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Abstract: Advanced Virgo+ is a major upgrade of the Advanced Virgo gravitational-wave detector
aiming to increase sensitivity in terms of binary neutron star (BNS) range by a factor 3–5 in the next
few years. In this work, we present an optimization of the mirror transmittances for the second
phase of the project (to be implemented for the O5 observation run) using a random walk algorithm
implemented with the advGWINC software. In addition to BNS range, a post merger (PM) SNR
is also used as a figure of merit to identify configurations that fine-tune the sensitivity curve, as a
function of arm-cavity round trip losses.
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1. Introduction

In the last five years since the first detection of a binary black hole merger [1], the Advanced Virgo
(AdV) and Advanced LIGO detector network has expanded its contribution to gravitational-wave
astronomy. After a series of detector upgrades, the network entered its third observation run
(O3), beginning in April 2019 and ending in March 2020. A total of 39 new sources have been
discovered in the first part of the run (from April 2019 to October 2019) and included in the second
catalog of gravitational-wave transient sources (GWTC-2) [2], with exceptional events independently
published [3–7]. The analysis is ongoing for the second part of the run.

The AdV gravitational wave detector [8], an upgraded version of the Virgo detector [9] situated
in Cascina Italy, is a power-recycled, Michelson interferometer (ITF) with Fabry–Perot cavities in each
3 km arm. Following the end of O3, AdV will undergo another set of upgrades in two phases (phase I
and phase II), before the fourth and fifth observation runs (O4 and O5). These enhancements will take
the ITF from AdV to Advanced Virgo+ (AdV+). Each upgrade phase will produce a global reduction
in the detector noise as shown in Figure 1 (taken from Figure 1 in [10]), where the O2 and current O3
measured sensitivity (blue and green) will be lowered into the two projected sensitivities (gray for O4
and purple for O5).

Phase I upgrades mainly aim to reduce quantum noise (QN) by implementing a signal recycling
technique, frequency dependent squeezing, and a higher laser power. Phase II upgrades will see an
additional reduction in QN by a further increase in input laser power, but will mainly focus on a
reduction of coating Brownian thermal noise. This will be done by improving the mechanical properties
of test mass coatings and increasing the laser beam spot size on cavity end mirrors, consequently
requiring end mirrors to be replaced with mirrors of larger radius. In order to achieve a larger beam
spot size on the end mirrors, all curved mirrors in the ITF will be replaced with mirrors polished to
different radii of curvature (RoCs). The resulting optical layout for O5 is shown in Figure 2.
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Figure 1. Advanced Virgo and Advanced Virgo+ sensitivities from O2 to O5 observation runs,
taken from Figure 1 in [10]. The O2 and O3 sensitivity is shown while O4 and O5 give possible ranges
depending on outcomes of current studies.

Figure 2. AdV+ target optical layout, including the PR mirror (PRM), SR mirror (SRM), beam splitter
(BS), and two Fabry–Perot resonant cavities (WI-WE and NI-NE mirrors).

In light of the necessary mirror replacements in Phase II, the goal of this study was to study an
optimization of the input mirror (IM), power recycling mirror (PRM), and signal recycling mirror
(SRM) transmittances (TIM, TPR, and TSR, respectively) that fine-tunes the ITF response to astrophysical
signals [11].

Currently, mirror transmittances for Phase II (O5) are nominally set to Phase I (O4) values: TIM
at 1.4%, TPR at 5%, and TSR at 40%. TIM was chosen so that the arm-cavity finesse will equal the
O3 measured finesse of 450. TPR was chosen to limit the power recycling gain, thereby reducing
wavefront distortions in the power recycling cavity (PRC) and easing requirements on the thermal
compensation system accuracy. With these prior selections, TSR was then set by the choice of input
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laser power following a study into detector sensitivity [12,13] as a function of the correlation between
these parameters.

