
galaxies

Article

ConvoSource: Radio-Astronomical Source-Finding
with Convolutional Neural Networks

Vesna Lukic *, Francesco de Gasperin and Marcus Brüggen

Hamburg Observatory, University of Hamburg, Gojenbergsweg 112, 21029 Hamburg, Germany;
fdg@hs.uni-hamburg.de (F.d.G.); mbrueggen@hs.uni-hamburg.de (M.B.)
* Correspondence: vesna.lukic@hs.uni-hamburg.de

Received: 7 October 2019; Accepted: 17 December 2019; Published: 20 December 2019
����������
�������

Abstract: Finding and classifying astronomical sources is key in the scientific exploitation of
radio surveys. Source-finding usually involves identifying the parts of an image belonging to
an astronomical source, against some estimated background. This can be problematic in the radio
regime, owing to the presence of correlated noise, which can interfere with the signal from the source.
In the current work, we present ConvoSource, a novel method based on a deep learning technique,
to identify the positions of radio sources, and compare the results to a Gaussian-fitting method.
Since the deep learning approach allows the generation of more training images, it should perform
well in the source-finding task. We test the source-finding methods on artificial data created for
the data challenge of the Square Kilometer Array (SKA). We investigate sources that are divided
into three classes: star forming galaxies (SFGs) and two classes of active galactic nuclei (AGN).
The artificial data are given at two different frequencies (560 MHz and 1400 MHz), three total
integration times (8 h, 100 h, 1000 h), and three signal-to-noise ratios (SNRs) of 1, 2, and 5. At lower
SNRs, ConvoSource tends to outperform a Gaussian-fitting approach in the recovery of SFGs and all
sources, although at the lowest SNR of one, the better performance is likely due to chance matches.
The Gaussian-fitting method performs better in the recovery of the AGN-type sources at lower SNRs.
At a higher SNR, ConvoSource performs better on average in the recovery of AGN sources, whereas
the Gaussian-fitting method performs better in the recovery of SFGs and all sources. ConvoSource
usually performs better at shorter total integration times and detects more true positives and misses
fewer sources compared to the Gaussian-fitting method; however, it detects more false positives.

Keywords: deep learning; radio astronomy; source-finding; methods; analysis

1. Introduction

An ongoing task in astronomy is the ability to find astronomical sources. This is of importance
because it forms the basis by which a radio astronomical catalog can be built. Modern radio telescopes
can observe many millions of radio sources, and this number will only increase in time owing to
rapidly developing technologies [1]. It is therefore important that the methods developed to find
sources can keep up with the capabilities of the technology, with respect to the quality of sources that
are detected by the telescope.

In this section, we give a brief summary of the main factors affecting the ability to find sources
in radio data, the different types of radio sources (star forming galaxy (SFG) or type of AGN), how a
machine learning approach can work, details about the simulated Square Kilometer Array (SKA; [2])
data used, as well as a brief review of the previous work in this area.

We note that the paper focuses only on source-finding, where the output of the algorithm is the
predicted location of a source. Characterizing and classifying the sources is not currently explored.

Galaxies 2020, 8, 3; doi:10.3390/galaxies8010003 www.mdpi.com/journal/galaxies

http://www.mdpi.com/journal/galaxies
http://www.mdpi.com
http://dx.doi.org/10.3390/galaxies8010003
http://www.mdpi.com/journal/galaxies
https://www.mdpi.com/2075-4434/8/1/3?type=check_update&version=2


Galaxies 2020, 8, 3 2 of 29

1.1. Source-Finding at Radio Frequencies

Radio telescopes measure the surface brightness of the radio sky across some frequency or range
of frequencies and produce a map of the surface brightness. What constitutes a source is a collection of
pixels above some value, which is determined by estimating the background, or noise. The noise is
usually composed of a combination of instrumental noise, observed background emission, and leftover
system uncertainties [3].

The first step involved in source-finding is usually pre-processing the image containing the radio
sources. This involves some transformations to the image, such as scaling the pixel intensities, to
facilitate the source-finding method by suppressing undesired distortions or enhancing features [4],
while preserving the physics of radio sources in the image. The second step is to estimate the
background, after which a threshold can be chosen, which defines where the sources are. Contiguous
pixels above a certain threshold are considered to form part of an object [5], after which a local peak
search is performed where maximum value pixels are isolated.

In the presence of low SNR, which occurs when there is a relatively high background compared
to surface brightness (signal) from the source, it can be difficult to group the pixels belonging to
a particular source. Additionally, the sizes and intensities of the astronomical bodies can vary
significantly [6]. As the SNR is increased, finding and extracting the sources becomes easier as
the pixels belonging to the source show a greater contrast compared to the background. However, it is
more frequently the case that shorter integration times are used, which results in noisier data, and it is
not always easy to capture the background signal, which may also vary across regions in the image.
Another problem to consider is that of source confusion, which is the inability to measure faint sources
due to the presence of other sources nearby. Furthermore, at radio frequencies, the noise tends to be
more correlated compared to other frequencies [7–9], posing further challenges for source-finding
and extraction.

Many algorithms have been developed to perform source-finding across different wavelengths
such as optical, radio, infrared, or x-ray, some of which use a combination of techniques.
Masias et al. [10] presented the largest overview of the most common techniques, although there
have been more recent developments. For example, a source extractor originally developed for
source-finding in optical images (ProFound; Robotham et al. [11]) can also successfully be used at
radio wavelengths [9].

One state-of-the-art source-finding algorithm is the Python Blob Detector and Source-Finder1

(PyBDSF; [12]), which works as follows: After reading the image, it performs some pre-processing,
for example computing the image statistics. Using a constant threshold for separating the source
and noise pixels, the local background rms and mean images are computed. Adjacent islands of
source emission are identified, after which each island is fit with multiple Gaussians or Cartesian
shapelets. The fitted Gaussians or shapelets are flagged to indicate whether they are acceptable or not.
The residual FITSimages are computed for both Gaussians and shapelets. Gaussians within a given
island are then grouped into discrete sources.

There is a growing number of works on the use of machine learning, particularly deep learning
methods, in the detection of astronomical objects. For example, González et al. [13] used a deep learning
framework and a real-time object detection system to detect and classify galaxies automatically,
including a novel augmentation procedure. Ackermann et al. [14] investigated the use of deep
convolutional neural networks (CNNs) and transfer learning in the automatic visual detection of
galaxy mergers and found them to perform significantly better than current state-of-the-art merger
detection methods. An outlier detection technique has also been developed using an unsupervised
random forest algorithm and found to be successful in being able to detect unusual objects [15].
Gheller et al. [16] developed COSMODEEP, a CNN to detect extended extragalactic radio sources in

1 https://www.astron.nl/citt/pybdsf/.

https://www.astron.nl/citt/pybdsf/


Galaxies 2020, 8, 3 3 of 29

existing and upcoming surveys, which proved to be accurate and fast in detecting very faint sources
in the simulated radio images. There have been a couple of recent works specifically in the area of
finding radio sources. ClaRAN (Classifying Radio sources Automatically with Neural networks) [17]
trained a source-finder on radio galaxy zoo data [18] to learn two separate tasks, localization and
recognition, after which the source was classified according to the number of peaks and components,
with accuracies >90%. Sadr et al. [19] presented DeepSource, a CNN that additionally used dynamic
blob detection to find point sources in simulated images and compared the results against PyBDSF,
using different signal-to-noise ratios. In contrast, the current work examines the recovery of SFGs
and two classes of AGN, as well as all sources combined, at different SNRs using a CNN architecture
we call ConvoSource, compares the results against PyBDSF, and shows in which circumstances one
performs better than the other and the likely reasons why. DeepSource requires the tuning of more
variables that need to be defined prior to applying the algorithm, also known as hyperparameters.
ConvoSource requires only the usual deep learning parameters such as the number and type of layers
and the batch size, in addition to the usual components of a machine learning model, such as a cost
function to measure the models’ performance and the gradient descent method, which minimizes the
cost function.

1.2. Types of Radio Sources

Galaxies in the Universe that exhibit significant radio emission generally fall into one of two
main categories: SFGs or AGN. Radio-loud AGN can be grouped based on their appearance; they can
be either “compact” or “extended”. The two most influential factors that govern whether a source
will appear point-like, elongated, or very resolved are the distance of the source and the resolution.
Different radio source types can be characterized by a different spectral index α, which is related to
the frequency ν and flux density S through S(ν) ∝ να. The slope of the spectrum is determined by the
electron energy distribution. Extended radio sources generally have a steep radio spectrum (typical
values are α . −0.8 [20]) and can be referred to as steep-spectrum AGN (AGN-SS), where the majority
of sources can be divided into two distinct classes depending on the morphology of the radio lobes:
FRI (Fanaroff-Riley type 1; core-dominated) and FRII (Fanaroff-Riley type 2; lobe-dominated) [21].
Compact radio sources tend to exhibit a flat radio spectrum (typical values are α ≤ −0.5) and are
denoted as flat-spectrum AGN (AGN-FS) [22]. It should also be noted that some steep-spectrum
sources can be compact.

Since the relative strength of the emission from radio sources depends on frequency, different
components of a radio source can have different spectral shapes.

1.3. Deep Learning

Deep learning methods have been successful in extracting information from high-dimensional
data such as images [23–25]. CNNs are a common example of such a deep learning method. A more
detailed description of how CNNs work is given in Section 2.

The current work explores a novel approach to source-finding by training a CNN on a solution
map derived from knowledge of the source locations. For our purpose of source-finding, the output
images we aim to produce are those of the locations of the sources, rather than the original input
source maps. Given that the source locations can be transformed into image data, the source location
map, along with the original source map, can be segmented into smaller square images (having a size
of 50 × 50 pixels in the current work), which are then used as the inputs to train the CNN to predict
the source locations.

