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Abstract: The most cited evidence for (non-baryonic) dark matter has been an apparent lack of visible
mass to gravitationally support the observed orbital velocity of matter in rotating disk galaxies,
yet measurement of the mass of celestial objects cannot be straightforward, requiring theories derived
from the known physical laws along with some empirically established semi-quantitative relationship.
The most reliable means for determining the mass distribution in rotating disk galaxies is to solve
a force balance equation according to Newton’s laws from measured rotation curves, similar to
calculating the Sun’s mass from the Earth’s orbital velocity. Another common method to estimate
galactic mass distribution is to convert measured brightness from surface photometry based on
empirically established mass-to-light ratio. For convenience, most astronomers commonly assumed
a constant mass-to-light ratio for estimation of the so-called “luminous” or “visible” mass, which
would not likely be accurate. The mass determined from a rotation curve typically exhibits an
exponential-like decline with galactrocentric distance, qualitatively consistent with observed surface
brightness but often with a larger disk radial scale length. This fact scientifically suggests variable
mass-to-light ratio of baryonic matter in galaxies without the need for dark matter.

Keywords: disk galaxies; galactic rotation; Newtonian dynamics; rotation curve; dark matter;
mass-to-light ratio

1. Introduction

Based on scientific observations, many galaxies (including the Milky Way) appear to have a
common visible shape of thin disk as shown in Figure 1. Known as a stellar system of an ensemble
of stars and other masses, a disk galaxy (such as the Milky Way) usually contains 105 to 1012 stars
distributed in a flattened, roughly axisymmetric structure, rotating around a common axis in nearly
circular orbits. Besides stars, the galactic “disk” is also known to contain an interstellar medium
such as gases (mostly atomic and molecular hydrogen) as well as relatively small solid “dust particles”.
The general behavior of stellar systems, including disk galaxies, has been believed to follow Newton’s
laws of motion and Newton’s law of universal gravitation [1].

Since their discovery in the 17th century, Newton’s laws of motion have been used to successfully
determine the relationship between a body of mass and the forces acting upon it, and its motion
in response to those forces, for a great variety of situations and phenomena. When combined with
his law of gravitation, Newton [2] could show (in terms of mathematical expressions) that Kepler’s
mysterious laws are actually consequences of his laws of motion. To date, there is no direct evidence
suggesting a failure of Newtonian dynamics in describing motions of celestial objects in stellar systems,
although some relativistic effects may be present at the centers of galaxies [1]. According to Newtonian
dynamics, the mass of an object can be determined from its motion such as acceleration in a gravitational
field. If the mass distribution in a galaxy cannot be measured directly, it can be derived from the
measured rotation curve, expressed in terms of distribution of objects’ orbital velocity as a function of
galactocentric distance, which may require some mathematical efforts but should be a theoretically
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rather straightforward exercise. Such a derived mass distribution (from rotation curve according to
Newtonian dynamics) should be considered reasonable as long as the value of mass does not appear
against any physical laws, e.g., having a negative value or infinity, etc.

Figure 1. Photographic images of circular thin-disk galaxies with small, amorphous, centrally
located bulge.

However, in recent decades we have been told that about 83% mass of our universe is made up by
some type of mysterious “dark matter”, which cannot be detected by electromagnetic radiation or
reaction, in contrast to any known substances of properties determined by available scientific method.
The reason for the belief of existence of the dark matter with its mysterious properties is due to inference
from its gravitational effects on “visible” matter, radiation, and large-scale structure of the universe [3].
Numerous articles have been published to investigate the elusive dark matter, with many books also
written to describe such efforts [3–8], yet very few attempted to examine the validity and certainty
of the claimed evidence for existence of the so-called dark matter, based on scientific reasoning with
rigorous logic [9].

To understand the natural world, scientists acquire knowledge using the scientific method which
involves observation, formulating hypotheses via induction, experimental testing with quantitative
measurements, and refinement or elimination of the hypotheses based on the experimental findings.
If well supported by experimental measurements, a particular hypothesis may be further developed to
a general theory. By scientific reasoning we should inquire whether or not evidence is consistent with
a claim or theory, or whether the evidence that render a claim could be invalid. Therefore, the claimed
existence of the (mysterious) dark matter should have been put under rigorous scientific scrutiny,
before making it sound like being well supported by observational evidence. Actually, deficient
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reasoning for dark matter in galaxies has been pointed out by examining the claimed evidence in the
literature [9], though nonmainstream.

It is understandable that as human beings, scientists can be tempted to tell the mystery of dark
matter for being much more effective to attract press attention than simply describing the observed
astronomical phenomena in terms of the well-known Newtonian dynamics. When discussing the
subject of dark matter, few authors bother to question whether the reasoning for dark matter might be
invalid, whereas majority would rather present strange models assuming the presence of dark matter.
Nowadays, the dark matter is so firmly believed to be present that the finding of “a galaxy lacking
dark matter” can become quite a news-making story in the scientific community [10,11]. Yet scientists
are expected to have the genuine passion in truth seeking.

In what follows, we first examine the nature of astronomical measurements, and technical
challenges as well as certainty or uncertainty associated with them. The methods for determining
mass of celestial objects are briefly reviewed next. Then, mass distribution in a rotating disk galaxy,
determined with the available measurements, is discussed with explanations based on scientific
reasoning without dark matter. Concluding remarks are provided in the final section.