Starting from the “nominal” configuration for O5, in this study we explore a larger parameter
space: we let all three mirror transmittances vary as we do not assume a strongly over-coupled ITF or
a finesse and power recycling gain matching O4. We also explore results for a large range of arm-cavity
round trip losses (from 55 ppm to 105 ppm). Moreover, a post-merger (PM) signal (see Section 2 for
definition) is used in addition to the usual binary neutron star (BNS) range as a figure of merit for
the optimization. Finally, the approach presented in previous work is formalized here using a search
algorithm with a specifically developed waveform generator for post-merger signals (in addition to
the pre-existing BNS inspiral-merger-ringdown approximant).

The optimization method is explained in Section 2, results are outlined in Sections 3.1 and 3.2,
and a comparison drawn between the two sensitivity parameters in Section 3.3. Section 4 then provides
some concluding remarks and details future steps.

2. Method

Parameters such as mirror RoCs, transmittances, and input laser power defining the possible
sensitivity realizations for phase II (O5) are given in Table 1. Two scenarios of O5 high (pessimistic)
and O5 low (optimistic) define the violet band extremes in Figure 1. An important parameter is arm
cavity round trip losses (RTLs), arising from imperfect mirror surface quality (flatness, roughness, and
point defects) and mirror absorption. The nominal RTL value is 85 ppm, but in this work we consider
a range of RTLs varying from 55 ppm to 105 ppm since uncertainties still exist on the values achievable
for phase II. Concerning other parameters, we assume the ITF to be operating at the O5 low (optimistic)
configuration with broadband signal recycling, shown in Figure 3 with a breakdown of limiting noise
contributions. The total noise (black) is dominated at higher frequencies by QN only (purple), at mid
to low frequencies by QN and coating thermal Brownian noise (red), and at frequencies below 20 Hz
by suspension thermal noise (blue). Since optimization of mirror transmittances will only affect the
QN curve, which is not the only limitation at mid to low frequencies, it should be possible to find a
configuration that fine-tunes high frequency sensitivity with reduced cost to lower frequencies.

Figure 3. Example low (optimistic) sensitivity for O5, including breakdown into sub-component contributions.
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Table 1. Interferometer parameters for phase II of AdV+. The final parameter values and
sensitivity curve will depend on photodetector quantum efficiency performance, achievable laser
power, and mechanical losses of new coatings used.

Parameter O5 Low (High)

Laser Power (Leaving IMC) [W] 60 (80)
Produced Squeezing level [dB] 12
Photo-detector quantum efficiency 0.80 (0.93)
PR gain 35
Beam splitter loss 0.0015
Arm cavity beam waist [mm] 7.3
Arm cavity IM to waist [m] 1043
Arm cavity g factor 0.95
Arm cavity RTL [ppm] 85
Power recycling mirror transmittance [%] 5.0
Signal recycling transmittance [%] 40
Input mirror mass [kg] 42
Input mirror radius [cm] 17.5
Input mirror width [cm] 20
Input mirror spot radius [mm] 49
Input mirror RoC [m] 1047
Input mirror transmittance [%] 1.4
End mirror mass [kg] 105
End mirror radius [cm] 27.5
End mirror width [cm] 20
End mirror spot radius [mm] 91
End mirror RoC [m] 1988
End mirror transmittance [%] 10−4

A global noise calculator for the AdV and AdV+ detectors advGWINC1 is used to obtain the
AdV+ theoretical sensitivity. Inputting the O5 low parameters to the simulator, an ITF sensitivity is
calculated along with leading sub-system contributions and astrophysical figures of merit.

A random walk routine was used to find the transmittances that optimize one of two astrophysical
figures of merit (BNS range R or PM SNR ρ), labeled the ‘primary parameter’. While searching for
the optimal transmittances, the sampler takes note of the secondary sensitivity parameter as well as
optics parameters such as arm cavity finesse F , arm cavity stored power PArm, power incident on
beam splitter PBS, PR gain GPR, and PRC losses LPRC. A predefined ‘budget’ (a variation window)
was allowed around the optimal value so that the sampler filled out correlations between parameters.
In each simulation run, the configuration found that gives the optimal primary parameter is labeled
‘opt.’, while the configuration that maximizes the secondary parameter within the predefined budget is
labeled ‘max’. For example, when the routine is run to optimize BNS rangeR, the best range found is
‘opt. R’ and the best PM SNR ρ found within a 3 Mpc budget is ‘max ρ’. Conversely, when the routine
is run to optimize PM SNR ρ, the best SNR found is ‘opt. ρ’ and the best BNS rangeR found within a
1.5 SNR budget is ‘maxR’.

