function are reported in Figure 1.

Figure 1. Wp(x) (red line) and Wm(x) (blue line).

A typical simulation of the Lindley PDF is reported in Figure 2.

Figure 2. Histogram of the simulated Lindley PDF generated according to formula (5) and theoretical
Lindley PDF (full line), 100,000 random points and c = 0.5.
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The experimental sample consists of the data xi with i varying between 1 and n; the sample mean,
x̄, is

x̄ =
1
n

n

∑
i=1

xi, (8)

the unbiased sample variance, s2, is

s2 =
1

n− 1

n

∑
i=1

(xi − x̄)2, (9)

and the sample rth moment about the origin, x̄r, is

x̄r =
1
n

n

∑
i=1

(xi)
r. (10)

The parameter c can be obtained by the following match

µ1 = x̄1, (11)

and therefore

ĉ =
−µ1 + 1 +

√
µ1

2 + 6 µ1 + 1
2 µ1

. (12)

2.2. The Lindley Distribution with Scale

We now introduce the scale b in the Lindley distribution and the PDF, fs(x; b, c), is

fs(x; b, c) =
c2e−

cx
b (x + b)

b2 (1 + c)
, (13)

the DF, Fs(x; b, c), is

Fs(x; b, c) =
−e−

cx
b bc− e−

cx
b cx− e−

cx
b b + cb + b

b (1 + c)
. (14)

The mean, µs(c, b), is

µs(c, b) =
b (c + 2)
c (1 + c)

, (15)

and the variance, σ2
s (c, b), is

σ2
s (c, b) =

b2 (c2 + 4 c + 2
)

c2 (1 + c)2 . (16)

At x = 0 fs(0) = c2

(1+c)b .
The rth moment about the origin is reported in Appendix B.
The parameters b and c can be obtained by the following match

µ1 = x̄1 (17a)

σ2 = s2, (17b)

which means

ĉ =
−3 x̄3 + 3 x̄ s2 +

√
2
√
(x̄2 − s2) (2 x̄2 − s2)

2

x̄2 − s2 , (18)



Galaxies 2019, 7, 61 5 of 17

and

b̂ =
1
2

1
x̄ (x̄2 − s2)

√2
√
(x̄2 − s2) (2 x̄2 − s2)

2
+
(

x̄2 − s2
)√2

√
s22

x̄2 − s2 − 4 x̄

. (19)

The inequality s2 > x̄2/2 makes both b̂ and ĉ negatives and, therefore, the sample is not suitable
for a fit with Lindley distribution with scale.

2.3. The Truncated Lindley Distribution with Scale

Let X be a random variable defined in [xl , xu]; the truncated PDF, ft(x; b, c, xl , xu), see [5,34], is

ft(x; b, c, xl , xu) =
fs (x)

Fs (xu)− Fs (xl)
, (20)

and the DF, Ft(x; b, c, xl , xu),

Ft(x; b, c, xl , xu) =
Fs (x)− Fs (xl)

Fs (xu)− Fs (xl)
. (21)

The inequality which fixes the range of existence is ∞ > xu > x > xl > 0.
The first moment about the origin, µ′1,t(b, c, xl , xu), is

µ′1,t(b, c, xl , xu) =
MN1

c
(

cbe
cxl
b + cxue

cxl
b − cbe

cxu
b − cxle

cxu
b + be

cxl
b − be

cxu
b

) , (22)

where

MN1 = e
cxl
b bc2xu + e

cxl
b c2xu

2 − e
cxu

b bc2xl − e
cxu

b c2xl
2 + e

cxl
b b2c + 2 e

cxl
b bcxu − e

cxu
b b2c

−2 e
cxu

b bcxl + 2 e
cxl
b b2 − 2 e

cxu
b b2, (23)

and the second moment about the origin, µ′2,t(b, c, xl , xu), is

µ′2,t(b, c, xl , xu) =
MN2

c2
(

cbe
cxl
b + cxue

cxl
b − cbe

cxu
b − cxle

cxu
b + be

cxl
b − be

cxu
b

) , (24)

MN2 = e
cxl
b bc3xu

2 + e
cxl
b c3xu

3 − e
cxu

b bc3xl
2 − e

cxu
b c3xl

3 + 2 e
cxl
b b2c2xu

+3 e
cxl
b bc2xu

2 − 2 e
cxu

b b2c2xl − 3 e
cxu

b bc2xl
2 + 2 e

cxl
b b3c + 6 e

cxl
b b2cxu (25)

−2 e
cxu

b b3c− 6 e
cxu

b b2cxl + 6 e
cxl
b b3 − 6 e

cxu
b b3.