2. Astronomical Measurements

The behavior of celestial objects, such as stars and galaxies, cannot be described without mentioning
their mass, distance and velocity of movement. It turns out that the distance between objects becomes
the key for determining the mass and velocity of an object. Once the distance of an object is measured,
its variation within a given time interval determines the object’s velocity, and its relative position
with respect to other objects can be determined, but the measurements of astronomical distance have
been quite challenging with considerable uncertainties [9,12]. In fact, a recent analysis has shown a
significant difference between a previously indicated distance of 20 Mpc and presently determined
13 Mpc [13] (1 pc = 3.26 light-years = 3.08 × 1016 m).

Space is actually huge. Astronomical objects are typically scattered in a vast space, separated by
distances often measured in units of light-years (1 light-year = 9.46 × 1015 m, the distance for light to
travel in 1 year in vacuum). For example, the nearest star to our solar system is about 4.22 light-years
away. The distance between the Sun and Earth is ~1.5 × 1011 m, taking about 8.3 minutes for light
from the Sun to reach us. Even our next-door neighbor, the Moon, is about 3.8 × 108 m away, a lot
farther than most people would think. Only objects within our own solar system can our present
spacecraft reach. For the most part, the cosmos is out of our reach, except light that travels throughout
the universe can bring information about distant objects to us on the Earth.

In astronomy, measurements are carried out almost exclusively by studying and analyzing the
“light”, or more generally the electromagnetic radiation, emitted or absorbed or reflected or scattered or
transmitted by remote objects such as stars, galaxies, and so forth [14,15]. The emission and absorption
line spectra can be used to determine the material composition, while the continuous thermal radiation
spectrum can tell us the temperature of a remote object. The speed of a celestial object moving toward
or away from us can be determined by the Doppler shift in the light spectral lines, which actually
became the basis for measuring the rotation curve of galaxies.

For stars, their (surface) temperature, luminosity, and mass are among the most important
properties. A star’s surface temperature can be obtained fairly easily from its thermal radiation spectrum
or even simply its color, which is not influenced by its distance (theoretically). But measurements
of a star’s luminosity (the total amount of power it emits into space) from the apparent brightness
(the brightness of a star as it appear to our eyes, or to a detector like a CCD) relies on the inverse square
law for light which directly uses its distance from us. Thus, to determine the distance of a star becomes
the key to determine its luminosity.

The most direct way to measure a star’s distance is by stellar parallax, which uses the angle due
to annual shift of its position relative to distant background stars, as Earth moves from one side of its
orbit to the other, to determine its distance. This is why the parsec or pc (corresponding to PARallax
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of one arcSECond”)—a measure of tiny angles in the stellar sphere—becomes the preferred distance
unit for astronomers in professional literature. Parallaxes may provide us distances to stars up to
a few thousand light years away, i.e., in the solar neighborhood. But even the nearest galaxies and
galaxy clusters are millions of light-years away, too far for measurements by just using parallax. So,
a system called the cosmic distance ladder has been created based on overlapping methods to calculate
successively farther distances [12].

Larger distances rely on the so-called standard candle as well as a technique known as the
main-sequence fitting to estimate, based on assumptions over assumptions [12,14,15], yet no astronomical
object is a perfect standard candle; the challenge of finding the objects that can serve as the standard
candles leads to the challenge of measuring large astronomical distances. In short, uncertainties in
astronomical distances can be significant [9], as may not even be easily quantified due to multiple steps
of overlapping, each brings in its own uncertainties.

The distance of an astronomical object seems to be difficult to determine, yet it plays the key role
in calculating the object’s mass from the known physical laws. In other words, masses of astronomical
objects cannot be determined without knowing the relative distances among them.

3. Mass Determined by Newtonian Dynamics—“Gravitational Mass”

Once the relative distance and velocity of motion of objects are known from measurements,
each object’s mass may be determined from Newton’s laws. If we believe the forces among celestial
objects are of gravitational nature (according to Newton’s universal law of gravitation), the gravitational
field of an object (which is proportional to its mass) can be determined by measuring the acceleration
of a small nearby “test object”. Then the object’s mass can be determined from its gravitational field.
For example, the Sun’s mass can be determined using the Earth as a test object (which has a negligible
mass comparing to that of the Sun) by applying the formula of Newton’s version of Kepler’s third law,
with the measured average distance between the Earth and the Sun, a (≈ 1.5 × 1011 m) and the Earth’s
orbital period, p ((≈ 3.15 × 107 s, i.e., 1 year) [14,15]. In other words, having centripetal acceleration of
the Earth:

(2 π)2 a
p2 =

V2

a
(1)

equal to the gravitational field of the Sun:
G Msun

a2 (2)

where G (= 6.67 × 10−11 m3 kg−1 s−2) is the gravitational constant and Msun the Sun’s mass, yields the
value of Msun ≈ 2.0 × 1030 kg (= 1 solar mass M�). Here V denotes the Earth’s (or the test object’s)
orbital velocity.