1.4. Simulated SKA Data

The SKA aims to be the largest radio telescope built to date. It will eventually have a collecting
area of more than one square kilometer, operate over a wide range of frequencies (50 MHz–14 GHz
in the first two phases of construction), and will be 50 times more sensitive than any other radio



Galaxies 2020, 8, 3 4 of 29

instrument to date. In the meantime, it is possible to use simulated data products to generate data
similar to what would be expected to be observed by the SKA. The SKA Data Challenge 12 (SKA
SDC1; [26]) was a recent challenge set for the community to develop or use existing source-finders to
perform source-finding, characterization of the sources, and source population identification (SFG, SS,
or FS).

Catalogs of objects to be included in the simulated maps were generated using the Tiered Radio
Extragalactic Continuum Simulation (T-RECS) simulation code [27]. The radio sky was modeled in
continuum, over the 150 MHz–20 GHz range, with two main populations of radio galaxies: AGN and
SFGs and their corresponding sub-populations. The wide ranging frequency has been enabled by
allowing specific conditions for the spectral modeling. Across the AGN, the sources were allowed to
have a different spectral index below and above ∼5 GHz, constrained by the modeled counts from
Massardi et al. [28] for the lower frequency range and de Zotti et al. [29] for the higher frequency
range. In the SFG population, the spectral modeling included synchrotron, free-free, and thermal dust
emission, all expressed as a function of the star forming rate. The redshift range of the simulation was
z = 0–8. The T-RECS simulation output used for SDC1 contained all the sources in a 3 × 3 field of view
(FoV) with integrated flux density at 1.4 GHz > 100 nJy [27].

The data used in the current work were based on the simulated data products generated for SDC1.
There were three available frequencies (B1: 560 MHz, B2: 1400 MHz, and B5: 9200 MHz) at three
integration times (8 h, 100 h, and 1000 h) for each frequency. There were nine maps altogether in the
form of FITS files. The size of the maps was 32,768 × 32,768 pixels; however, only a 4000 × 4000 area
for B1 and a 4200 × 4200 area for B2 within these maps (the training set area) contained the true source
locations. The FoV was chosen for each frequency to contain the primary beam for a single telescope
pointing out to the first null, giving a map size of 5.5, 2.2, and 0.33 degrees on a side for B1, B2, and B5,
respectively, with corresponding pixel sizes of 0.60, 0.24, and 0.037 arcsec. The properties of sources
in a training set area were also provided, across the three frequencies, to see how the sources were
characterized in a particular area so the source-finders could be calibrated or trained. We used the
generated data and focused on the source-finding aspect only.

In constructing the SDC1 image corresponding to the T-RECS source catalog, sources were injected
with a different procedure depending on whether they were extended or compact (major axis greater
or smaller than three pixels, respectively) with respect to the adopted frequency dependent pixel
size. The SFGs were modeled using an exponential Sersic profile [30], projected into an ellipsoid
using a given axis ratio and position angle. The AGN populations (SS and FS) were treated as the
same object type viewed from a different angle. SS AGN would assume FRI/FRII morphologies, and
FS AGN were composed of a compact core with a single lobe, but pointing in the direction of view.
The steep-spectrum sources were generated as postage stamps (that included affine transformations)
from a library of scaled real high resolution images. They also had a correction applied to the flux of
the core in order to give it a flat spectral index; thus, the same AGN could have a different core to lobe
fraction when viewed at different frequencies. The FS AGN were added as a pair of circular Gaussian
components: a compact core with a more extended end-on lobe.

A mild Gaussian convolution was applied to the extended source images, using an FWHM of
two pixels. The three catalogs (SFGs, SS, and FS AGN) of compact objects were added to the image as
elliptical Gaussian components.

All the compact sources that belonged to the classes of SFGs, SS, and FS AGN were described by
an integrated flux density and a major and minor axis size. The compact FS AGN were additionally
described with a core fraction that indicated the proportion of emission belonging to the core of the
source compared to the source extent.

2 https://astronomers.skatelescope.org/ska-science-data-challenge-1/.

https://astronomers.skatelescope.org/ska-science-data-challenge-1/


Galaxies 2020, 8, 3 5 of 29

Visibility data files were generated using the SKA1-Mid configuration. There were two cases
explored: (1) when the 64 Meerkat dishes were included, there were 197 antenna locations specified at
B2; and (2) when the Meerkat dishes were not included, 133 antenna locations were used at B1 and B5.
Both cases were frequency dependent and reflected the fact that Meerkat would most likely not be
equipped with feeds for B1 and B5.

The visibility sampling was based on 91 spectral channels that spanned a 30% fractional
bandwidth, using a time sampling that spanned −4 h to 4 h of local sidereal time with an increment
of 30 s integration time at an assumed declination of −30. The visibility files were used to generate
the noise images and the point spread functions. The gridding weights for the visibility data were
determined by firstly accumulating the visibility samples in the visibility grid with their natural
weights. After this, an FFT based convolution was applied to the visibility density grid using a
Gaussian convolving function with an FWHM of 178 m. The convolving function width was manually
tuned to match as closely as possible the sampling provided by the array configuration. Uniform
weights for the visibilities were formed by using the inverse of the local smoothed data density.
After this, a Gaussian taper was used such that it resulted in the most Gaussian possible dirty beam
with a target FWHM of (1.5, 0.60, and 0.0913) arcsec at (560, 1400, and 9200) MHz. The actual dirty
beam dimensions were closely matched to the target specification. There was a degradation of image
noise compared to the naturally weighted image noise; therefore, they were rescaled in amplitude
to represent realistic variations in RMS for the different integration times. Adding the various noise
images to the convolved sky model resulted in the final data products.

Additional files provided include the primary beam images, which were used to correct the flux
values in the original maps, the synthesized beam images, and the training set files, which included the
properties of the sources such as flux, size, and class, for a particular area in the entire map. There were
three training set files, for the three frequencies. Therefore, the same training set file was used across
the three different integration times within one frequency. For more specific details on the generation
of the simulated SKA data, please refer to Bonaldi and Braun [26].

The paper is outlined as follows: In Section 2, we discuss the specifics about the SKA simulated
dataset, the pre-processing steps on the raw data, the parameters by which PyBDSF was run, how the
dataset was generated prior to undertaking source-finding with ConvoSource and PyBDSF, the theory
behind CNNs, as well as how the images were augmented for ConvoSource. Section 3 describes the
major results summarized in F1 scores that combine precision and recall. We also provide confusion
matrices for some data subsets. Section 4 summarizes our overall findings. Appendix A contains the
precision and recall classification metrics.

2. Methods

2.1. Convolutional Neural Networks

The most common example of a deep learning framework is a CNN. They use convolutional layers,
which apply a convolution operation to the input and pass the output to the following layer, ultimately
achieving a hierarchical extraction of features. The convolutional layers use filters, whose purpose is
to scan across the images and detect features. The filters typically have sizes of a few pixels across
and greatly reduce the number of parameters compared to the fully connected layers in traditional
neural networks. The reduction of parameters in CNNs helps to avoid the vanishing gradient problem,
where the addition of layers can cause the gradient to decrease to zero, a problem most commonly
encountered in fully connected neural networks. The filters also ensure parameter sharing, which
enforces translational invariance [31], defined as when the network produces the same response if the
input is translated horizontally or vertically.

The main purpose of ConvoSource was to find sources in radio astronomy data. The key idea was
to train a CNN using input maps and the corresponding solution maps, to reconstruct the solution
maps. In the testing stage, only the real maps were needed as an input to the CNN, and the source



Galaxies 2020, 8, 3 6 of 29

locations were predicted using the weights that minimized the cost function. The predicted source
locations were compared to the true source locations to calculate the precision and recall metrics.
The sources of varying sizes and emission patterns were collapsed into individual pixel locations, and
the remainder of the image was blank. ConvoSource was trained to do source-finding using segmented
real maps and the corresponding solution maps, both having sizes of 50 × 50 pixels, across three SNRs
of 1, 2, and 5, and the results were compared with the sources found using PyBDSF.

It should be noted that this method of source-finding can be posed as an image-to-image
translation problem, as are many problems in the computer vision field [32]. Many such problems result
in an output image having equivalent or greater complexity compared to the input image, requiring
the use of a bottleneck (a compressed representation of the inputs) in the architecture. Our method did
not require a bottleneck since it produced images of much lower complexity compared to the input
maps, where the radio emission of sources was collapsed to between one and a few pixels. We were not
attempting to see whether the original map could be reconstructed from the input data using a lower
dimensional projection, but to train the network to predict the location of the sources. The stacked
convolutional layers extracted the signal from the noise, where each layer produced an output having
the same dimensions as the input, in order to directly see the detected signals that were propagated
through the network. As a result, we required only the use of a simple CNN.

Another possible application of CNNs on radio astronomy data of the type explored in the current
work is to reconstruct the original input maps that contain the sources, as well as the background
noise, which is an undesired feature. A better application could be to investigate whether it is possible
to derive maps similar to the 1000 h maps using the 8 h emission maps, because the shorter integration
time maps can be viewed as noisier versions of the longer integration time maps. This can be the
subject of a future work.

The present work used Keras3 with the TensorFlow4 backend and Python Version 2.7.15. We used
a convolutional network architecture of three consecutive convolutional layers and one dense layer,
having a total of 32,193 parameters.

Early stopping was used with a patience of 5 training epochs. A single training epoch was when
all training samples were passed through the network. Eighty percent of the data was used for training,
and the remaining 20% was used for testing.