The variance, σ2
t (b, c, xl , xu), is evaluated as

σ2
t (b, c, xl , xu) = µ′2,t − (µ′1,t)

2. (26)

The parameters b and c can be evaluated with the maximum likelihood estimators (MLE),
see Appendix C.

3. The IMF for Stars

The IMF for stars is actually fitted with three and four power laws, see [35,36]. The piece-wise
broken inverse power law IMF is

p(m) ∝ m−αi , (27)

each zone being characterized by a different exponent αi and two boundaries mi and mi+1. To have a
PDF normalized to unity, one must have



Galaxies 2019, 7, 61 6 of 17

∑
i=1,n

∫ mi+1

mi

cim−αi dm = 1. (28)

The number of parameters to be found from the considered sample for the n-piece-wise IMF
is 2n− 1 when m1 and mn+1 are the minimum and maximum of the masses of the sample. In the
case of n = 4, which fits also the region of brown dwarfs (BD), see [14], the number of parameters
is seven. In the field of statistical distributions, the PDF is usually defined by two parameters.
Examples of two-parameter PDFs are: the beta, gamma, normal, and lognormal distributions, see [37].
The lognormal distribution is widely used to model the IMF for the stars, see [13,38–40]. The lognormal
distribution is defined in the range ofM ∈ (0, ∞) whereM is the mass of the star. Nevertheless,
the stars have minimum and maximum values. In an example from the MAIN SEQUENCE, an M8 star
hasM = 0.06M� and an O3 star hasM = 120M�, see [41]. The presence of boundaries for the stars
makes the analysis of the truncated lognormal, see [16], and of the truncated Lindley PDF attractive.
In the case of the truncated Lindley PDF, the analysis of the samples representative of the IMF for stars
is limited to those that produce both parameters b and c positive, and are therefore suitable for a fit
with the truncated Lindley distribution. The statistical parameters are the same of [16] and are the
merit function χ2, the reduced merit function χ2

red, the Akaike information criterion (AIC), the number
of degrees of freedom NF = n− k where n is the number of bins and k is the number of parameters,
the goodness of the fit expressed by the probability Q, the maximum distance, D, between the
theoretical and the astronomical DF and the significance level, PKS, for the Kolmogorov–Smirnov
test (K–S).

To give an example, Figure 3 reports the truncated Lindley DF for NGC 6611 with statistical
parameters as in Table 1.

Table 1. Statistical parameters of NGC 6611 (207 stars + BDs) in the case of the truncated Lindley
distribution. The number of linear bins, n, is 20.

PDF Method Parameters AIC χ2
red Q D PKS

truncated Lindley MLE b = 0.666, c = 1.938, xl = 0.0189, xu = 1.46 47.75 2.48 8.4× 10−4 0.065 0.332
lognormal MLE σ = 1.029, m = 0.284 71.24 3.73 1.3× 10−7 0.09366 0.04959

truncated lognormal MLE σ = 1.499, m = 0.478, xl = 0.0189, xu = 1.46 50.96 2.68 2.8× 10−4 0.0654 0.372

Figure 3. Empirical DF of mass distribution for NGC 6611 cluster data (207 stars + BDs) when the
number of bins, n, is 20 (dotted points ) with a superposition of the truncated Lindley DF (full line).
Theoretical parameters as in Table 1, MLE method. The horizontal axis has a logarithmic scale.
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A careful analysis of Table 1 allows to conclude that in the case of NGC 6611 the truncated Lindley
PDF produces a better fit in respect to the lognormal and truncated lognormal PDFs.