By the same token, stellar masses in a binary star system—consisting of two gravitationally bound
stars orbiting around a common center of mass—can, in principle, also be determined with known
separation a or orbital velocity V and orbital period p based on the theory of Newtonian dynamics for
a two-body problem. It has been shown that the two-body problem can be treated as an equivalent
one-body problem in which the reduced mass m = m1 m2 / (m1 + m2) is orbiting about a fixed mass
M = m1 + m2 at a distance a = a1 + a2 where the subscripts “1” and “2” denotes the masses and radii of
the star “1” and star “2” [16]. In fact, the value of Msun determined from an equation of (1) = (2) is
actually reduced from the solution for two-body Kepler’s problem to an extreme case when m1 >> m2

such that m→ 0, a1→ 0, and M→ m1 (= Msun or 1.0 M�). Thus, the value of M (= m1 + m2) in a binary
star systems can be determined. With the known M, the values of m1 and m2 can be determined from
the relationship of m2 / m1 = a1 / a2 = v1 / v2 (where v1 and v2 are the orbital velocities of the two stars)
derived from the two-body problem. In reality, the distances a1 and a2 are not easy to determine
accurately. Instead, the values of v1 and v2 can be measured much more reliably based on the measured
Doppler shifts, especially for the so-called “eclipsing binaries” with their orbit planes lying very close
in the line of sight [14,15].
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In a galaxy, a large number (105–1012) of stars, with an interstellar medium of gas and cosmic
dust, among others, are distributed in an extensive space such as a thin disk of radius about 10 kpc
(or 3.09 × 1020 m). Simply adding the “point mass” fields of such a distributed stellar system with
~1011 stars is impractical to compute the gravitational field in a typical galaxy, so it becomes a common
practice, for most purposes, to model the gravitational field or potential “by smoothing the mass
density in stars on a scale that is small compared to the size of the galaxy, but large compared
to the mean distance between stars” [1], i.e., to treat the distributed mass system as a continuum,
as a reasonable approximation.

Observations have shown that many astronomical systems, such as planetary systems, planetary
rings, accretion disks, spiral galaxies, etc., appear flat (cf. Figure 1) for a basic reason of the state
with lowest energy in a flat disk perpendicular to an axis along which a distribution of angular
momentum is given for a system of constant mass [1]. Therefore, it may not be unreasonable to
approximately consider a galaxy as an axisymmetric rotating thin disk, shown in Figure 2, consisting
of distributed self-gravitating mass (as a function of the galactocentric distance r) in balance with
distributed centrifugal force due to distributed circular orbital velocity (as a function of r). Over years,
various mathematical methods have been developed for deducing the mass distribution from the
measured rotation curve with the axisymmetric thin-disk model at mechanical equilibrium [1,17],
each with its own pros and cons. Here a numerical method by Gallo and Feng [18–21] is briefly
described, without loss of generality.

Figure 2. Definition sketch of the rotating thin-disk galaxy model, where the mass is assumed to
distribute axisymmetrically in the circular disk of uniform thickness h with a variable density ρ and
rotation velocity V as functions of the radial distance from galactic center r (but independent of the
polar angle θ).

At any point in a rotating axisymmetric disk galaxy with negligible disk thickness effect,
the centripetal acceleration of (related to the centrifugal force on) a test object:

V2
0

Rg

V(r)2

r
(3)

is expected to be equal to the gravitational field from the distributed mass in the entire disk:

G Mg

R2
g

∫ 1

0

∫ 2 π

0

(r− r̂ cosθ) dθ

(r̂2 + r2 − 2 r̂ r cosθ)3/2

ρ(r̂)hr̂dr̂ (4)

where Rg denotes the galactic radius (or the galactocentric distance of the galaxy edge, taken as the
cut-off radius in rotation curve beyond which the detectable signal diminishes), Mg the total mass
of the galaxy, and V0 the characteristic rotation velocity as a representative value of the flat part of
rotation curve. All the variables in (3) and (4) are made dimensionless by measuring length r, h in units
of the galactic radius Rg, mass density ρ in units of Mg / Rg

3, and rotation velocity V in units of V0,
with the disk thickness h assumed to be constant.
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It is noteworthy that equating (3) and (4) has the exactly same physical meaning as equating (1)
and (2), as the force balance equation for determining the rotation velocity from a known gravitational
field source—the amount of mass or mass distribution, or vice versa. For example, the Sun’s mass can
be determined from the known Earth’s orbital velocity as shown with equating (1) and (2). Similarly,
when the galactic rotation curve V(r) is available from measurements, the mass distribution ρ(r) can be
determined by solving the force balance equation from equating (3) and (4), which will involve some
mathematical manipulations.

Among many different approaches to solution of the force balance equation (3) = (4), Gallo and
Feng [18–21] showed that with slight algebraic arrangements an equation can be obtained of the form:∫ 1

0

[
E(m)

r̂− r
−

K(m)

r̂ + r

]
ρ(r̂)hr̂dr̂ +

A
2

V(r)2

r
= 0 (5)

where K(m) and E(m) denote the complete elliptic integrals of the first kind and second kind, with:

m ≡
4 r̂ r

(r̂ + r)2 .