Operating similarly to a Monte Carlo, the random-walk routine draws a point in transmittance
space and calls advGWINC to evaluate the ITF sensitivity and its astrophysical figures of merit. It then
randomly samples a new trial point close to the current point, and repeats the calculations. For an
initial ‘burn in’ period, the trial point is accepted as the new current point only if its primary parameter
is larger than at the current point. Once the initial ‘burn in’ period is completed, a trial point is also
accepted if its primary parameter is within the error budget of the running global maximum value.
If these criteria are not met, then the trial point is discarded and a new point drawn. This is repeated

1 https://git.ligo.org/virgo/virgoapp/advgwinc.

https://git.ligo.org/virgo/virgoapp/advgwinc
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for a large number of draws to produce a chain of accepted points. Once the optimization is completed,
points drawn in the initial ‘burn in’ period, where the algorithm is locating the global maximum, are
removed from the chain.

The first of the two sensitivity parameters used in this study is BNS inspiral-merger-ringdown
(IMR) rangeR. It corresponds to an averaged maximum distance at which a BNS IMR event can be
measured [14] with SNR greater than or equal to some pre-defined threshold, assuming a detector with
strain noise power spectral density Sn( f ). It was one of the primary quantifiers of detector sensitivity
during the first three observation runs. The advGWINC software approximates this number using
an optimally aligned inspiral-merger-ringdown (IMR) waveform produced by IMRPhenomD [15]
scaled to a range of redshifts z to find the cutoff distance where the SNR falls below a threshold ρ0 = 8.
More precisely, advGWINC definesR in frequency space as

R =
2c
H0

3
2

∫ zh

0

(Φ(x0)− (1 + z)−1/2Φ(x))2FD

(
Θ2

p > ρ2
0/ρ2 | z

)
dz

ΩM
√

ΩM(1 + z)3 + ΩΛ

1/3

(1)

where H0 is the Hubble constant, c the speed of light, ΩM/ΩΛ the matter/dark energy content of the
universe today, and zh the redshift horizon (a large upper limit on the integral). FD is the probability of
a source at a given redshift having SNR greater than the threshold SNR after averaging over angular
orientation of the binary orbital plane and sky location [16]. The function Φ is a conversion from
redshift to luminosity distance [17], and takes the form

Φ(y) =
1 + a1y + a2y2 + a3y3

1 + b1y + b2y2 + b3y3 (2)

where coefficients ai and bi are produced by fits to numerical data, and the input variables follow

x0 =
1−ΩM

ΩM
and x =

x0

(1 + z)3 (3)

The second optimization parameter used is the SNR ρ of a BNS post-merger (PM) [18] GW
signal, produced by a quasi-stable, rapidly rotating, super/hyper-massive neutron star formed for
a fraction of a second or longer after the merger. The objects spin and deformation allow it to emit
GWs in the kiloHertz region, making it a complementary sensitivity parameter toR. Although other
high-frequency astrophysical signals can be used in our optimizations, the successful measurements of
BNS events in previous observation runs make PM signals an interesting target.