The ConvoSource architecture, as shown in Table 1 and Figure 1, was made up of 3 convolutional
layers and one dense (fully connected) layer. There were 16, 32, and 64 filters, with a filter size of
7, 5, and 3 in the first, second, and third convolutional layers, respectively. A dropout layer using
a dropout fraction of 0.25 was inserted between the first and second convolutional layers to make
the network more robust by reducing overfitting. The purpose of the fully connected layer was to
integrate the features extracted from the feature maps in the final convolutional layer, in order to
output a prediction for the location of the source. We slid the filters along by one pixel in each layer
to ensure maximal information extraction. The batch size was set to 128. We used the Adadelta
optimizer [33] with a default learning rate of 1.0, decay of 0, and a rho of 0.99. Adadelta is based on
Adagrad [34] (an optimizer with parameter specific learning rates); however, Adadelta adapts the
learning rates based on a moving window of gradient updates. We also used the binary cross-entropy
cost function [35] shown in Equation (1):

− 1
N

N

∑
i=1

yilog(ŷi) + (1 − yi)log(i − ŷi), (1)

where yi represents an individual pixel in the solution map, ŷi represents an individual pixel in the
predicted map, and N is the number of pixels in an image. The binary cross-entropy cost function was

3 https://keras.io/preprocessing/image/.
4 https://keras.io/losses/#categoricalcrossentropy.

https://keras.io/preprocessing/image/
https://keras.io/losses/#categorical crossentropy


Galaxies 2020, 8, 3 7 of 29

used on the individual pixel values in each solution and corresponding prediction map and summing
on a per-image basis, then adding these values across all images in a particular batch. The architecture
shown in Figure 1 also contains an example of a real input map and a solution map, the features
detected, and the corresponding reconstructed map.

We experimented with using pooling layers, by applying these to the B1 8 h dataset with no
augmentation. Pooling reduces the dimensionality of the layer by outputting the average pixel value
across some area whose size is defined by the user. Two different architectures were considered:
placing a pooling layer after the first or after the second convolutional layer, respectively. Due to the
halved dimensions in the architecture as a result of pooling, an upsampling layer had to be inserted
prior to obtaining the output. In both cases, the resulting metrics were all inferior to the equivalent
model without pooling. The source locations tended to be less precise and generally spanned an area
of four square pixels, most likely because the pooling operation lost the precise source location.

The use of pooling resulted in ConvoSource identifying no true positives, and it generated a few
false positives due to the reconstruction of the source positions along the edges of the image only.
The likely explanation was that the true signal from the source only occupied a small area, therefore,
when pooling is used, it could “wash out” these pixels, in some cases causing the source to become
lost among the background.

Table 1. Architecture of the ConvoSource model.

Layer Output Shape # Params

Input_1 (None, 50, 50, 1) 0
conv2d_1 (None, 50, 50, 16) 800
dropout_1 (None, 50, 50, 16) 0
conv2d_2 (None, 50, 50, 32) 12,832
conv2d_3 (None, 50, 50, 64) 18,496
dense_1 (None, 50, 50, 1) 65

Total 32,193

Conv2D

Conv2D

Dense

Dropout

Conv2D

Figure 1. ConvoSource architecture and examples of inputs when training (real maps and solution
maps), features detected at the output of the first and third convolutional layer, as well as the resulting
reconstructed image of the solution map. During testing, only the real maps are input into the network,
and the predictions are given using the weights from the trained network.



Galaxies 2020, 8, 3 8 of 29

2.2. Pre-Processing

In order to ensure accurate flux values, we used the primary beam image and raw FITS files
provided and ran CASA [36] to regrid the image and correct for the primary beam. The resulting FITS

file was the one used to perform source-finding in ConvoSource and PyBDSF. Some tests were done
using the non primary beam corrected FITS files, and we observed no change in performance regarding
source-finding ability. To determine the background noise level in the image, we output the background
rms maps when we ran PyBDSF, by specifying RMS_MAP = TRUE using the PROCESS_IMAGE command.
To perform source-finding in PyBDSF, we ran the PROCESS_IMAGE command using the default
parameters of THRESH_ISL = 3.0 and THRESH_PIX = 5.0.

2.3. Dataset Generation

The true location (solution) maps were generated using the training set files across each frequency.
Since we were only interested in the source-finding, we took note of the corresponding (x,y) positions
of each source in the training set. We focused only on the sources that could be found given the noise.
The source locations were inserted into the solution maps as single pixels, under the condition that the
sources had a flux above a certain threshold (when the sources had a flux greater than one, two, and
five times the mean noise level, referred to as SNR = 1, 2, and 5.)

The solution maps used for training had all the sources encoded with a 1, irrespective of class.
When testing, the SS, FS, and SFG sources were encoded using the integers 1, 2, and 3, respectively, in
the solution map, in order to calculate how well ConvoSource and PyBDSF recovered each of these
classes of sources. Table 2 shows the number of each class of sources across SNR = 2 and SNR = 5,
respectively. It should be noted that there were many more SFG sources compared to SS and FS sources,
which was why we focused on augmenting those source types to see if this improved the performance
of ConvoSource. There were fewer sources available at higher SNRs compared to at lower SNRs, since
the threshold for inserting sources into the solution map was a lot higher.

Given there were very few sources available in the B5 dataset, as shown in Table 2, we focused
our attention on the B1 and B2 datasets only.



Galaxies 2020, 8, 3 9 of 29

Table 2. The total number of steep-spectrum (SS) AGN, flat-spectrum (FS) AGN, and SFGs across each
integration time across all frequencies, when using SNR = 2 and SNR = 5.

Dataset # SS-AGN # FS-AGN # SFG

SNR = 2

B1
8 h 342 117 13,920
100 h 644 386 34,158
1000 h 957 682 57,797

B2
8 h 91 64 4028
100 h 166 151 9423
1000 h 278 294 17,283

B5
8 h 3 1 26
100 h 4 2 103
1000 h 6 6 223

SNR = 5

B1
8 h 213 94 5717
100 h 395 208 16,885
1000 h 605 366 31,597

B2
8 h 59 25 1877
100 h 101 73 5096
1000 h 178 155 10,251

B5
8 h 3 1 7
100 h 4 1 43
1000 h 4 3 114

We verified that the noise level in the maps was uniform. Table 3 shows that there were only
small proportional differences in the number of solutions obtained when taking the individual quartile
cut-offs versus using the cut-offs derived from the whole training set area.

Table 3. Percentage difference in the number of sources depending on whether the quartile threshold
from the training set was taken versus using the threshold obtained from the training set as a whole,
at an SNR = 5.

Frequency 8 h 100 h 1000 h

B1 4.4 3.7 2.6
B2 4.5 3.6 2.8

The left panels of Figures 2 and 3 show a section from a real map of B1 at 1000 h and B2 at 8 h,
respectively, containing SFGs, SS, and FS sources, along with the solutions injected at an SNR of 2
and 5. The smaller the SNR, the more sources would appear in the solution map, which would look
increasingly less obvious as they would be getting mixed with the noise background. Conversely,
the larger the SNR, the fewer sources in the solution map, and only increasingly large and/or bright
sources would appear.



Galaxies 2020, 8, 3 10 of 29

Figure 2. (Left panel) Real map of a panel containing a combination of SFGs, SS, and FS sources at
B1 at 1000 h. (Middle panel) True source locations at SNR = 2. (Right panel) True source locations at
SNR = 5. The yellow, blue, and green pixels indicate SFGs, SS, and FS sources, respectively. In this
particular case, both the SS and FS sources are very close together and very faint, which presents a
challenge for both source-finders. The panels have a side length of 50 × 50 pixels.

Figure 3. (Left panel) Real map of a panel containing a combination of SFGs, SS, and FS sources at B2
at 8 h. (Middle panel) True source locations at SNR = 2. There are two SFGs and one each of SS and FS
galaxies. (Right panel) True source locations at SNR = 5. At this SNR, only one SFG and one SS source
remain. The other SFG and FS sources had a total flux that was lower than the cut-off threshold at that
SNR. The yellow, blue, and green pixels indicate SFGs, SS, and FS sources, respectively. The panels
have a side-length of 50 × 50 pixels.

To generate input image data for ConvoSource, we divided the area containing the source locations
(the training set area of size 4000 × 4000 pixels for B1 and 4200 × 4200 pixels for B2) into 50 × 50 pixel
blocks and moved these blocks across by increments of 50 pixels (resulting in 6400 images), ensuring
that the segmented blocks covered the entire area. The blocks may contain sources located on their
boundaries; however, all parts of the sources were accounted for. For a discussion of how we decided
on the choice of block and increment sizes, please refer to Section 2.3.1 at the end of this section.

In the 4000 × 4000 pixel area at the B1 frequency, there were 6400 images for training and testing
altogether, with 5120 (80%) for training and 1280 (20%) for testing. In the 4200 × 4200 pixel area at the
B2 frequency, there were 7056 images for training and testing altogether, with 5644 (80%) for training
and 1412 (20%) for testing. We also investigated how much the results could be improved when
using image augmentation, so 5120 and 5644 were the minimum number of images with which we
trained, for B1 and B2, respectively. Similarly, we generated the input solution data for ConvoSource
by inserting individual pixels to represent the true location of the source, with the position obtained
from the training set.

Given that the pixel values were the surface brightness, which could be very small with O(10−6)
in magnitude, the image data were multiplied by 106 in the same units. We note that the pixel values
could also be negative. Applying a linear scaling to the original values ensured there was sufficient
contrast between them, which facilitated detection by the CNN. The scaling was also done to match
the order of magnitude of the values in the solution maps, which were generated by inserting a “1”
against a background of “0”. We note that we also experimented with multiplying the data by 109 and
found no noticeable difference.

We used only the training set region out of the whole map, which consisted of a 4000 × 4000 pixel
area across the B1 and B5 datasets and 4200 pixel area across B2, as shown in Table 4. It should be



Galaxies 2020, 8, 3 11 of 29

noted that the same area was not covered between the three frequencies; however, it was the same
within the same frequency between the three integration times.

Table 4. The x and y ranges of the training area, according to the locations within the whole map.