The dimensionless parameter A in (5), called the galactic rotation parameter, is defined as:

A ≡
V2

0 Rg

G Mg
(6)

which can be determined by introducing a constraint equation for mass conservation,

2 π
∫ 1

0
ρ(r̂)hr̂dr̂ = 1 (7)

Equations (5) and (7) can be discretized by dividing the problem domain 0 ≤ r ≤ 1 into a large
number, e.g., N − 1, of small line segments called (linear) elements, leading to a linear algebraic
problem in the matrix-vector form, for solving N nodal values of ρ plus A in (6) with N equations
for individual nodes from (5) and an equation based on (7), with known V(r) [18–21]. Conversely,
the same matrix-vector equation can also be used for calculating the rotation curve V(r) if the mass
distribution ρ(r) is known or assumed given. The matrix-vector approach described here as well as the
implemented computational code was validated by producing the same results as the known analytical
solutions for the Mestel disk and Freeman disk [20]. It also yielded mass distribution for NGC 4736
based on measured rotation curves, comparable to that obtained using an iterative spectral method
with Bessel functions by other authors [21]. Similar results from the equation of (3) = (4) were also
shown with a model using lognormal mass distribution function [22]. By adding a spherical core at
the galactic center, as can easily be implemented with this matrix-vector approach, mass distribution
can be computed without central singular mass density for rotation curves with nonzero velocity
at r = 0 [21]. Thus, the mass distribution ρ(r) (actually the surface mass distribution [ρ(r) h]) can be
determined for any galaxy from its measured rotation curve V(r), according to Newtonian dynamics.

Since the rotation curve in a spiral galaxy can be measured with reasonable certainty [23], it has
been accepted to provide the most reliable means for determining the distribution of gravitating matter
therein [17]. However, a rotation curve of V(r) implies axisymmetry and negligible variation across the
thickness and is at best a piece of approximate information about the behavior of a rotating thin-disk
galaxy, which is usually not exactly axisymmetric with detailed asymmetric structures such as spiral
arms. Hence, the mass distribution ρ(r) determined from a rotation curve V(r) with a thin-disk model
provides the value only in a sense of averaging over the ring of radius r which may not be the same as
the local mass density at a specific position on this very ring. The galaxies, though appearing like a
thin disk, also have “vertical” structures across the visible thickness. Therefore, taking the predicted
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mass density with an axisymmetric thin-disk model out of context to compare some measured value
at a specific location inside a galaxy (e.g., the solar neighborhood in the Milky Way) could naturally
lead to substantial discrepancy. If splitting hairs with such an expected discrepancy to discredit the
thin-disk model, the outcomes can be confusing with technically immature arguments. Only with
a thorough understanding of the assumptions and approximate nature in using the rotation curve
to determine mass distribution in a disk galaxy, can the model results be interpreted correctly for
enhancing scientific knowledge.

The computational results based on measured rotation curves for many galaxies of various types
had shown more or less exponential decrease of (surface) mass density with galactocentric distance
such as ρ(r) = ρ(0) exp(−r / Rd), i.e., the computed ρ verses r in a log-linear plots appear to be nearly
straight lines with negative slopes, for the most part when the abruptly varying ends at r = 0 and 1 are
trimmed out [18–21]. Hence, the “gravitational mass”—determined from rotation curves–distributions
in disk galaxies qualitatively agree with the measured radial distributions of surface brightness for a
large number of disk galaxies [24–26], but the disk radial scale length, Rd, determined from rotation
curve based thin-disk model appears to be larger than that from fitting the brightness data (e.g., 4.5 kpc
versus 2.5 kpc for Milky Way [20]). A straightforward interpretation of such a discrepancy would be an
indication of increasing mass-to-light ratio with galactocentric distance, namely the (baryonic) matter
becomes less luminous in regions further away from the galactic center. This is consistent with typical
edge-on views of disk galaxies that often revealing a dark edge against a bright background central
bulge (cf. the image of NGC 891 in Figure 1).

4. Mass Determined by Mass-to-Light Ratio—“Luminous Mass”

Astronomical measurements rely on the analysis of signals carried by electromagnetic waves,
or the “light”. Considerably efforts have been made in correlating the light signal to characteristic
physical properties of stars and galaxies. Anything that may be derived from the light signal are taken
seriously and used for describing the behavior of celestial objects.

For example, the stellar (gravitational) mass M determined from binary stars has become the
key component for establishing the so-called “mass-to-light” ratio M/L, by correlating the luminosity
L of stars to their masses. As the apparent brightness of a star is measured from a detector, it is
expected to relate to the star’s luminosity and distance based on the inverse square law. With the given
luminosity L and (surface) temperature T determined from its thermal radiation spectrum (based on
Stefan-Boltzmann law and Wien’s displacement law), the surface area and size (i.e., the radius R) of a
star may be calculated from the relationship [1,14,15]:

L = 4 π R2
× σ T4 (8)

where σ = 5.67 × 10−8 W m−2 K−4 is the Stefan-Boltzmann constant for black-body radiation. However,
it should be kept in mind that the emissions of galaxies may not exactly follow that of a blackbody
with emissivity equal to 1, in the presence of dust and gases.