The SNR of a full BNS event with a PM feature is dominated by the inspiral phase. We therefore
restrict our waveform to the PM feature only, similar to Figure 1 in [19], so that there is negligible
contribution below ∼ 1 kHz and focus is on optimizing PM visibility. Realizations of detector strain
noise power spectral density Sn are combined with a frequency domain waveform h̃( f ) to give the
SNR ρ, defined by

ρ = 2
[∫ f1

f0

| h̃( f ) |2
Sn

d f
]1/2

(4)

where [ f0, f1] is the frequency range in which the waveform is computed.
Computation of h̃( f ) was done by a specialized module added to advGWINC that follows the

numerical approximations reported by Breschi et al. [20] and assumes co-aligned spins and ideal binary
orientation to the line of sight. Characteristic frequencies and times are calculated with polynomial
fits to numerical data for several neutron star equations of state. In this work, the SLy4 equation of
state [21] is used for a source with total mass (1.364 + 1.364) M�. Figure 4 shows the reproduced
waveform from the green curves of Figure 5 in [20]. Figure 4a shows the amplitude, angular frequency,
and real component of the waveform in geometric units scaled to the total mass. Figure 4b shows the
Fourier transform of a time domain waveform (red) assuming a redshift of 0.008, roughly matching
the luminosity distance used in the reference, the equivalent IMR waveform with the same redshift
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(yellow), and the nominal sensitivity curve (blue). In this example, the O5 low nominal sensitivity
curve has a BNS range of 256 Mpc, and the PM waveform has SNR ρ = 3.20.
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Figure 4. (a) Reproduction of time domain post-merger waveform following the numerical model by
Breschi et al. [20]. The SLy4 equation of state reported by the authors in the left plot (green curve) of their
Figure 5 is reproduced here. Units are geometric and scaled to total binary mass. (b) Frequency domain
post-merger only waveform (red) and equivalent binary neutron star (BNS) inspiral-merger-ringdown
(IMR) waveform (yellow), both at redshift 0.008. A nominal detector sensitivity with 85 ppm round trip
losses is also shown (blue). In this example, ρ andR are 3.20 and 256 Mpc, respectively.

3. Results and Discussion

Figure 5 shows values ofR and ρ, while Figure 6 shows the corresponding transmittances for each
opt and max configuration using budgets of 3 Mpc for R and 1.5 SNR for ρ. Additional parameters
linked to the optical system are shown in Figure 7. The reader is directed to Table A1 in Appendix A
for numerical values. Simulations were run multiple times to check numerical convergence; each
iteration presented some stochastic fluctuation due to finite sampling but asymptotically produced
the same results on increasing the number of draws. Simulations were terminated once sensitivity
parameters changed by less than 5% on running double the number of draws again.
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Figure 5. Sensitivity parameters as functions of round trip losses (RTLs). ‘Opt’ corresponds to an
optimal primary parameter, while ‘max’ corresponds to a maximum secondary parameter within a
budget of the optimal primary parameter. Nominal configurations that use the currently expected
input mirror (IM), power recycling mirror (PRM), and signal recycling mirror (SRM) transmittances are
shown for comparison.
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Figure 6. Opt and max configuration transmittances found by the optimization routine.
‘Opt’ corresponds to an optimal primary parameter, while ‘max’ corresponds to a maximum secondary
parameter within a predefined budget of the optimal primary parameter found. Nominal configurations
that use the currently expected IM, PRM, and SRM transmittances are shown for comparison.

3.1. OptimizingR

As previously stated, the optimization of BNS range is limited by coating thermal noise that
dominates at mid to low frequencies. Hence, the opt. R configuration (yellow dot-dashed in Figure 5a)
only improves the BNS range by several Mpc from the nominal values (blue). For RTLs of 85 ppm
(similar to O3), R is improved by 4 Mpc from 256 Mpc to 260 Mpc by marginally increasing TIM,
reducing TPR from 5% to 2.17%, and increasing TSR from 40% to 53.0% (as shown in Figure 6).
Considering the optical parameters shown in Figure 7, the opt. R configuration for 85 ppm RTLs
changes the finesse from the nominal 446 to 395, the PR gain from 35 to 44, the arm cavity power
from 391 kW to 435 kW, and the recycling cavity power from 2.79 kW to 3.50 kW. The reduced finesse
reduces total losses in the arm-cavities which, when coupled with a reduction in TPR, increases GPR.
Since the proportional increase in GPR is larger than the proportional drop in F , both the arm and
recycling cavity powers increase from the nominal stored powers.