Frequency x Range y Range Area

B1 16,300–20,300 16,300–20,300 4000 pixels sq.
B2 16,300–20,500 16,300–20,500 4200 pixels sq.

The solution maps were generated in the same way as the input image maps, using 50 × 50
pixel blocks with increments of 50 pixels, where a “1” was inserted at the location of the centroid
position of the source. The blocks that contained no solutions were empty 50 × 50 blocks. The source
selection was subject to a flux threshold, where only sources having a flux greater than 1, 2, or 5 times
the background for each map were selected. The background maps were determined using PyBDSF.
Figure 4 shows the segmentation of part of the training area into 50 × 50 pixel blocks, for both the
original primary beam corrected FITS file, as well as the corresponding solution map generated. We
ran PyBDSF with the default parameters in order to perform source finding across the whole map,
which was later made into a subset to only include the training set area in the images.

2.3.1. Effect of Differences in Segmenting the Dataset

There was a trade-off with grid size, the number of images produced, training time, and capturing
the radio emission from sources within the blocks. There were two main cases to consider: whether or
not there was an overlap between the blocks, which was determined by the increment size relative
to the block size. Table 5 details the choice of block and increment size on the number of images
produced.

Using more training images and/or using larger block sizes increased the training time. First, we
considered the case that there was no overlap between the blocks. We ideally wanted a grid size that
would fit into the 4000 × 4000 area for B1 and the 4200 × 4200 area for B2, without excluding any
pixels. Using 20 × 20 pixel blocks appeared to be too small: it sometimes caused the sources near
the boundary in a block to leak the emission into the adjacent block(s). Additionally, the training
time would increase due to having 40,000 images, although the smaller block size would help to
decrease the training time. On the other hand, using 200 × 200 pixel blocks was a good size in regard
to containing the radio emission in a block; however, it would also be more computationally intensive
per block and would produce only 400 training images. In the current work, we found the 50 × 50
pixel blocks using 50 pixel increments to be optimal in terms of block size, number of images produced,
and training time.

The second case considered was when the increments were less than the side-length of a block,
causing overlap between the blocks. This meant that parts of the emission in one block would be
seen in at least another block. We experimented with using 20 pixel increments (resulting in 39,204
images) instead of 50 pixel increments, such that the same part of a source was seen across at least one
other block, and therefore, sources on the boundary in one block would not be on the boundary in a
neighboring one, noting a much longer training time with no significant improvement in results.

We note that although the training time would be longer in some of the cases mentioned above,
it would only be done the one time, for each SNR, frequency, and exposure time.



Galaxies 2020, 8, 3 12 of 29

Figure 4. (Left) Segmentation of a portion of the primary beam corrected images in the training set
area. (Right) Segmentation of the solution map in the same area. These images are generated from the
B1 1000 h dataset, using an SNR = 5 to determine the threshold of flux for injecting the solutions. Each
block formed a single 50 × 50 pixel image that was input into the ConvoSource algorithm. The blocks
on the left make up the training set images (train_X), and the blocks on the right make up the solution
set images (train_Y).

Table 5. Exploring different block sizes, pixel increments, and number of images produced, using the
B1 frequency as an example.

Block Size Increment Size # Images Produced

No overlap

20 × 20 20 200 × 200 = 40,000
50 × 50 50 80 × 80 = 6400
80 × 80 80 50 × 50 = 2500
100 × 100 100 40 × 40 = 1600
200 × 200 200 20 × 20 = 400

Overlap

20 × 20 10 398 × 398 = 158,404
50 × 50 20 198 × 198 = 39,204
50 × 50 40 99 × 99 = 9801
80 × 80 40 98 × 98 = 9604
80 × 80 50 79 × 79 = 6241

2.4. Image Augmentation

Deep learning techniques are able to take advantage of image augmentation as it generates more
training samples, which should improve the performance up to some threshold [23]. Since there
were many fewer SS and FS AGN sources compared to SFGs, we wanted to see whether we could
improve on the metrics for these types of sources if we augmented the images that contained them.
We employed vertical and horizontal flipping and rotation by 90, 180, and 270 degrees. The results
showed the metrics when applying no augmentation, augmenting the SS and FS sources, as well as
augmenting all sources. There would be little merit in explicitly augmenting the SFGs because they
tended to appear more point like.

3. Results

The results presented were the summary metrics of the sources across the different classes, SS, FS,
and SFG sources and all sources as a whole. We allowed a leniency of three pixels for the positions of
sources found. To calculate the metrics, we give the following definitions:

• TP: sum of pixels with values greater than the reconstruction threshold in the reconstructed
solution map that were less than three pixels away from a source in the true solution map



Galaxies 2020, 8, 3 13 of 29

• FP: sum of pixels with values greater than the reconstruction threshold in the reconstructed
solution map that were equal to or greater than three pixels away from a source in the true
solution map

• TN: sum of pixels with values lower than the reconstruction threshold in the reconstructed
solution map that were also empty in the true solution map

• FN: sum of pixels with values lower than the reconstruction threshold in the reconstructed solution
map that were not empty in the true solution map,

where TP refers to the true positives, TN refers to true negatives, FP refers to the false positives,
and FN refers to false negatives.

Given that source-finding in the current work was defined as being directly related to the sum of
pixels output by the source-finders, the sum of the sources detected between the source-finders was
not expected to be constant.

Since the true catalog was quite richly populated with sources, and given the three pixel leniency,
there could be some sources that were found across both algorithms by chance. Ideally, there should be
zero chance findings, but in reality, there will be some small fraction. We used the SNR = 1 dataset to
test this effect, as this dataset had the highest population of sources in the solution map (and also in the
reconstructed map). Therefore, the SNR = 1 dataset could be considered to be the worst case scenario
for chance matches. The effect of chance matches was tested by randomly rotating the reconstructed
solution maps, comparing with the real solution map, and calculating the metrics, as for the rest of the
results.

The precision, recall, and F1 score metrics, in the form of bar plots, are provided in the current
work. We did not include the accuracy because of the way the true negatives were defined. The value
was always very high, leading to accuracies greater than 99% across both source-finders. The metrics
are defined in Equations (2)–(5).

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 score =
2 × Precision × Recall

Precision + Recall
(4)

Accuracy =
TP + TN

TP + FP + TN + FN
. (5)

The original reconstructed image output of ConvoSource was composed of continuous pixel
values that were mainly close to zero. To determine the output predictions for the source locations, we
defined a reconstruction threshold that ranged between zero and one. Then, we chose the value across
all metrics depending on which reconstruction threshold produced the highest F1 score. PyBDSF only
produced a binary output depending on whether a source was found or not.

The bar plots of the F1 score, defined as the harmonic mean across precision and recall,
are provided in the main text, as well as a subset of the confusion matrices. The precision and
recall bar plots are given in Appendix A. In order to gauge the reliability of the predictions, we
included the Kappa statistics [37], which measures the correlation of the predictions between the
source-finders. Values of one indicate complete agreement and values of zero no agreement, or the
agreement that would be expected by chance.

We also omitted the results across the B5 dataset because both source-finders failed to recover
any sources across any integration time. This was most likely because although the noise was lower
at higher frequencies, the sources tended to occupy fewer pixels. Furthermore, a higher frequency
resulted in a lower surface brightness, and there were very few sources available in the catalog at the
B5 frequency. For these reasons, source-finding at higher frequencies was more difficult.



Galaxies 2020, 8, 3 14 of 29

3.1. Very Low Significance Source Metrics at SNR = 1

Figure 5 shows the F1 score metrics across the different classes of sources, as well as when all were
considered together. ConvoSource almost always performed better across the SFGs and all sources in
the B1 dataset, for all integration times, whereas PyBDSF performed better for the remaining datasets
(SS and FS sources across B1 and B2 and SFGs and all sources at B2.)

The better performance of ConvoSource across the SFGs and all sources at B1 was most likely
due to the effect of chance matches, as shown in Figure 6, which shows the source-finding metrics
when the predicted source locations were randomized, to see how many sources were found due
to chance. On average, ConvoSource was more affected by chance matches across the SFGs and all
sources. Some possible causes of the increased chance matches in ConvoSource were that the SFGs
were highest in number and that many sources found tended to be spread over several pixels rather
than confined to one. On the other hand, PyBDSF was more affected on average by chance findings
across the SS and FS sources. In ConvoSource, at worst, the chance matches reached up to ∼26%
compared to real findings, whereas in PyBDSF, the effect was more pronounced in the datasets where
fewer sources were found overall. The worst case for PyBDSF was across the SS sources in the B2 100 h
dataset, where there were barely more real matches compared to chance matches. It should also be
noted that the SNR = 1 dataset was the noisiest one that also had the most densely populated solution
and reconstruction maps, which maximized the risk of chance findings, therefore representing the
worst case scenario in terms of datasets. We further note that the sources had very low significance at
this SNR.

An improvement in the F1 score across the SFGs could be observed due to augmenting the images
containing all sources, since the vast majority of all sources were SFGs. However, augmenting the SS
and FS sources did not improve the SFG scores by much, since we were not giving the network more
examples of SFGs to train. Image augmentation did not have the same effect on the randomized data,
as shown in Figure 6.

Figure 7 may indicate possible reasons why the ConvoSource performance was poorer overall
compared to PyBDSF, at an SNR = 1. Since the solutions were injected into the map at the threshold of
the mean background noise level, there appeared to be solutions that were not obvious by eye and
could become confused with the background noise. It is therefore possible that ConvoSource did not
successfully learn to extract the sources at this SNR. For the examples given, there was one SS source
in each map, while the rest were SFGs. Both PyBDSF and ConvoSource recovered the SS source in
the top row, whereas ConvoSource found a false positive and missed other SFGs. PyBDSF recovered
one of the SFGs successfully, but missed the others. Neither PyBDSF nor ConvoSource recovered the
SS source in the bottom row, and ConvoSource partially recovered one of the SFGs even though the
location was spread out over several pixels. It missed the other SFGs and identified false positives.
PyBDSF recovered only one SFG in this example and missed the others, which resulted in a number of
false negatives.