With the measured stellar properties (from nearby stars in the solar neighborhood), Hertzsprung
and Russelll independently developed a stellar classification system by plotting luminosities versus
surface temperatures—now called Hertzsprung-Russell (H-R) diagram or the color-magnitude diagram.
This kind of diagram has become “the primary point of contact between observations and the theory
of stellar structure and evolution” [1]. Most stars, including our Sun, fall somewhere along the streak
from the upper left (high luminosity and temperature corner) to the lower right (low luminosity and
temperature corner) on the H-R diagram; they are called the main-sequence stars. There are also
larger and brighter stars located above those of the main sequence, called giants and supergiants,
whereas smaller high temperature stars, located below those of the main sequence, are called white
dwarfs, because they appear white in color. All stars along the main sequence are fusing hydrogen into
helium in their cores, like the Sun. However, the main sequence stars differ in surface temperature and
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luminosity because the rate of hydrogen fusion depends strongly on the stellar mass, i.e., a star with
more massive outer layer must sustain a higher nuclear fusion rate in order to maintain gravitational
equilibrium. When astronomers measured the masses of main-sequence stars in binary star systems,
they found that a star’s position along the main sequence is very closely related to its mass [14,15].
For stars with both mass and luminosity determined, the values of their stellar mass-to-light ratio M /

L become known, which may be used for estimating the masses of similar stars either not belonging to
the binary systems or being too remote to measure directly.

Surface photometry—a technique to measure the surface brightness distribution of extended
objects, such as galaxies—has shown that galaxies typically have luminosity profiles decreasing
approximately as an exponential function of the galactocentric distance r [24–26]. Many authors
simply assumed the same exponential function for the surface mass density distribution, implying an
assumption of constant M / L [24] for deriving the “luminous mass”.

But among all the observable galaxies, individual stars can only be observed in the few closest
ones. A galaxy is a composite of millions and millions of stars of differing ages and masses over a
wide spectrum. To evaluate the overall mass-to-light ratio of a galaxy involves, its stellar population
must be studied with stellar population synthesis modeling, etc. Such a challenging sophisticated
endeavor with severely limited means of direct observation and measurements is expected to lead to
results of questionable certainties, which might be only useful for order-of-magnitude rough estimate
of the amount of mass. Nonetheless, luminous masses from observed brightness based on estimated
mass-to-light ratios have been taken so seriously with overwhelming confidence that their apparent
difference from the gravitational masses (determined from rotation curves) became a primary evidence
for dark matter in galaxies [3–8].

5. Galaxy Rotation Curves Described without Dark Matter

Celestial objects cannot be brought to the Earth and weighed on a balance to measure their
masses. But their motion can be observed with movement velocity measured from the Doppler shift
of their light spectral lines. The motions of astronomical objects are believed as their responses to
the gravitational interactions, according to Newtonian dynamics [1,14,15] (as had been tested and
confirmed numerous times over hundreds of years).

Newton’s laws of motion describe the relationship among force, acceleration and mass. Newton’s
law of universal gravitation relates the gravitational force to the distribution of masses and relative
positions of interacting objects. Once the masses and relative positions of interacting celestial objects
are known, the gravitational force on each of them and their motions (in terms of velocity, acceleration)
can be determined. Conversely, their masses can be determined from their relative positions and
motions, if made available by measurements.

For example, the mathematical form of Newtonian dynamics for a rotating thin disk galaxy of
gravitationally bound objects, e.g., stars, gases, dust, etc., can be expressed (approximately by assuming
the axisymmetry) as (3) equal to (4), relating the mass distribution ρ(r) to measured rotation curve
V(r). Thus, the rotation curve V(r) can be determined if mass distribution ρ(r) is known, by calculating
the integral in (4); conversely, ρ(r) in (4) can be determined from the known V(r) in (3), which usually
takes more mathematical effort though. As a matter of fact, various methods for solving ρ(r) or [ρ(r) h]
from the known V(r) have been developed by different authors, with pros and cons pointed out
and discussed from various perspectives [1,17–22]. Despite the apparent differences in calculation
procedures among different authors, the end results should be the same theoretically because the
solution to equation (3) = (4) is unique due to its linear nature.

With available modern technologies, the rotation curves have been measured for many (disk)
galaxies [23]. Using a measured rotation curve V(r), the calculated surface mass density [ρ(r) h],
e.g., by solving the linear algebra matrix problem based on (5) and (7), appears to decrease linearly
in the log-linear plot excluding the small regions around the galactic center and disk edge (where
the measured rotation curve terminates), for various galaxies [20,21]. This indicates that the surface
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mass density in a thin-disk galaxy declines exponentially with the galactocentric distance, in general,
as consistent with what have been measured by surface photometry for surface brightness profiles of
many galaxies [24–26], qualitatively at least. Because the galactic rotation parameter A, defined in (6),
is also determined as part of the solution to the linear algebra problem based on (5) and (7), the total
mass of Mg can be calculated from the predicted value of A as Mg = V0

2 Rg / (G A). For example, the
Milky Way total mass is determined as 1.41× 1011 M� from predicted A = 1.6365 with V0 = 220 km/s and
Rg = 20.55 kpc [21], very close to the Milky Way star counts of about 100 billion [1,27]. The numerical
approach for solving (5) and (7) can also account for the effect of a spherical bulge at galactic center
with slight mathematical manipulation [21], with results illustrated in Figure 3 for the Milky Way.
It has been shown that even for a bulge of mass as large as 7.57 × 1010 M�, the Milky Way total
mass would only change to 1.52 × 1011 M� (i.e., a less than 8% increase [21]). The total mass of the
Andromeda (NGC 224) can also be calculated as 2.76 × 1011 M� from A = 1.6450 with V0 = 250 km/s
and Rg = 31.25 kpc [21], about twice that of the Milky Way, as commonly being anticipated.