Looking now at Figure 5b, the max. ρ configuration (dot-dashed red) illustrates that there is
room for the nominal high frequency sensitivity to be improved. Comparing Figure 5a,b for all RTLs
simulated, the max ρ configuration maintains the nominalR while improving the PM SNR ρ. In fact,
for the specific case of 85 ppm, 1 Mpc is added toR from the nominal 256 while ρ is increased from 3.20
to 3.56. This is achieved by decreasing TSR from 53.0% (opt. R) to 42.4% (max ρ), almost meeting the
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nominal value of 40%, while keeping TIM and TPR relatively unchanged from the opt. R configuration.
As a result, the optical parameters do not show much change from the opt. R configuration, except the
finesse F that decreases from 396 (opt. R) to 363 (max ρ).
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Figure 7. Additional parameters calculated by the algorithm but not used in its search criteria.
‘Opt’ corresponds to an optimal primary parameter, while ‘max’ corresponds to a maximum secondary
parameter within a predefined budget of the optimal primary parameter found. Nominal configurations
that use the currently expected IM, PRM, and SRM transmittances are shown for comparison.

3.2. Optimizing ρ

Due to QN being the only limitation at high frequencies, the optimization routine can freely
change the sensitivity in this region. Indeed, the opt. ρ configuration (solid red in Figure 5) presents a
sharp gain of 62% in ρ at 85 ppm from 3.20 to 5.19, and a drop of 23% inR from 256 Mpc to 196 Mpc,
indicating a trade off between high and low frequency sensitivity. For all RTLs, the opt. ρ configuration
has very different transmittances and optical parameters to those found for other configurations, again
due to the lack of feedback from lower frequencies in the search algorithm. Figure 6 suggests that,
for 85 ppm RTLs, the opt. ρ configuration is achieved by an increase in TIM from the nominal 1.4%
to 3.91%, a reduction in TPR from 5% to 1.03%, and a reduction in TSR from 40% to 20%. Looking at
Figure 7, the opt. ρ configuration shows a marginal increase in arm cavity power from the nominal
391 kW to 396 kW, and a large increase in recycling cavity power from 2.79 kW to 7.93 kW. The PR gain
is also increased from 35 to 99 at 85 ppm, while the finesse is reduced from 446 to 160.

Given the opt. ρ configurations cost toR and the drastic changes in optics parameters it presents,
a more reasonable fine-tuning of high frequency sensitivity would take into account the cost to low
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frequency sensitivity. In Figure 5, the max R configuration (solid yellow) shows that this is indeed
possible. For the specific case of 85 ppm RTLs, ρ is decreased from the optimal value of 5.19 to 3.69
whileR is increased from 196 Mpc to 255 Mpc, just 1 Mpc under the nominal value. Looking at Figure 6,
the difference between the max R configuration (solid yellow) and the opt. ρ configuration (solid
red) is a decrease in TIM, increase in TPR, and an increase in TSR, for all RTLs. Looking at the specific
case of 85 ppm, TIM is reduced from 3.91% to 1.74%, TPR is increased from 1.03% to 2.40%, and TSR is
increased from 20% to 39.3%. In Figure 7, the maxR configuration (solid yellow) has the same optics
parameters as the opt. R and max ρ configurations (dot-dashed yellow and red).

3.3. Comparing Results

The opt. R and opt. ρ sensitivity curves are shown in Figure 8a along with the nominal sensitivity
(blue). While the bucket of the QN curve is greatly enhanced for the opt. R configuration (red), the high
frequency band is slightly above the nominal curve. In sharp contrast, the opt. ρ configuration (yellow)
shows a greatly reduced high frequency noise at the cost of sensitivity in the bucket. In contrast,
the max ρ and maxR sensitivities shown in Figure 8b almost overlap. Compared to the blue nominal
curve, there is a noticeable reduction in high frequency noise in both cases while the mid frequency
sensitivity is almost unchanged. This further shows the potential to gain sensitivity at high frequencies
without compromising low frequency performance.