Table 6 shows the correlations between the predictions given by the different runs of ConvoSource,
compared with that given by PyBDSF. We note that in calculating the correlations, exact source locations
between the source-finders was assumed (there was no leniency in the pixel locations). There were
moderate correlations between the source-finders at an SNR = 1 across the B1 (560 MHz) dataset.
The correlations tended to improve on average when ConvoSource was trained with the augmented
datasets and when longer exposure times were used. In the B2 (1400 MHz) dataset, there were only
random correlations at the shorter exposure times of 8 h and 100 h; however, the correlations were
again moderate at 1000 h.

We note that at this SNR, the signal was on the same level as the noise, where more sources were
available, and it represented the most difficult case in separating the pixels belonging to a source as
opposed to noise. Furthermore, ConvoSource output the source locations spread over several pixels,
whereas PyBDSF localized the sources to single pixels; therefore, even if the same source was found by



Galaxies 2020, 8, 3 15 of 29

both source-finders, the correlations between them for one source in question may cancel out given the
disagreement in the neighboring pixel values.

A likely reason for the high level of chance correlations in the B2 dataset was that although the
noise was lower, the sources occupied fewer pixels. Furthermore, at higher frequencies, there were
lower surface brightness values. It was for these reasons that there was more difficulty in finding
sources at higher frequencies. We note that when the exposure time was increased from 100 h to 1000
h in the B2 dataset, this resulted in data that were greatly reduced in noise compared to increasing the
exposure time from 8 h to 100 h. Therefore, the radio signals from the sources were in much higher
contrast to the background noise. As a result, the correlations became moderate again.

Table 6. The Kappa statistics as measured using the correlation of the predictions between all runs of
ConvoSource against PyBDSF, across all frequencies and exposure times at SNR = 1.

B1_8 h B1_100 h B1_1000 h B2_8 h B2_100 h B2_1000 h

ConvoSource_None 0.30 0.56 0.55 0.0 0.0 0.32
ConvoSource_Extended 0.52 0.58 0.51 0.0 0.0 0.50
ConvoSource_All 0.33 0.61 0.53 0.0 0.0 0.41

Figure 5. F1 scores at SNR = 1, across the two frequencies B1 (560 MHz) and B2 (1400 MHz) and
the three integration times. There are three results given from ConvoSource, depending on the
augmentation used when training. The blue bar represents no augmentation; orange represents
augmenting the SS and FS sources; and the green bar represents augmenting all sources. The graphs
show that PyBDSF usually performed better compared to ConvoSource at this SNR. Although it
appeared that ConvoSource performed better across the SFGs and all sources in the B1 dataset, for
all integration times, the better performance appeared to be explained by the increased proportion of
chance matches at this SNR, as shown in Figure 6. However, it should be noted that these sources had
very low significance given the SNR.



Galaxies 2020, 8, 3 16 of 29

Figure 6. Showing the effect of randomly rotating the reconstructed matrix of source locations to
investigate the proportion of chance findings.

Figure 7. The top and bottom rows show a couple of examples of a real map for B1 at 8 h (first column),
the solutions when injected into the map given the SNR = 1 threshold (second column), the predicted
locations by ConvoSource after training on the original images only (third column), and the predicted
locations by PyBDSF (fourth column).

3.2. Low Significance Source Metrics at SNR = 2

Figure 8 shows the F1 score metrics across the different classes of sources, as well as when we
considered them all together.

Across the SFGs/all sources at SNR = 2, ConvoSource performed better on average, where now
it recovered these sources better in the B2 8 h dataset, and one example is shown in Figure 9. However,
PyBDSF generally performed better across the SS and FS sources.

Considering the F1 scores of the SS sources in the 8 h datasets, the augmentation of either the
SS/FS or all sources worsened the score, most likely because this dataset was the noisiest of the three;
therefore, some signal would become lost in the noise. There were generally slight improvements with
the augmentation of the SS/FS at the other two integration times, as the noise was reduced. The SS
sources were the ones that varied most in morphology (they had the greatest amount of extended



Galaxies 2020, 8, 3 17 of 29

emission and gave rise to FRI/FRII type structures); however, there were not many original examples
of these. Additionally, the signal threshold was set at only twice the noise threshold, so there were
more solutions in the map, increasing the risk of sources being contaminated with noise. PyBDSF
clearly outperformed ConvoSource across the SS sources.

Across the FS sources, there were two datasets in which ConvoSource performed better than
PyBDSF (B2 at 8 h and B2 at 100 h); however, for the remainder, it did slightly worse than PyBDSF.
The augmentation of the SS/FS sources always improved the F1 score across these FS sources;
however, it did not always improve when augmenting “all” sources, since most of these sources
were SFGs; therefore, proportionally, there were fewer SS/FS sources to train. We noted that when
using ConvoSource, the performance was better across the FS sources as these sources had a more
defined morphology, which tended to be more compact compared to that of the SS sources.

A similar pattern was observed at the SNR of two, as was observed at SNR = 1 in regard to the
effects of augmentation, where augmenting sources of the same type resulted in improved metrics for
those sources.

Table 7 shows the confusion matrices across the B1 and B2 datasets for the 8 h and 1000 h
integration times, when comparing the test results after using ConvoSource trained on the
augmentation of all sources, against PyBDSF. We excluded the true negative counts for brevity as this
denoted the total number of pixels where there was no solution, as well as no predicted source. Given
that ConvoSource sometimes produced reconstructed solutions that were spread over several pixels
and that true positives were defined as matches that occurred over less than three pixels of the true
solution locations, ConvoSource detected more true positives. However, it also detected more false
positives compared to PyBDSF, but fewer false negatives. Therefore, it missed fewer sources compared
to PyBDSF.

Table 8 shows the Kappa statistics between PyBDSF and the networks of ConvoSource, trained
with different augmented datasets. Similar to what was observed at SNR = 1, the correlations were
moderate in the B1 dataset and were due to chance in the B2 dataset at the shortest exposure times.
On average, the correlations were improved compared to those observed at SNR = 1, most likely
because the signal was twice as strong compared to the noise. We note however that this SNR was still
relatively low, so the sources did not have much significance.

Figure 8. F1 scores at SNR = 2, across the two frequencies B1 (560 MHz) and B2 (1400 MHz) and
the three integration times. There are three results given from ConvoSource, depending on the
augmentation used when training. The blue bar represents no augmentation; orange represents
augmenting the SS and FS sources; and the green bar represents augmenting all sources.



Galaxies 2020, 8, 3 18 of 29

Figure 9. The top and bottom rows show a couple of examples of a real map for B2 at 8 h (first column),
the solutions when injected into the map given the SNR = 2 threshold (second column), the predicted
locations by ConvoSource after training on the original images only (third column), and the predicted
locations by PyBDSF (fourth column).

Table 7. Showing all of the TP, FP, and FN across (3) ConvoSource augment all and (4) PyBDSF, at B1
8 h, B1 1000 h, B2 8 h and B2 1000 h, at an SNR = 2. The symbols in the first row (e.g., SFG_tp, _fp and
_fn) represent the SFG true positives, false positives, and false negatives, respectively. The same pattern
applies to the SS, FS, and all sources combined in the following 9 columns. The final two columns refer
to the ratio of false positives to true positives and the ratio of false negatives to true positives.

Method SFG_tp _fp _fn SS_tp _fp _fn FS_tp _fp _fn All_tp _fp _fn #fp/#tp #fn/#tp

B1_8 h
(3) 1473 635 261 23 282 0 26 163 0 1522 561 316 0.37 0.21
(4) 314 73 611 19 57 1 8 35 0 341 46 663 0.14 1.94

B1_1000 h
(3) 5351 2735 2026 58 2722 0 68 1551 0 5477 2592 2235 0.47 0.41
(4) 3326 506 4333 57 1306 0 50 765 0 3433 429 4555 0.13 1.33

B2_8 h
(3) 628 52 319 3 22 0 12 3 0 643 56 340 0.09 0.53
(4) 130 13 79 4 9 0 9 3 0 143 8 89 0.06 0.62

B2_1000 h
(3) 2476 1593 1608 11 330 1 42 289 0 2529 1531 1734 0.61 0.69
(4) 1897 290 1932 12 226 1 31 199 0 1940 245 2050 0.13 1.06

Table 8. The Kappa statistics as measured using the correlation of the predictions between all runs of
ConvoSource against PyBDSF, across all frequencies and exposure times at SNR = 2.

B1_8 h B1_100 h B1_1000 h B2_8 h B2_100 h B2_1000 h

ConvoSource_None 0.30 0.53 0.60 0.0 0.0 0.33
ConvoSource_Extended 0.30 0.62 0.57 0.0 0.0 0.29
ConvoSource_All 0.24 0.62 0.62 0.0 0.0 0.52

3.3. High Significance Source Metrics at SNR = 5

The opposite trend to what was observed at SNR = 2 was seen at SNR = 5, as shown in Figure 10,
where now, PyBDSF performed better on the SFGs/all sources on average, whereas ConvoSource
performed better on average on the SS and FS sources.



Galaxies 2020, 8, 3 19 of 29

Figure 10. F1 scores at SNR = 5, across the two frequencies B1 (560 MHz) and B2 (1400 MHz) and
the three integration times. There are three results given from ConvoSource, depending on the
augmentation used when training. The blue bar represents no augmentation; orange represents
augmenting the SS and FS sources; and the green bar represents augmenting all sources.