The lifetime of a star belonging to the MAIN V, tMS, is

tMS
t�
≈
(
M
M�

)−2.5

, (29)

where t� is the lifetime of the sun, 1010 years,M is the mass of MAIN V star andM� the solar mass,
see http://astronomy.swin.edu.au/cosmos/ for more details. Figure 4 reports the modifications of
the Lindley PDF with an increasing upper boundary. Meanwhile, Table 2 reports the correspondence
between the selected mass and the connected lifetime.

Figure 4. Double truncated Lindley PDF with parameters as in Table 1 and variable xu; xu = 1.461
(red full line), xu = 2 (blue dashed line) and xu = 10 (green dotted line).

Table 2. Lifetime of MAIN V star.

Mass in Solar Units Lifetime (Year)

1.461 3.87× 109

2 1.76× 109

10 3.16× 107

For example, in the case of the cluster NGC 6611, the upper limit in mass will decrease from
1.4 M� to 1 M� in 9.9 109 years and after that time the total number of stars will be the 92.25% of the
original number of stars. The above model allows to see how the time modifies the Hertzsprung-Russell
(H-R) diagram, i.e., the MV against (B−V), in the young clusters of stars.

4. The Luminosity Function for Galaxies

In this section, we review the standard luminosity function (LF) for galaxies, we introduce a
Lindley LF and a truncated Lindley LF, we then outline the formulae of the photometric maximum
and we parametrize the averaged absolute magnitude as function of the redshift.

4.1. The Schechter Function

The Schechter function, introduced by [17], provides a useful fit for the LF of galaxies

Φ(L; α, L∗, Φ∗)dL = (
Φ∗

L∗
)(

L
L∗

)α exp
(
− L

L∗
)
dL, (30)

http://astronomy.swin.edu.au/cosmos/
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here α sets the slope for low values of L, L∗ is the characteristic luminosity and Φ∗ is the normalization.
The equivalent distribution in absolute magnitude is

Φ(M)dM = 0.921Φ∗100.4(α+1)(M∗−M) exp
(
−100.4(M∗−M)

)
dM , (31)

where M∗ is the characteristic magnitude as derived from the data. We now introduce the parameter
h which is H0/100, where H0 is the Hubble constant. The scaling with h is M∗ − 5 log10 h and
Φ∗h3 [Mpc−3]. The numerical exploration of a new LF for galaxies requires that the χ2

red is smaller
or approximately equal to that of the Schechter LF. As an example, the LF given by the generalized
gamma distribution with four parameters gives χ2

red smaller than that of the Schechter LF in the five
bands of SDSS galaxies, see Equation (21) an Table II in [42]

4.2. The Lindley LF

We start with the Lindley PDF with scaling as given by Equation (13),

Ψ(L; c, L∗, Ψ∗)dL =
Ψ∗ c2e−

cL
L∗ (L + L∗)

L∗2 (1 + c) dL
dM, (32)

where L is the luminosity, L∗ is the characteristic luminosity and Ψ∗ is the normalization.
The magnitude version is

Ψ(M; c, M∗, Ψ∗)dM =
0.4 Ψ∗ c2 ln (10) e−c10−0.4 M+0.4 M∗

(
10−0.4 M+0.4 M∗ + 10−0.8 M+0.8 M∗

)
1 + c

, (33)

where M is the absolute magnitude, M∗ the characteristic magnitude and Ψ∗ is the normalization.
A test is performed on the u∗ band of the Sloan Digital Sky Survey (SDSS) as in [43] with data available
at https://cosmo.nyu.edu/blanton/lf.html. The Schechter function, the new Lindley LF represented
by Formula (33) and the data are reported in Figure 5, parameters as in Table 3.

Figure 5. The luminosity function data of SDSS(u∗) are represented with error bars. The continuous
line fit represents the Lindley LF (33) and the dotted line represents the Schechter function.

https://cosmo.nyu.edu/blanton/lf.html
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Table 3. Numerical values values and χ2
red of the LFs applied to SDSS Galaxies in the u∗ band.