10 1 10 2 10 3 10 4
10 -24

10 -23

10 -22

(a) Nominal and opt configurations

10 1 10 2 10 3 10 4
10 -24

10 -23

10 -22

(b) Nominal and max configurations

Figure 8. Sensitivity curves for 85 ppm RTL optimal and max parameter configurations found for both
optimization routines. ‘Opt’ corresponds to an optimal primary parameter, while ‘max’ corresponds to
a maximum secondary parameter within a predefined budget of the optimal primary parameter found.
Nominal configurations that use the currently expected IM, PRM, and SRM transmittances are shown
for comparison.

Figure 9 shows correlations found for 85 ppm RTLs between the two figures of merit and
transmittances using budgets of 3 Mpc for R (green) and 1.5 SNR for ρ (black). There is a clear
change in correlations depending on choice of primary parameter, and a filled parabolic trade-off
betweenR and ρ indicated by the bottom right plot, which is enlarged in Figure (BLAH). Color points
show the opt. R (open red), max ρ (open yellow), opt. ρ (solid yellow), maxR (solid red), and nominal
(blue) configurations. Transmittances are in log scale. Note the near overlap of max ρ (open yellow)
and maxR (solid red) points, indicating again the equivalence between these configurations.
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Figure 9. (a) Correlations found for 85 ppm RTLs. R (green) uses 3 Mpc budget and ρ (black) uses
1.5 SNR budget. Color points indicate nominal configuration (blue), opt. R (open red), max ρ (open
yellow), opt. ρ (solid yellow), and maxR (solid red). (b) Enlargement ofR and ρ plot (bottom right of
corner plot).

Assuming similar RTLs to those measured in O3 of 85 ppm, the max R configuration gives a
15% increase in ρ from SNR 3.20 to 3.69 at the cost of 1 Mpc toR now at 255 Mpc. The corresponding
transmittances to achieve this configuration move the nominal values from 1.4%, 5%, and 40% to
1.74%, 2.40%, and 39.3% for TIM, TPR, and TSR, respectively.

3.4. Stability of Results with Arm-Cavity Losses

Uncertainties exist on RTLs for O5 and there is a strong dependence of the optimal and max
configurations on RTLs. A check was done to investigate the effects of implementing the max R
configuration transmittances found with 85 ppm RTLs, in ITFs with 55 ppm and 105 ppm RTLs.
For 55 ppm, the sensitivity parameters R and ρ were changed from 255 Mpc and 3.69 SNR to
262 Mpc and 4.31 SNR, respectively. For 105 ppm, R and ρ were changed to 250 Mpc and 3.36 SNR.
These correspond to a gain of 7 Mpc and 0.62 SNR if the RTLs are better than expected, and a loss of
5 Mpc and 0.33 SNR if the RTLs are worse than expected.

This was then repeated for the nominal configuration. For 55 ppm,R and ρ were changed from
256 Mpc and 3.20 SNR to 260 Mpc and 3.58 SNR. For 105 ppm,R and ρ were changed to 253 Mpc and
2.99 SNR. This is a gain of 4 Mpc and 0.38 SNR for a better than expected RTL, and a loss of 3 Mpc and
0.21 SNR if the RTLs are worse than expected.

Table 2 shows the values of R and ρ when the transmittances for the max R or nominal
configurations with 85 ppm RTLs are implemented in ITFs with 55 ppm or 105 ppm RTLs. The potential
change in bothR and ρ are larger for the maxR configuration than the nominal configuration. In both
cases, the potential gain is larger than the potential loss. The maxR configuration, however, shows a
larger potential gain than the nominal configuration.

Table 2. Astrophysical figures of merit using transmittances found for the maxR configuration with
85 ppm in interferometers (ITFs) with RTLs indicated by column headers.