Figure 3. Profiles of the Milky Way rotation velocity V(r) and mass density ρ(r) for the disk portion
and bulge portion as noted with the thick line as a reference from the pure disk model without a bulge
(taken from Figure 7 of Ref. [21]). Noteworthy here is that the portion of mass density profile (shown
with the thick line, as roughly a combined mass density profile from both disk and bulge) for r in the
interval [0.1, 0.9] appears nearly linear in the semi-log plot (when when the abruptly varying ends
around r = 0 and 1 are trimmed out), indicating an approximately exponential decline of mass density
with galactocentric distance.

Interestingly, the value of A defined in (6) seems to be around 1.70 for various rotation curves,
when the characteristic velocity V0 is taken as a representative value of the flat part of rotation
curve [18–21]. For Mestel’s disk of constant rotation velocity with available analytical solution, the
value of A is determined as π/2 = 1.5707063 [20]. A proportionality constant from a lognormal density
distribution model results of 38 galaxies for Mg versus Vmax

2 Rg [28] indicates a value of A equal
to 1.57063 if Vmax and V0 happen to be the same as with Mestel’s disk. Comparing with the scalar
virial theorem, Mg = <V2> rg / G with <V2> and rg denoting the mean-square speed of the system’s
stars and the gravitational radius [1], this suggests that <V2> rg = V0

2 Rg / A, i.e., rg ~ 0.59 Rg if
<V2> = V0

2 is assumed. Given the fact that <V2> also includes the velocity dispersion in addition to
the rotational orbital part, it seems that rg = 0.5 Rg (corresponding to <V2> ~ 1.18 V0

2) could be a
reasonable approximation for rough estimate of the total mass in a disk galaxy from the measured
rotational velocity based on the virial theorem.

Besides the region of 0.1 < r < 0.9 for near-exponential decline of mass distribution, Figure 3 also
shows a much sharper increase of mass density toward the galactic center for r < 0.1, which seems to
be fairly typical for many galaxies [21]. Rapid increasing luminosity toward the galactic center has also
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been commonly shown in the surface brightness profiles which some authors would categorize as
the “bulge”region [26]. To seriously include the bulge effect in the disk model may introduce more
variables to the result, unless the bulge mass distribution is known a priori for uniquely determined
mass in disk with a given rotation curve [21].

However, if the mass distribution is assumed to follow exactly that of surface luminosity by
a constant mass-to-light ratio, the surface mass density [ρ(r) h] becomes known and the predicted
rotation curve V(r) determined from the equation of (3) = (4) might not match the measured one.
The mass converted from the mass-to-light ratio is usually found to decrease at a higher rate with
galactocentric distance (corresponding to a smaller disk radial scale length) than that determined from
rotation curve [20]. Such an apparent discrepancy has been called the “galactic rotation problem”,
as a subject for various scientific interpretations. Most astronomers and astrophysicists would take
this as a “compelling evidence” for (nonbaryonic) dark matter in galaxies [3–8]. Only a few authors
would want to consider uncertainties in mass-to-light ratio as well as generally questionable accuracy
in astronomical measurements, as the root cause [9]. Recently, the notion of nonbaryonic dark matter
has also been challenged from the perspective of dynamical evolution of galaxies [29].

First of all, the values of stellar mass-to-light ratio, as determined from measurements, can vary
substantially depending upon the nature of light emitting objects (as shown by the H-R diagram for
stars [14,15]). For galaxies, Tully and Fisher [30] proposed an empirical relation between (intrinsic)
luminosity and (maximum) rotation velocity (inferred from the “hydrogen profile width”), which
might be used for estimating galaxy (total) mass from measured rotation velocity with a mass-to-light
ratio. However, the luminosity was subsequently shown not to be a perfect predictor of mass, as the
stellar mass-to-light ratio can vary with galaxy type and the Tully-Fisher relation can have different
slopes depending on the luminosity bandpass [31–34].

Galaxies are known to contain matter other than stars. For example, the rotation curves measured
with the 21 cm wavelength signals emitted from atomic hydrogen (H I) extends far beyond the starlight
in galaxies, indicating certain amount of H I exists at least as far as where the rotation curve can be
measured. Actually, H I may not be considered as totally dark; it is luminous at the 21 cm wavelength
(in a different photometric bandpass from that of stars), which could be detected for estimating its mass.
In fact, the “column” mass density of atomic hydrogen had been estimated using emission in the 21-cm
line in terms of integral of the brightness temperature over the velocity width of the line, suggesting an
atomic hydrogen number density of order 1 cm−3 in the galactic plane [35,36], but apparently without
an independent method to validate. There are also hydrogen molecules (as molecular hydrogen) found
in molecular clouds and in the Interstellar Medium (ISM), which appear to be literally dark when
cold as majority of them are (e.g., around 10-20K [37,38]). The amount of “dark” hydrogen molecules
could only be estimated by assuming a constant ratio from the luminosity of carbon monoxide, with
unknown uncertainties, of course. Furthermore, condensed baryonic matter in the form of dust and
debris is expected to have minimal effect on optical extinction and can easily avoid detection due to
the small optical cross section [39]. The presence of those optically undetectable components (with M /