LF Parameters χ2
red

Schechter M∗ = −17.92, α = −0.9, Φ∗ = 0.0114/Mpc3 0.689
Lindley M∗ = −23.40, c = 214.1, Ψ∗ = 0.0289/Mpc3 6.6741

truncated Lindley M∗ = −23.458; c = 224.47; Ψ∗ = 0.0239/Mpc3; Ml = −20.653; Mu = −15.785 6.6739

4.3. The Truncated Lindley LF

We start with the truncated Lindley PDF with scaling as given by Equation (20)

Ψ(L; c, L∗, Ψ∗, Ll , Lu)dL =
Ψ∗ e−

cL
L∗ (L + L∗) c2

DT
, (34)

with

DT = L∗
(

e−
cLl
L∗ L∗ c + e−

cLl
L∗ cLl − e−

cLu
L∗ L∗ c− e−

cLu
L∗ cLu + e−

cLl
L∗ L∗ − e−

cLu
L∗ L∗

)
, (35)

where L is the luminosity, L∗ is the characteristic luminosity, Ll is the lower boundary in luminosity,
Lu is the upper boundary in luminosity, and Ψ∗ is the normalization. The magnitude version is

Ψ(M; c, M∗, Ψ∗, Ml , Mu)dM =
NM
DT

(36)

where

NM = 0.4 c2Ψ∗ (ln (2) + ln (5)) ec
(

10−0.4 Ml+0.4 M∗+100.4 M∗−0.4 Mu−100.4 M∗−0.4 M
)
×(

100.4 Ml+0.4 Mu 1000.4 M∗−0.4 M + 100.4 Ml+0.4 M∗+0.4 Mu−0.4 M
)

(37)

DT = 100.4 Ml+0.4 M∗ec10−0.4 Ml+0.4 M∗
c + ec10−0.4 Ml+0.4 M∗

100.4 Ml+0.4 Mu c

−100.4 M∗+0.4 Mu ec100.4 M∗−0.4 Mu c− ec100.4 M∗−0.4 Mu
100.4 Ml+0.4 Mu c (38)

+ec10−0.4 Ml+0.4 M∗
100.4 Ml+0.4 Mu − ec100.4 M∗−0.4 Mu

100.4 Ml+0.4 Mu ,

where M is the absolute magnitude, M∗ the characteristic magnitude, Ml the lower boundary in
magnitude, Mu the upper boundary in magnitude and Ψ∗ is the normalization. The mean theoretical
absolute magnitude, 〈M〉, can be evaluated as

〈M〉 =
∫ Mu

Ml
M×Ψ(M; c, M∗, Ψ∗, Ml , Mu)dM∫ Mu

Ml
Ψ(M; c, M∗, Ψ∗, Ml , Mu)dM

. (39)

At the moment of writing, the analytical solution does not exists and the integration should be
done numerically. Table 3 reports the parameters of the truncated Lindley LF from which is possible
to conclude that the effect of truncation in the Lindley LF produces a minimum decrease in the χ2

red:
Lindley LF with truncation χ2

red = 6.6739 and Lindley LF χ2
red = 6.6741.

4.4. The Photometric Maximum

In the pseudo-Euclidean universe, the correlation between expansion velocity and distance is

V = H0D = cl z, (40)
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where H0 is the Hubble constant, after [44], H0 = 100h km s−1 Mpc−1, with h = 1 when h is not
specified, D is the distance in Mpc, cl is the light velocity and z is the redshift. In the pseudo-Euclidean

universe the flux of radiation, f , expressed in
L�

Mpc2 units, where L� represents the luminosity of the
sun, is

f =
L

4πD2 , (41)

where D represents the distance of the galaxy expressed in Mpc, and

D =
clz
H0

. (42)

The joint distribution in z and f for the Schechter LF, see formula (1.104) in [25] or formula (1.117)
in [26], is

dN
dΩdzd f

= 4π
( cl

H0

)5z4Φ(
z2

z2
crit

), (43)

where dΩ, dz and d f represent the differential of the solid angle, the redshift and the flux respectively
and Φ is the Schechter LF. The critical value of z, zcrit, is

z2
crit =

H2
0 L∗

4π f c2
l

, (44)

where L∗ has been defined in Section 4.1. The number of galaxies in z and f for the Schechter LF as
given by formula (43) has a maximum at z = zpos−max, where

zpos−max = zcrit
√

α + 2, (45)

which can be re-expressed as

zpos−max( f ) =
√

2 + α
√

100.4 M�−0.4 M∗H0

2
√

π
√

f cl
, (46)

where M� is the reference magnitude of the sun at the considered bandpass. The position of the
maximum in redshift for the Schechter LF depends from the flux of the selected astronomical band, f ,
and from the two parameter which characterizes the Schechter LF: α and M∗.