Therefore, when there was a higher signal to noise, ConvoSource could better extract the SS/FS
sources compared to the SFG/point sources. For the majority of times, better results were achieved
when augmenting either the SS and FS sources, or all; whereas when the signal to noise was lower,
the performance of ConvoSource across these extended sources suffered, probably because the emission
from them tended to become lost in the noise, whereas the SFGs were recovered better compared to
when using PyBDSF at lower SNRs.

Figure 11 shows that ConvoSource can recover the SFG and SS source in the top row, as well as
the SFG in the bottom row; however, at the expense of a couple of false positives. Meanwhile, PyBDSF
did not recover any sources.

Figure 11. The top and bottom rows show a couple of examples of a real map for B2 at 8 h (first column),
the solutions when injected into the map given the SNR = 5 threshold (second column), the predicted
locations by ConvoSource after training on the original images only (third column), and the predicted
locations by PyBDSF (fourth column).



Galaxies 2020, 8, 3 20 of 29

Table 9 shows the confusion matrices at SNR = 5, for the same datasets and runs as was included
for SNR = 2. There were fewer sources found by the source-finders overall as the SNR was higher
compared to before; however, a similar trend was seen as before, where ConvoSource found more true
positives and false positives, whereas PyBDSF found fewer true positives, but more false negatives.
However, the ratio was not as pronounced when compared to what was observed at SNR = 2, as the
signal-to-noise was now higher.

Table 9. Showing all of the TP, FP, and FN across (3) ConvoSource augment all and (4) PyBDSF, at B1
8 h, B1 1000 h, B2 8 h, and B2 1000 h, at an SNR = 5. The symbols in the first row (e.g., SFG_tp, _fp and
_fn) represent the SFG true positives, false positives, and false negatives, respectively. The same pattern
applies to the SS, FS, and all sources combined in the following 9 columns. The final two columns refer
to the ratio of false positives to true positives and the ratio of false negatives to true positives.

Method SFG_tp _fp _fn SS_tp _fp _fn FS_tp _fp _fn All_tp _fp _fn #fp/#tp #fn/#tp

B1_8 h
(3) 444 175 225 20 41 1 11 11 0 475 164 256 0.35 0.54
(4) 304 60 172 18 38 0 8 15 0 330 40 193 0.12 0.58

B1_1000 h
(3) 3478 1422 629 35 1075 0 45 573 0 3558 1311 738 0.37 0.21
(4) 3070 663 1124 57 892 0 45 473 0 3172 554 1247 0.18 0.39

B2_8 h
(3) 332 44 70 7 13 0 8 0 0 347 47 80 0.14 0.23
(4) 128 13 29 4 8 0 8 1 0 140 8 34 0.06 0.24

B2_1000 h
(3) 1980 974 514 13 168 0 29 115 0 2022 923 567 0.46 0.28
(4) 1857 280 587 12 149 0 28 102 0 1897 224 637 0.12 0.34

Figure 12 shows the training and validation losses across the B1 and B2 frequencies, across all
integration times. These losses were obtained using the binary cross-entropy cost function on the
training and validation data, respectively, as a function of training epochs. In the left panel (B1
frequency; 560 MHz), the training and validation losses were roughly at the same level across the
8 h and 100 h integration times, whereas there was some underfitting observed in the 1000 h dataset.
The underfitting generally indicates that a more complex architecture should be tried. In the right
panel (B2 frequency; 1400 MHz), the 8 h integration time loss curves were at the same level, whereas
there was some level of overfitting observed across the 100 h and 1000 h integration times. It was
more difficult to find sources at the B2 frequency compared to B1 because the frequency was higher;
therefore, the surface brightness of the sources was lower. It is interesting to note that for the same
integration times across the two different frequencies, the same model tended to underfit on one
dataset and overfit on the other. This indicated that using the same model across all frequencies and
integration times was not ideal, that instead, each model should be tuned to the specific dataset at
hand. Nonetheless, the resulting metrics were still competitive with those of PyBDSF and had the
potential to outperform PyBDSF given a more optimally tuned model.

Table 10 shows the Kappa statistics between PyBDSF and the trained networks of ConvoSource,
with different augmented datasets. The correlations were improved compared to those observed at an
SNR = 2, between the B1 datasets at 100 h and 1000 h exposure time. However, they became random
at the 8 h exposure time, which continued to be observed in the B2 dataset at 8 h and 100 h. Potential
reasons for this behavior were that although the SNR was the strongest, there were fewer source
location predictions given on average compared to at a lower SNR. Furthermore, there were cases for
example in Figure 11, where PyBDSF failed to predict any location for the source; therefore, although
ConvoSource may predict the correct location, it would not agree with the PyBDSF prediction.



Galaxies 2020, 8, 3 21 of 29

Figure 12. Training and validation losses across the three integration times at SNR = 5 across B1 and
B2 datasets in the left and rights panels, respectively.

Table 10. The Kappa statistics as measured using the correlation of the predictions between all runs of
ConvoSource against PyBDSF, across all frequencies and exposure times at SNR = 5.

B1_8 h B1_100 h B1_1000 h B2_8 h B2_100 h B2_1000 h

ConvoSource_None 0.0 0.52 0.67 0.0 0.0 0.1
ConvoSource_Extended 0.0 0.53 0.73 0.0 0.0 0.37
ConvoSource_All 0.1 0.46 0.73 0.0 0.0 0.1

3.4. Execution Times

Both source-finders were run on a computing cluster using CPUs from 27 available Intel XEON
CPU nodes, with a 3.5 GHz processor. There were six available cores per node.

Given that ConvoSource was built using Keras using the TensorFlow backend, it was possible to
exploit the multicore architecture of the CPU and therefore speed up the generation and augmentation
of images, as well as the training and testing time. Given the relatively small number of images and
image sizes used in the current work, it was only necessary to use a single core at one time, on a node
on the computing cluster. The use of multiple cores was possible by specifying the desired number in
the configurations, using a command in Keras. The processes necessary for the computation would
then be distributed evenly among the cores. On the computing cluster available, it should be possible,
if necessary, to generate several hundred thousand images having a size of a couple of hundred pixels
and perform training and testing on them, to use up the maximum computation of the six cores at a
node in the cluster. For anything more intensive, it should be possible to configure the cluster to utilize
multiple nodes.

In the current work, it was not necessary to exploit GPUs. They would be useful if larger sized
blocks were desired and/or translating them by a smaller number of pixels (thus generating more
original training images). GPUs would also be useful to speed up the generation of an increased
number of augmented images and to try more complicated CNN architectures.

Table 11 shows the execution times required to generate segmented versions of the real maps and
source location maps, augmented data, and training and testing times for ConvoSource. The times
were compared to those obtained from running PyBDSF on the same area. The execution times across
ConvoSource were subject to variability depending on how many sources there were to augment, as
well as the total training time, which depended on the total number of images and epochs. The run
where the SS and FS sources were augmented took a shorter time to train and test compared to the one
where no augmentation was used because there were more epochs of training completed. The run that
did not utilize augmentation was affected by the early stopping condition at an earlier point during
training.



Galaxies 2020, 8, 3 22 of 29

Table 11. Time required (in min) to generate segmented versions of the real and source location
(solution) maps. For the different runs of ConvoSource, the time required to augment different sets
of sources (SS and FS images, and all images) is given, as well as the corresponding times required
for training and testing. We also show the amount of time needed to predict the source locations for
PyBDSF. The number after the underscore in the first row of the table refers to the SNR at the given
exposure time.

8 h_1 8 h_2 8 h_5 100 h_1 100 h_2 100 h_5 1000 h_1 1000 h_2 1000 h_5

B1

Generate solutions 2.9 2.5 3.3 2.9 2.7 2.5 3.2 4.5 2.6
Generate real data 2.5 4.5 2.4 3.8 2.9 2.6 3.0 4.7 5.0
Augment SS + FS 0.2 0.2 0.1 0.6 0.4 0.1 1.8 1.1 0.3
Augment all 21.2 16.0 21.2 21.5 28.5 21.3 21.3 17.1 17.0
Train none 38.0 23.1 18.0 15.6 42.7 26.4 13.2 24.7 8.0
Train SS + FS 39.6 26.7 20.6 15.3 24.4 32.6 37.7 25.2 35.1
Train all 109.9 126.3 120.7 79.5 111.1 145.1 69.1 81.1 99.6
Test none 0.7 0.5 0.4 0.5 1.2 0.5 0.6 0.5 0.5
Test SS + FS 1.1 0.5 0.4 0.5 0.5 0.5 0.7 0.5 0.5
Test all 0.5 0.5 0.4 0.5 0.7 0.5 0.5 0.6 0.5
PyBDSF 5.2 5.7 5.7 6.2 6.3 5.2 19.1 18.4 20.1

B2

Generate solutions 3.6 3.2 4.0 4.6 3.1 3.4 3.2 6.4 3.5
Generate real data 3.0 5.1 3.8 3.3 3.3 3.1 3.1 4.1 6.2
Augment SS + FS 0.1 0.1 0.0 0.2 0.2 0.0 0.2 0.2 0.1
Augment all 26.1 26.0 35.8 26.0 26.0 20.6 22.7 25.8 20.6
Train none 35.2 31.9 29.1 75.4 32.5 29.2 52.4 28.9 29.1
Train SS + FS 38.3 32.4 30.7 59.2 35.7 32.9 27.2 40.6 35.9
Train all 190.5 148.6 281.6 148.6 152.8 231.8 263.8 129.1 446.8
Test none 0.7 0.7 0.4 1.9 0.7 0.6 1.3 0.7 0.7
Test SS + FS 0.7 0.5 0.4 1.6 0.6 0.5 0.7 0.7 0.7
Test all 0.6 0.7 0.6 0.7 0.6 0.6 1.3 0.7 1.2
PyBDSF 8.6 6.8 5.9 23.2 21.5 22.2 21.2 22.1 21.4

4. Discussion and Conclusions

In the current work, we showed how the use of a simple CNN composed of three convolutional
layers, a dropout layer, and a dense layer, as shown in Figure 1 and Table 1, could be competitive
with a state-of-the-art source-finder, PyBDSF. Both approaches were tested across different frequencies,
integration times, and signal-to-noise ratios, and the recovery metrics across the different source types
of SFGs, SS-AGN, and FS-AGN sources were derived. The code used to obtain both the ConvoSource
and PyBDSF results is available on GitHub5. Given that ConvoSource outputs continuous values in the
reconstruction of the solution map, as defined by a reconstruction threshold that ranges between zero
and one, whereas PyBDSF uses a fixed threshold, ConvoSource could be more flexible as a method as
it attributes a probability to finding a source at a particular location.