L approaching to infinity) makes it certain that there must be more baryonic matter than what can
be represented in terms of mass-to-light ratio. Indeed, the baryonic Tully-Fisher relation was shown
to be optimally improved when the HI mass is multiplied by a factor of about 3 [40]. Therefore,
estimating mass in a galaxy simply based on a constant mass-to-light ratio can be seriously flawed,
though convenient. Its usage may provide some order-of-magnitude rough idea about the amount
of mass, but should not be considered for serious comparison and verification in scientific analysis.
In view of the technical difficulties in detecting astronomical matter and evaluating celestial mass,
the existence of invisible baryonic matter that cannot be accounted for by a simple M/L is naturally
expected following scientific logic.

Some authors would like to use multicomponent models, composed of a bulge, a disk, and a
(dark matter) halo extending to a very large virial radius, for estimate of galaxy mass [41,42]. While the
central bulge and circular disk are commonly observed, visible in photographic images of galaxies [1],
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whether there should be a dark matter halo has been a debatable subject [9]. Even to this day, “the shape
of dark matter halos remains a mystery” [7]. The reason for having a massive invisible (spherical) dark
matter halo came from an argument that it offers a plausible way to stabilize the Galaxy against the
bar instability [43], but some galaxies have been shown to have rotation curves that do not satisfy the
so-called sphericity condition (based on the fact that mass cannot have negative value), indicating
a significantly massive spherical halo cannot be present at large galactocentric distance beyond the
central bulge [44,45]. There are also N-body simulations showing that a disk galaxy with flat rotation
curve can be stabilized by dense central bulge without the dark matter halo [46]. Actually, there has
not been clear scientific justification for having a massive dark matter halo around the disk galaxies.

It was stated in a recent report that the Milky Way “mass estimates can vary markedly based on the
types of data used, the techniques used, and the assumptions that go into the mass estimate . . . ” [42].
Nevertheless, a value of the Milky Way mass could be derived as ~1.5 × 1012 M� from an assumed
composition of a nucleus, bulge, disk, and a halo of a virial radius over 200 kpc [42]. Interestingly, the
mass within 21.5 kpc (where the Gaia rotation curve terminates) was estimated about 2.1 × 1011 M� [42],
quite comparable to 1.52 × 1011 M� or 1.41 × 1011 M� with or without a central bulge as numerically
determined from a measured rotation curve up to 20.55 kpc [21].

In fact, the mass in a galaxy determined from measured rotation curve, according to Newtonian
dynamics, seems to be fairly consistent regardless of the sources of rotation curve measurement data,
which could vary somewhat. Further calculation shows that the predicted surface mass density in
the solar neighborhood around 8 kpc should be ~144 M�/pc2 using a pure disk model or ~74 M�/pc2

when a sizable bulge is included in the computation [21]. As a reference, the current textbook value of
surface mass density for solar neighborhood is ~49 M�/pc2 based on estimates from observations [1].
In view the fact that an axisymmetric disk model describes a surface mass density only meaningful
in terms of averaging over the entire circular ring of radius ~8 kpc, while the local mass density
may actually vary significantly along the ring (as shown in the photographic images), shouldn’t
we consider the Newtonian dynamic model to be reasonably accurate? Moreover, a surface mass
density of 100 M�/pc2 in the Milky Way model [21] corresponds to equivalently ~20 hydrogen atoms
or ~10 hydrogen molecules per cm3 for an assumed disk thickness of 200 pc [9], extremely tenuous by
the terrestrial standards and well within the reported range of estimated gas density in the Interstellar
Medium [1,47]. If the typical density of cold molecular clouds to enable star formation ranges from 102

to 106 molecules per cm3 [47], it is not difficult to realize the possible magnitude of variations in mass
density just within a ring containing the solar neighborhood.

Thus, the measured galactic rotation curves generally coincide with exponentially declining mass
density (distributed in thin disk) with increasing galactocentric distance, according to Newtonian
dynamics. The assumption of mass distribution mostly in a circular thin disk comes from the optical
images of disk shaped galaxies, based on a belief that luminosity correlates to mass, somewhat roughly
if not exactly. The total mass in a rotating disk galaxy, determined from measured rotation curve
according to Newtonian dynamics, appears to match the star counts reasonably well (at least for
the Milky Way). Adding a spherical central bulge with substantial amount of mass to the thin-disk
model may only change the total mass by a few percent, but can have noticeable effect on local mass
density in the solar neighborhood [21]. A recent examination of a large number of galaxies yielded a
universal fitting formula with one fit parameter—the “acceleration scale”—to relate observed radial
(centripetal) acceleration (as determined from rotation curves) to that from the “baryons” (i.e., that
determined from measured luminosity profile with an assumed constant mass-to-light ratio) [48].
While a popular interpretation of this finding had attributed the difference between the observed
radial acceleration and that due to the baryons to the non-baryonic dark matter [48], it could also
be much more straightforwardly explained by having a non-constant, variable (e.g., increasing)
mass-to-light ratio as a function of galactocentric distance [9], possibly with one fit parameter. By virtue
of scientific understanding about distributed matter, it is actually natural to expect the mass-to-light
ratio, if meaningful at all, to be a non-constant variable in different regions of a galaxy, considering
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the fact that certain forms of baryonic matter in the universe can exist with very small optical cross
section and become invisible to detection except by gravitational effects [39]. Then, the value of total
mass associated with the mass distribution corresponding to measured rotation curve, with or without
a central bulge being accounted for, seems also to be consistent with astronomical observations and
well-established Newtonian dynamics. In other words, galaxy rotation curves can be supported with
reasonable amount of mass (consistent with star counts) according to Newtonian dynamics, without
involving mysterious non-baryonic dark matter or modification of the known laws of Newtonian
dynamics (e.g., MOND).