More details can be found in [45].
The joint distribution in z and f for galaxies for the Lindley LF, see Equation (34), is

dN
dΩdzd f

=
4 z4c2e

− cz2

zcrit
2 cl

5π
(
z2 + zcrit

2)
(1 + c) H0

5L∗ zcrit
2

. (47)

The maximum in the number of galaxies for the Lindley LF as function of zcrit is at

zpos−max(zcrit) =

√
2
√
−c + 3 +

√
c2 + 2 c + 9zcrit

2
√

c
, (48)

or as function of the flux f

zpos−max( f ) =
√

2
√
−c + 3 +

√
c2 + 2 c + 9

√
100.4 M�−0.4 M∗H0

4
√

c
√

π
√

f cl
, (49)
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or as a function of the apparent magnitude m

zpos−max(m) =
5 × 10−6

√
2
√
−c + 3 +

√
c2 + 2 c + 9

√
100.4 M�−0.4 M∗H0

√
c
√

e0.921034 M�−0.921034 mcl

. (50)

The position of the maximum in redshift for the Lindley LF depends from the flux of the selected
astronomical band, f , or the selected apparent magnitude, m, and from the two parameter which
characterizes the Lindley LF: c and M∗.

The mean redshift for galaxies 〈z〉 can be defined as

〈z〉 =

∫ ∞
0 z dN

dΩdzd f dz∫ ∞
0

dN
dΩdzd f dz

. (51)

The mean redshift for the Lindley LF as function of zcrit is

〈z〉(zcrit) =
16 zcrit (c + 3)

3
√

π
√

c (2 c + 5)
, (52)

or as a function of the flux

〈z〉( f ) =
8
√

π f 100.4 M�−0.4 M∗H0 (c + 3)

3 π3/2 f cl
√

c (2 c + 5)
(53)

or as a function of the apparent magnitude

〈z〉(m) =
3.009 10−5

√
e0.921034 M�−0.921034 m100.4 M�−0.4 M∗H0 (c + 3)

e0.9210340374 M�−0.9210340374 mcl
√

c (2 c + 5)
. (54)

Figure 6 reports the number of observed galaxies of the 2MASS Redshift Survey (2MRS) catalog
for a given apparent magnitude and the two theoretical curves are analyzed with same parameters as
in Table 4. These parameters are derived in such a way that the χ2 is minimum. Therefore, this is a
new method to derive the parameters which characterize the two LFs here adopted without using the
samples for the LF such as the five bands of SDSS galaxies.

Table 4. Numerical values values and χ2
red of the two LFs applied to KS band (2MASS Kron magnitudes)

when M� = 3.39.

LF Parameters χ2
red

Schechter M∗ = −23.289, α = −0.794, Φ∗ = 0.0128/Mpc3 7.08
Lindley M∗ = −23.7, c = 2.8, Φ∗ = 0.0289/Mpc3 6.84

4.5. Averaged Absolute Magnitude

We now introduce the concept of limiting apparent magnitude. The observable absolute
magnitude as a function of the limiting apparent magnitude, mL, is

ML = mL − 5 log10

(
c z
H0

)
− 25. (55)

Figure 7 presents such a curve and the galaxies of the 2MRS.



Galaxies 2019, 7, 61 12 of 17

Figure 6. The galaxies of the 2MRS with 10.28 ≤ m ≤ 10.44 or 1,202,409
L�

Mpc2 ≤ f ≤ 1,384,350
L�

Mpc2

are organized in frequencies versus heliocentric redshift, (empty circles); the error bar is given by the
square root of the frequency. The maximum frequency of observed galaxies is at z = 0.018. The full line
is the theoretical curve generated by dN

dΩdzd f (z) as given by the application of the Schechter LF which is
Equation (43) and the dashed line represents the Lindley LF which is Equation (47). The parameters
are the same of Table 4, χ2 = 198 for the Schechter LF and χ2 = 191 for the Lindley LF.