ConvoSource also sometimes output the source location spread over a few pixels rather than being
localized to a single one, which may provide additional information about the source. For example,
it could be more extended or diffuse. The fact that ConvoSource spread out the source location over
several pixels, which occurred more frequently at the lower SNRs and at shorter exposure times,
where there were more sources present and their emission was more likely to get mixed with the noise,
resulted in more true positives and fewer false negatives. However, at the same time, ConvoSource
also produced a larger number of false positives compared to PyBDSF. A similar trend was seen at
higher SNRs, although fewer true positives, false positives, and false negatives were found by both

5 https://github.com/vlukic973/ConvoSource.

https://github.com/vlukic973/ConvoSource


Galaxies 2020, 8, 3 23 of 29

source-finders in comparison. For example, the SNR = 5 dataset had fewer solutions, but also the
strongest signal. On the other hand, PyBDSF missed many more sources compared to ConvoSource,
as the false negative counts were almost always higher.

It is interesting to note that the metrics across the SS and FS sources tended to be relatively low
across both PyBDSF and ConvoSource. In fact, they decreased with increasing integration time, across
all SNRs, with the dataset at the lowest frequency (B1) attaining the lowest metrics overall. Possible
reasons could be that the SS and FS sources were smallest in number and their morphology was
revealed as increasingly variable, as more extended emission was detected with the longer integration
times.

In regard to how well the two methods extracted SFGs, SS, FS, and all source types combined
across the SNRs, we saw that PyBDSF performed better on average compared to ConvoSource at
SNR = 1. ConvoSource appeared to be more severely affected by chance matches at this SNR compared
to PyBDSF; however, the sources had very low significance. In contrast, ConvoSource was better at
extracting the SFGs and all sources at SNR = 2, whereas PyBDSF was better at extracting these at
SNR = 5. ConvoSource was better at extracting the FS sources at an SNR of five, whereas PyBDSF was
better for the FS sources at SNR= 2. ConvoSource was worse at extracting the SS sources at an SNR of
2; however, half the time, it was better than PyBDSF at extracting them at an SNR of 5.

We saw that image augmentation improved ConvoSource’s performance when the relevant
sources were augmented. Generating more “all” sources tended to improve the metrics across SFGs
and “all” sources as these sources were largely made up of SFGs, and generating more SS and FS
sources tended to improve their recovery, but not that of SFGs and all sources. Augmentation may
also not work to improve the results as expected when the datasets are noisier, the sources are few in
number, or if their morphology is ambiguous.

The reliability of the predictions was quantified using the Kappa statistics. At the lowest SNR of
one, the correlations between the source-finder predictions tended to be moderate for most datasets;
however, they were random in the B2 dataset at the shorter exposure times. This was likely due to
the very low SNR since the signal was the same level as the noise, and it was the most populated
dataset on average with source predictions. Furthermore, we note that ConvoSource tended to output
the source locations over several pixels, whereas PyBDSF localized them to single pixels; therefore, a
reduced Kappa statistic was likely given there would be a disagreement in values in the vicinity of a
particular source. A general improvement of the Kappa statistics was observed with increasing SNR.
Additionally, it should be possible to improve the Kappa statistics by simulating lower frequency data,
increasing the exposure time, generating more augmented images, and by producing more images
through using smaller spacings between the segmented blocks.

It should be noted that the Kappa statistic had several limitations. Although the statistic was
designed to take into account the probability of chance agreements, it could not be directly interpreted,
and the assumptions it made about rater independence were not well supported [37].

The run times indicated that PyBDSF took longer to run on average compared to when using a
trained ConvoSource network. Despite the augmentation and training times of ConvoSource being
longer on average, they only had to be done once for a particular dataset, after which the trained
network could be used. We note that the running times could further be improved if multiple cores
were used or it was run on a GPU.

Across the results for the low significance source metrics at SNR = 2 and high significance source
metrics at SNR = 5, ConvoSource usually outperformed or had very similar performance metrics
to PyBDSF across the shortest integration time datasets (8 h). This may indicate that it could more
successfully model the noise at these SNRs and integration time compared to PyBDSF. The only times
that ConvoSource performed visibly worse was in B2 at 8 h across the SS sources at an SNR = 2
and across all B2 at 8 h at SNR = 1. It appeared that ConvoSource had trouble modeling the noise as
the SNR decreased, especially for sources with more extended emission. Potential ways to improve



Galaxies 2020, 8, 3 24 of 29

the performance of ConvoSource at lower SNRs could be to use a more complex network and train for
more epochs with a greater reconstruction threshold when using early stopping.

The injection of sources and, in turn, the ability to be found by the source-finders largely depend on
the characterization of the background noise signal. In the current work, we used PyBDSF to estimate
the background noise. Therefore, if there were more false negatives/positives, these missed/extra
sources would be contaminating the background signal to some extent. Sources displaying a more
compact morphology are unlikely to affect the background signal by much since the emission is
localized to a very small area. However, the effect will be larger the more extended the source is. Some
extended sources may have very faint and/or diffuse emission, which can mingle with the noise.

It appeared that ConvoSource performed better overall at larger SNRs and shorter integration
times compared to PyBDSF, most likely because it had learned to model the noise in these images
better and the sources showed a greater contrast against the background. The ratio of false positives
to true positives was larger for ConvoSource; however, the ratio of false negatives to true positives
was larger for PyBDSF. Therefore, ConvoSource and PyBDSF performed better in terms of recall and
precision, respectively. As the SNR increased, ConvoSource became increasingly better at recovering
the extended (SS and FS) sources and tended to outperform PyBDSF across most datasets at the highest
SNR of five. However, at the same time, PyBDSF became increasingly better at recovering the SFGs and
sources as a whole. With a decreasing SNR, ConvoSource was increasingly successful at recovering the
more compact sources (SFGs) and all sources, whereas it performed worse with the extended sources,
most probably because it had not successfully learned to extract the extended source signals from the
noise at lower SNRs, on which PyBDSF did better.

Given that ConvoSource tended to perform better in terms of recall (as shown in Appendix A),
overall compared to PyBDSF (therefore, it found fewer false negatives and hence picked up some
sources that PyBDSF had missed), it could be used as part of a pipeline where ConvoSource is run
first to find the sources, then PyBDSF is run to extract the precision values for these sources, perform
further filtering, as well as characterize the sources.

The next step in developing ConvoSource would be to derive properties from the sources found.
One way to do this may be to correlate the features detected by lower layers to the values given
in the catalog, for example to match the total flux for a source in question to the emission detected
by one of the feature maps. Previously, we attempted a regression technique to see if it could learn
the continuous values provided in the catalog; however, our network failed to learn any property
successfully. ConvoSource could also be made up of individual models that are targeted to the dataset
at hand, where the training and validation losses are better matched. Another possible extension to
the current work would be to train a CNN to learn to remove noise from data by generating 1000 h
maps from 8 h, or 100 h ones.

Author Contributions: Conceptualization, V.L.; methodology, V.L.; software, V.L.; validation, V.L., F.d.G. and M.B.;
formal analysis, V.L.; investigation, V.L.; resources, M.B.; data curation, V.L.; writing–original draft preparation,
V.L.; writing–review and editing, V.L., F.d.G. and M.B.; visualization, V.L.; supervision, F.d.G. and M.B.; project
administration, M.B.; funding acquisition, M.B. All authors have read and agreed to the published version of the
manuscript.

Funding: We acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
under Germany’s Excellence Strategy: EXC 2121 “Quantum Universe”, 390833306.

Acknowledgments: We thank Anna Bonaldi, Hershal Pandya, Stijn Buitink, and Gregor Kasieczka for useful
comments on the paper.

Conflicts of Interest: The authors declare no conflict of interest.



Galaxies 2020, 8, 3 25 of 29

Appendix A. Precision and Recall Graphs

Figure A1. Precision values at SNR = 1.

Figure A2. Recall values at SNR = 1.



Galaxies 2020, 8, 3 26 of 29

Figure A3. Precision values at SNR = 2.

Figure A4. Recall values at SNR = 2.



Galaxies 2020, 8, 3 27 of 29

Figure A5. Precision scores at SNR = 5.

Figure A6. Recall scores at SNR = 5.

References

1. Norris, R. Extragalactic Radio Continuum Surveys and the Transformation of Radio Astronomy. Nat. Astron.
2017, 1. [CrossRef]

2. Prandoni, I.; Seymour, N. Revealing the Physics and Evolution of Galaxies and Galaxy Clusters with SKA
Continuum Surveys. In Proceedings of the Advancing Astrophysics with the Square Kilometer Array
(AASKA14), Giardini Naxos, Italy, 9–13 June 2014; p. 67.