Nominal max R
Figure of Merit 55 ppm 85 ppm 105 ppm 55 ppm 85 ppm 105 ppm

R [Mpc] 260 256 253 262 255 250
ρ [SNR] 2.58 3.20 2.99 4.31 3.69 3.36
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4. Conclusions and Future Steps

In this work, we have investigated the optimization of the sensitivity of the Advanced Virgo+
phase II detector (corresponding to the O5 observation run) by changing the interferometer mirror
transmittances and using a random walk algorithm. A post-merger SNR ρ was used for the
optimization in addition to the usual IMR rangeR. The two figures of merit roughly correspond to
high-frequency and mid frequency signals, respectively.

It was found that, assuming arm cavity RTLs similar to O3 around 85 ppm, independent of
choice of primary optimization parameter (ρ orR), a configuration could be identified that enhanced
the high frequency sensitivity without compromising the foreseen performance at low frequencies.
This configuration, labeled ‘max R’ in this paper, would set TIM, TPR, and TSR to 1.74%, 2.40%,
and 39.3%.

This configuration was checked for stability against measured losses different than those assumed
in the study of 85 ppm. In this respect, the maxR configuration poses a slightly higher risk if RTLs are
larger than expected, but a much larger pay-off if RTLs are smaller than expected.

A detailed study of the control system should be made before making a decision on the final
configuration. For instance, since the optimized configuration found in this work corresponds to an
increase in recycling gain, additional difficulties can arise for the control systems of the marginally
stable recycling cavities. In addition, since power is significantly redistributed between the nominal
and max configurations, the perturbation to mirror RoCs due to thermal loads should be checked
against thermal compensation system ranges. Moreover, this study was done in the context of a
broadband signal recycling configuration, but can be continued to include a tuned configuration.

In the future, we plan to perform a qualification of the gains in sensitivity in the context of
parameter estimation. A change in ρ could be converted to a change in posterior error on a parameter
proposed in the literature like ζ [22] that includes information on the equation of state. This would
permit a more quantitative comparison between proposed gains in ρ to proposed losses inR.

Although this work was carried out in the context of the AdV+ phase II upgrades, the methods
used would be useful to future optimization studies, such as fine-tuning the sensitivity for future
gravitational-wave detectors like Einstein Telescope [23] and Cosmic Explorer [24]. In the context
of these detectors, that are expected to extract PM features, a study of this kind would be highly
informative to compare the risks and gains of each optical design.

Author Contributions: Investigation, J.B. and M.B.; writing—original draft preparation, J.B.; writing—review
and editing, J.B. and M.B. All authors have read and agreed to the published version of the manuscript.

Funding: J.B. supported by the European Gravitational Observatory.

Acknowledgments: The authors acknowledge the useful feedback and discussions with Eleonora Capocasa,
Jérôme Degallaix, Sebastian Steinlechner, Gianluca Gemme, Alessio Rocchi, Eric Chassande-Mottin,
Simone Mastrogiovanni and the developers of the advGWINC code. The authors also acknowledge the useful
work by Breschi et al. and the helpful communications in developing a dedicated PM waveform module
within advGWINC.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

ITF Interferometer
AdV Advanced Virgo
AdV+ Advanced Virgo+
QN quantum noise
IM input mirror
EM end mirror
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PRM power recycling mirror
SRM signal recycling mirror
PRC power recycling cavity
TIM input mirror transmittance
TPR power recycling mirror transmittance
TSR signal recycling mirror transmittance
PM post-merger
IMR inspiral-merger-ringdown
BNS binary neutron star
SNR signal to noise ratio
RTL round trip losses
R BNS IMR range
ρ BNS PM SNR
GW gravitational wave
RoC radius of curvature

Appendix A

Table A1. Optimization results for six values of round trip losses for the two primary parametersR
and ρ. Shown are the configurations for optimalR (ρ), maximum ρ (R) within ±3 Mpc (±15 SNR) of
the optimal primary parameter, and nominal configurations, where colours indicated correspond to
curves plotted in Figures 5 and 6 Also shown are the corresponding Finesse (F), power recycling gain
(GPR), PRC losses (LPRC), arm cavity power (PArm), and power impinging on the beam splitter (PBS).