Figure 7. The absolute magnitude M of 36,474 galaxies belonging to the 2MRS whenM� = 3.39 and
H0 = 70 km s−1 Mpc−1 (green points). The lower theoretical curve as represented by Equation (55) is
shown as the red-thick line when mL = 11.75.

We now compare the theoretical averaged absolute magnitude of the truncated Lindley LF,
see Equation (39), with the observed averaged absolute magnitude of 2MRS as function of the redshift.
To fit the data we assumed the following empirical dependence with redshift for the characteristic
magnitude of the truncated Lindley LF

M∗ = −25.14 + 3
(

1−
√

z− zmin
zmax − zmin

)
. (56)

This relationship models the decrease of the characteristic absolute magnitude as function of
the redshift and allows us to match observational and theoretical data. The lower bound in absolute
magnitude is given by the minimum magnitude of the selected bin, the upper bound is given by
Equation (55), the characteristic magnitude varies according to Equation (56) and Figure 8 reports the
comparison between theoretical and observed absolute magnitude for 2MRS.
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Figure 8. Averaged absolute magnitude of the galaxies belonging to the 2MRS (green-dashed line),
theoretical averaged absolute magnitude for the truncated Lindley LF (blue dash-dot-dash-dot line) as
given by Equation (39), lower theoretical curve as represented by Equation (55) (red line) and minimum
absolute magnitude observed (cyan dotted line).

5. Conclusions

Statistical Distributions. We introduced the Lindley distribution with scale and the truncated
Lindley distribution. The parameters of the Lindley distribution with scale can be found with the
method of the matching moments. In the the case of the truncated Lindley distribution the MLE is
used to estimate the unknown parameters.

Application to the stars. To fit the IMF for stars with the truncated Lindley PDF, the parameters b
and c, which is deduced from the astronomical sample, should be positive. This is the case of NGC 6611
(207 stars + BDs), for which the reduced merit function is smaller for the truncated Lindley distribution
in respect to the lognormal and truncated lognormal distribution, see Table 1.

Application to the galaxies. The Lindley LF for galaxies is characterized by a higher reduced
merit function in respect to the Schechter LF for the case of SDSS Galaxies in the u∗ band, see Table 3.
Conversely the Lindley LF for galaxies produces a lower value of the merit function when the
photometric maximum of 2MRS is modeled in respect to the Schechter model for the maximum,
see Figure 6. The truncated Lindley LF produces an acceptable model for the averaged absolute
magnitude of the galaxies belonging to the 2MRS, see Figure 8.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Other Parameters of the Lindley Distribution

The rth moment about the origin for the Lindley distribution is, µ′r, is

µ′r =
c−rΓ (r + 2) + c1−rΓ (r + 1)

1 + c
, (A1)

where
Γ(z) =

∫ ∞

0
e−ttz−1dt, (A2)



Galaxies 2019, 7, 61 14 of 17

is the gamma function, see [30]. The central moments, µr, are

µ3 =
2 c3 + 12 c2 + 12 c + 4

c3 (1 + c)3 (A3a)

µ4 =
9 c4 + 72 c3 + 132 c2 + 96 c + 24

c4 (1 + c)4 (A3b)

being µ2 = σ2. Is impossible to evaluate the median in a closed form and therefore we introduce
an approximated distribution function, F2,2 in terms of the Padé rational polynomial approximation,
after [46], of degree 2 in the numerator and degree 2 in the denominator about the point x = 0

F2,2 =
6 xc2 (2 c2 − cx− 4 c + 3 x + 6

)
(c4x2 − 4 c3x2 + 6 c3x + 7 c2x2 − 18 c2x + 12 c2 + 24 cx− 24 c + 36) (1 + c)

(A4)

The approximated median, m2,2 turns out to be

m2,2 =
9 c3 − 18 c2 −

√
69 c6 − 276 c5 + 690 c4 − 876 c3 + 1101 c2 − 984 c + 1188 + 33 c− 12

(c3 − 3 c2 + 15 c− 29) c
. (A5)

The percent error, δ, in the evaluation of the approximated median is δ = 1.179 % at c = 0.5 and
δ = 0.077 % at c = 2.