3. Savage, R.S.; Oliver, S. Bayesian Methods of Astronomical Source Extraction. Astrophys. J. 2007, 661,
1339–1346. [CrossRef]

4. Miljković, O. Image Pre-Processing Tool. Kragujev. J. Math. 2009, 32, 97–107.
5. Hopkins, A.M.; Miller, C.J.; Connolly, A.J.; Genovese, C.; Nichol, R.C.; Wasserman, L. A New Source

Detection Algorithm Using the False-Discovery Rate. Astrophys. J. 2002, 123, 1086–1094. [CrossRef]
6. Zheng, C.; Pulido, J.; Thorman, P.; Hamann, B. An improved method for object detection in astronomical

images. Mon. Not. R. Astron. Soc. 2015, 451, 4445–4459. [CrossRef]

http://dx.doi.org/10.1038/s41550-017-0233-y
http://dx.doi.org/10.1086/515393
http://dx.doi.org/10.1086/338316
http://dx.doi.org/10.1093/mnras/stv1237


Galaxies 2020, 8, 3 28 of 29

7. Radhakrishnan, V. Noise and Interferometry. In Synthesis Imaging in Radio Astronomy II; Taylor, G.B.,
Carilli, C.L., Perley, R.A., Eds.; Astronomical Society of the Pacific Conference Series; Astronomical Society
of the Pacific: San Francisco, CA, USA, 1999; Volume 180, p. 671.

8. Ellingson, S.W. Sensitivity of Antenna Arrays for Long-Wavelength Radio Astronomy. IEEE Trans. Antennas
Propag. 2011, 59, 1855–1863. [CrossRef]

9. Hale, C.L.; Robotham, A.S.G.; Davies, L.J.M.; Jarvis, M.J.; Driver, S.; Heywood, I. Radio source extraction
with ProFound. Mon. Not. R. Astron. Soc. 2019, 487, 3971–3989. [CrossRef]

10. Masias, M.; Freixenet, J.; Llada, X.; Peracaula, M. A review of source detection approaches in astronomical
images. Mon. Not. R. Astron. Soc. 2012, 422, 1674–1689. [CrossRef]

11. Robotham, A.; Davies, L.; Driver, S.; S.Koushan.; Taranu, D.; Casura, S.; Liske, J. ProFound: Source Extraction
and Application to Modern Survey Data. Mon. Not. R. Astron. Soc. 2018, 476, 3137–3159. [CrossRef]

12. Mohan, N.; Rafferty, D. PyBDSF: Python Blob Detection and Source Finder; Astrophysics Source Code
Library, 2015, 1502.007.

13. González, R.; Muñoz, R.; Hernández, C. Galaxy detection and identification using deep learning and data
augmentation. Astron. Comput. 2018, 25, 103–109. [CrossRef]

14. Ackermann, S.; Schawinski, K.; Zhang, C.; Weigel, A.K.; Turp, M.D. Using transfer learning to detect galaxy
mergers. Mon. Not. R. Astron. Soc. 2018, 479, 415–425. [CrossRef]

15. Baron, D.; Poznanski, D. The weirdest SDSS galaxies: Results from an outlier detection algorithm. Mon. Not.
R. Astron. Soc. 2017, 465, 4530–4555. [CrossRef]

16. Gheller, C.; Vazza, F.; Bonafede, A. Deep learning based detection of cosmological diffuse radio sources.
Mon. Not. R. Astron. Soc. 2018, 480, 3749–3761. [CrossRef]

17. Wu, C.; Wong, O.I.; Rudnick, L.; Shabala, S.S.; Alger, M.J.; Banfield, J.K.; Ong, C.S.; White, S.V.; Garon, A.F.;
Norris, R.P.; et al. Radio Galaxy Zoo: Claran—A deep learning classifier for radio morphologies. Mon. Not.
R. Astron. Soc. 2018, 482, 1211–1230. [CrossRef]

18. Banfield, J.K.; Wong, O.I.; Willett, K.W.; Norris, R.P.; Rudnick, L.; Shabala, S.S.; Simmons, B.D.; Snyder, C.;
Garon, A.; Seymour, N.; et al. Radio Galaxy Zoo: Host galaxies and radio morphologies derived from visual
inspection. Mon. Not. R. Astron. Soc. 2015, 453, 2326–2340. [CrossRef]

19. Sadr, V.A.; Vos, E.E.; Bassett, B.A.; Hosenie, Z.; Oozeer, N.; Lochner, M. DeepSource: Point source detection
using deep learning. Mon. Not. R. Astron. Soc. 2019, 484, 2793–2806. [CrossRef]

20. de Gasperin, F.; Intema, H.T.; Frail, D.A. A radio spectral index map and catalog at 147-1400 MHz covering
80 per cent of the sky. Mon. Not. R. Astron. Soc. 2018, 474, 5008–5022. [CrossRef]

21. Fanaroff, B.L.; Riley, J.M. The morphology of extragalactic radio sources of high and low luminosity.
Mon. Not. R. Astron. Soc. 1974, 167, 31P–36P. [CrossRef]

22. Peterson, B.M. An Introduction to Active Galactic Nuclei; Cambridge University Press: Cambridge, NY, USA,
1997.

23. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural
Networks. In Advances in Neural Information Processing Systems 25; Pereira, F., Burges, C.J.C., Bottou, L.,
Weinberger, K.Q., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2012; pp. 1097–1105.

24. Farabet, C.; Couprie, C.; Najman, L.; LeCun, Y. Learning Hierarchical Features for Scene Labeling. IEEE Trans.
Pattern Anal. Mach. Intell. 2013, 35, 1915–1929. [CrossRef]

25. Zeiler, M.D.; Fergus, R. Visualizing and Understanding Convolutional Networks. arXiv 2013, arXiv:1311.2901.
26. Bonaldi, A.; Braun, R. Square Kilometer Array Science Data Challenge 1. arXiv 2018, arXiv:1811.10454.
27. Bonaldi, A.; Bonato, M.; Galluzzi, V.; Harrison, I.; Massardi, M.; Kay, S.; De Zotti, G.; Brown, M.L. The Tiered

Radio Extragalactic Continuum Simulation (T-RECS). Mon. Not. R. Astron. Soc. 2018, 482, 2–19. [CrossRef]
28. Massardi, M.; Bonaldi, A.; Negrello, M.; Ricciardi, S.; Raccanelli, A.; de Zotti, G. A model for the cosmological

evolution of low-frequency radio sources. Mon. Not. R. Astron. Soc. 2010, 404, 532–544. [CrossRef]
29. de Zotti, G.; Ricci, R.; Mesa, D.; Silva, L.; Mazzotta, P.; Toffolatti, L.; González-Nuevo, J. Predictions for

high-frequency radio surveys of extragalactic sources. Astron. Astrophys. 2005, 431, 893–903. [CrossRef]
30. Sérsic, J.L. Influence of the atmospheric and instrumental dispersion on the brightness distribution in a

galaxy. Boletin de la Asociacion Argentina de Astronomia La Plata Argentina 1963, 6, 41.
31. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. Available

online: http://www.deeplearningbook.org (accessed on 19 December 2019).

http://dx.doi.org/10.1109/TAP.2011.2122230
http://dx.doi.org/10.1093/mnras/stz1462
http://dx.doi.org/10.1111/j.1365-2966.2012.20742.x
http://dx.doi.org/10.1093/mnras/sty440
http://dx.doi.org/10.1016/j.ascom.2018.09.004
http://dx.doi.org/10.1093/mnras/sty1398
http://dx.doi.org/10.1093/mnras/stw3021
http://dx.doi.org/10.1093/mnras/sty2102
http://dx.doi.org/10.1093/mnras/sty2646
http://dx.doi.org/10.1093/mnras/stv1688
http://dx.doi.org/10.1093/mnras/stz131
http://dx.doi.org/10.1093/mnras/stx3125
http://dx.doi.org/10.1093/mnras/167.1.31P
http://dx.doi.org/10.1109/TPAMI.2012.231
http://dx.doi.org/10.1093/mnras/sty2603
http://dx.doi.org/10.1111/j.1365-2966.2010.16305.x
http://dx.doi.org/10.1051/0004-6361:20042108
http://www.deeplearningbook.org


Galaxies 2020, 8, 3 29 of 29

32. Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-Image Translation with Conditional Adversarial Networks.
In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu,
HI, USA, 21–26 July 2016; pp. 5967–5976.

33. Zeiler, M.D. ADADELTA: An Adaptive Learning Rate Method. arXiv 2012, arXiv:1212.5701.
34. Duchi, J.; Hazan, E.; Singer, Y. Adaptive Subgradient Methods for Online Learning and Stochastic

Optimization. J. Mach. Learn. Res. 2011, 12, 2121–2159.
35. Mannor, S.; Peleg, D.; Rubinstein, R. The Cross Entropy Method for Classification. In Proceedings of the

22nd International Conference on Machine Learning (ICML ’05), Bonn, Germany, 7–11 August 2005; ACM:
New York, NY, USA, 2005; pp. 561–568. [CrossRef]

36. McMullin, J.P.; Waters, B.; Schiebel, D.; Young, W.; Golap, K. CASA Architecture and Applications.
In Astronomical Data Analysis Software and Systems XVI; Shaw, R.A., Hill, F., Bell, D.J., Eds.; Astronomical
Society of the Pacific Conference Series; Astronomical Society of the Pacific: San Francisco, CA, USA, 2007;
Volume 376, p. 127.

37. McHugh, M. Interrater reliability: The kappa statistic. Biochemia Medica: Časopis Hrvatskoga društva
Medicinskih Biokemičara/HDMB 2012, 22, 276–282. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/1102351.1102422
http://dx.doi.org/10.11613/BM.2012.031
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Source-Finding at Radio Frequencies
	Types of Radio Sources
	Deep Learning
	Simulated SKA Data

	Methods
	Convolutional Neural Networks
	Pre-Processing
	Dataset Generation
	Effect of Differences in Segmenting the Dataset

	Image Augmentation

	Results
	Very Low Significance Source Metrics at SNR = 1
	Low Significance Source Metrics at SNR = 2
	High Significance Source Metrics at SNR = 5
	Execution Times

	Discussion and Conclusions
	Precision and Recall Graphs
	References