6. Conclusions

The scientific method involves observation, formulating hypotheses via induction, experimental
testing with quantitative measurements, and refinement or elimination of the hypotheses based on the
experimental findings. Numerous astronomical observations have shown spiral galaxies exhibiting
the common configuration of a bright circular disk with a relatively small central bulge (cf. Figure 1),
suggesting that mass therein would likely distribute in a similar configuration. Further measurements
have indicated that matter in those disk galaxies is generally moving in circular orbits in the disk,
with quantified description known as the rotation curves (with the circular orbital velocity given as a
function of galactrocentric distance). From well-established Newtonian dynamics, matters moving in
circular orbits are expected to have their centripetal acceleration balanced by the gravitational force of
distributed mass. Then a logically induced model for theoretical understanding could consist of an
approximate axisymmetric disk, with or without a central bulge, wherein the mass distribution and
measured rotation curve are consistent with Newtonian dynamics, as that determined by solving the
(3) = (4) equation.

Astronomical measurements are generally challenging for accuracy due to limited means with
obvious technical difficulties. Most quantities cannot be measured directly, but must be inferred via
assumptions over assumptions with raw data presented in graphs often scattering over orders of
magnitude for an anticipated point. Although the efforts in searching for independent test of theory
should not be discouraged, findings of quantitative discrepancies between observational data and
theoretical prediction ought to stimulate serious interrogations of the measurement accuracy as well as
simplifying assumptions in theoretical calculations.

In the case of galactic rotation, the surface mass density determined from measured rotation
curve exhibits an exponential-like decline with the galactocentric distance (for the most part) similar
to that based on observed luminosity in a qualitative sense. The overall amount of mass consistent
with the rotation curve matches the known star counts. An apparent discrepancy (e.g., in regard to
local mass density in the solar neighborhood) appears to be within a factor of two to three, while
in general the uncertainties in astronomical measurements have not been clearly quantified and
could become well over an order of magnitude. The estimated mass using an assumed constant
mass-to-light ratio is scientifically expected to be flawed, because it cannot adequately account for the
optically undetectable baryonic “dark” components that can exist in the universe such as molecular
hydrogen, dust, etc. On the other hand, the rotation curve itself is not error free, with an implication of
axisymmetry in the galactic disk which can only be an approximation at best. Therefore, the predicted
mass distribution based on Newtonian dynamics using measured rotation curve cannot be an exact
prediction, especially for the asymmetric features such as bars and spiral arms, not because of any
fundamental shortcomings in Newtonian dynamics but rather due to limited means for accurate,
comprehensive measurements. By examining the historical evidence with scientific logic, the so-called
“galactic rotation problem” becomes very likely a consequence of misinterpreted measurement data
with poorly examined, underestimated intrinsic uncertainties and misunderstood theoretical model
description, rather than an indication of mysterious nonbaryonic dark matter.
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The lack of means for accurate evaluation of amount of matter at different astronomical scales
leaves plenty of room and freedom for theoretical speculations; “there is always the possibility that one
or all of the estimates could be wrong” [7]. Inability of directly and reliably measuring the amount of
all baryonic matter in the observable universe with the available technology is scientifically expected
and should not be regarded as a mystery. For disk galaxies, the measured rotation curves provide
the most reliable information for deriving the mass distribution base on Newtonian dynamics [17,23].
When the Newtonian dynamics model suggests more mass than that indicated by luminosity based on
some value of mass-to-light ratio, there is likely to exist some “invisible” baryonic matter that is “dark”
and undetectable to the available instrument. If the mass obtained by other (less reliable) methods,
such as that from a mass-to-light ratio, does not match that determined from rotation curve, it should
be naturally understandable as a consequence of inevitable uncertainties of an inaccurate estimate,
instead of being considered as primary evidence for mysterious dark matter. The validity of indirect
observational evidence for (nonbaryonic) dark matter remains generally questionable, because of
decades-long efforts with again and again failed direct detection. Yet numerous research papers
published in scientific literature rather faithfully presumed the existence of nonbaryonic dark matter
(for the convenience of obtaining seemingly “self-consistent” results), without serious consideration
alternative possibilities. This appears to be a common “snowball” effect in modern astronomy and
cosmology for scientists to conform to the mainstream ideas so as to obtain research funds and
observing time on major telescopes [49,50]. But the progress of science generally relies on truth-seeking
people who look critically at the contemporary schemes, and continuously point out flaws in the
established, especially unsubstantiated, views based on more reliable evidence. Without inquisitive
doubt and skepticism, science cannot thrive and will stagnate.
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