Appendix B. Moments for the Lindley Distribution with Scale

The rth moment about the origin for the Lindley distribution with scale, µ′r,s, is

µ′r,s =
c−rbrΓ (r + 2)

1 + c
+

c1−rbrΓ (r + 1)
1 + c

. (A6)

The central moments, µr,s, are

µ3,s =
2 b3 (c3 + 6 c2 + 6 c + 2

)
c3 (c3 + 3 c2 + 3 c + 1)

(A7a)

µ4,s =
3 b4 (3 c4 + 24 c3 + 44 c2 + 32 c + 8

)
c4 (c4 + 4 c3 + 6 c2 + 4 c + 1)

. (A7b)

Appendix C. The Parameters of the Truncated Lindley Distribution

The parameters of the truncated Lindley distribution can be obtained from empirical data by the
maximum likelihood estimators (MLE) and by the evaluation of the minimum and maximum elements
of the sample. Consider a sample X = x1, x2, . . . , xn and let x(1) ≥ x(2) ≥ · · · ≥ x(n) denote their order
statistics, so that x(1) = max(x1, x2, . . . , xn), x(n) = min(x1, x2, . . . , xn). The first two parameters xl
and xu are

xl = x(n), xu = x(1). (A8)

The MLE is obtained by maximizing

Λ =
n

∑
i

ln( ft(xi; b, c, xl , xu)). (A9)

The two derivatives ∂Λ
∂b = 0 and ∂Λ

∂c = 0 generate two non-linear equations in b and c which can
be solved numerically, we used FORTRAN subroutine SNSQE in [47],
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∂Λ
∂b

=
PNB

b2
(
−e−

cxu
b bc− e−

cxu
b cxu + e−

cxl
b bc + e−

cxl
b cxl − e−

cxu
b b + e−

cxl
b b
) = 0, (A10)

where

PNB = −e−
cxu

b bc2nxu − e−
cxu

b c2nxu
2 + e−

cxl
b bc2nxl + e−

cxl
b c2nxl

2 − 2 e−
cxu

b b2cn

−2 e−
cxu

b bcnxu + 2 e−
cxl
b b2cn + 2 e−

cxl
b bcnxl +

n

∑
i=1

cxib + cxi
2 + b2

xi + b
e−

cxu
b bc

+
n

∑
i=1

cxib + cxi
2 + b2

xi + b
e−

cxu
b cxu −

n

∑
i=1

cxib + cxi
2 + b2

xi + b
e−

cxl
b bc

−
n

∑
i=1

cxib + cxi
2 + b2

xi + b
e−

cxl
b cxl − 2 e−

cxu
b b2n + 2 e−

cxl
b b2n +

n

∑
i=1

cxib + cxi
2 + b2

xi + b
e−

cxu
b b

−
n

∑
i=1

cxib + cxi
2 + b2

xi + b
e−

cxl
b b. (A11)

and
∂Λ
∂c

=
PNC

cb
(
−e−

cxu
b bc− e−

cxu
b cxu + e−

cxl
b bc + e−

cxl
b cxl − e−

cxu
b b + e−

cxl
b b
) = 0, (A12)

where

PNC = −e−
cxu

b bc2nxu − e−
cxu

b c2nxu
2 + e−

cxl
b bc2nxl + e−

cxl
b c2nxl

2 + e−
cxu

b

n

∑
i=1

xibc2

+e−
cxu

b

n

∑
i=1

xic2xu − e−
cxu

b b2cn− 2 e−
cxu

b bcnxu − e−
cxl
b

n

∑
i=1

xibc2 − e−
cxl
b

n

∑
i=1

xic2xl

+e−
cxl
b b2cn + 2 e−

cxl
b bcnxl + e−

cxu
b

n

∑
i=1

xibc− 2 e−
cxu

b b2n

−e−
cxl
b

n

∑
i=1

xibc + 2 e−
cxl
b b2n. (A13)
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