RTL Conf. R ρ TIM TPR TSR F PR LPRC PArm PBS
[Mpc] [%] [%] [%] Gain [%] [kW] [kW]

ROpt.

55 ppm
Nom (blue) 260 3.58 1.40 5.00 40.0 447 44 1.55 494 3.51
optR (red) 264 3.96 1.72 1.49 49.9 363 70 1.26 640 5.60
max ρ (yellow) 261 4.65 1.70 1.63 34.7 368 69 1.27 638 5.51

65 ppm
Nom (blue) 259 3.44 1.40 5.00 40.0 447 41 1.83 455 3.24
optR (red) 263 3.60 1.62 1.75 50.0 387 57 1.58 555 4.56
max ρ (yellow) 260 4.21 1.74 1.62 38.1 359 61 1.47 551 4.88

75 ppm
Nom (blue) 258 3.32 1.40 5.00 40.0 446 38 2.11 421 3.00
optR (red) 261 3.31 1.58 2.11 51.3 395 49 1.86 488 3.93
max ρ (yellow) 258 3.85 1.62 1.93 38.2 386 50 1.82 487 4.01

85 ppm
Nom (blue) 256 3.20 1.40 5.00 40.0 446 35 2.38 391 2.79
optR (red) 260 3.08 1.58 2.17 53.0 396 44 2.11 435 3.50
max ρ (yellow) 257 3.56 1.72 2.09 42.4 363 47 1.94 432 3.80

95 ppm
Nom (blue) 254 3.09 1.40 5.00 40.0 446 32 2.66 364 2.60
optR (red) 258 2.84 1.61 2.46 56.7 388 40 2.31 392 3.22
max ρ (yellow) 255 3.31 1.75 2.27 45.3 356 44 2.13 390 3.49

105 ppm
Nom (blue) 253 2.99 1.40 5.00 40.0 445 30 2.94 339 2.43
optR (red) 257 2.69 1.59 2.70 57.2 393 36 2.59 357 2.90
max ρ (yellow) 254 3.11 1.79 2.55 47.7 350 40 2.30 355 3.24
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Table A1. Cont.

RTL Conf. R ρ TIM TPR TSR F PR LPRC PArm PBS
[Mpc] [%] [%] [%] Gain [%] [kW] [kW]

ρ Opt.

55 ppm
Nom (blue) 260 3.58 1.40 5.00 40.0 447 44 1.55 494 3.51
opt ρ (red) 213 6.20 3.03 0.90 15.6 207 114 0.71 592 9.13
maxR (yellow) 260 4.76 1.89 1.18 35.8 330 76 1.14 631 6.07

65 ppm
Nom (blue) 259 3.44 1.40 5.00 40.0 447 41 1.83 455 3.24
opt ρ (red) 207 5.80 3.43 0.93 17.6 183 111 0.74 505 8.86
maxR (yellow) 259 4.30 1.83 1.79 37.4 343 63 1.40 546 5.07

75 ppm
Nom (blue) 258 3.32 1.40 5.00 40.0 446 38 2.11 421 3.00
opt ρ (red) 201 5.47 3.38 1.01 17.3 185 97 0.87 450 7.77
maxR (yellow) 257 3.98 1.71 2.00 37.0 365 53 1.72 485 4.22

85 ppm
Nom (blue) 256 3.20 1.40 5.00 40.0 446 35 2.38 391 2.79
opt ρ (red) 196 5.19 3.91 1.03 20.0 160 99 0.85 396 7.93
maxR (yellow) 255 3.69 1.74 2.40 39.3 360 48 1.92 430 3.80

95 ppm
Nom (blue) 254 3.09 1.40 5.00 40.0 446 32 2.66 364 2.60
opt ρ (red) 191 4.95 3.88 1.12 19.7 161 90 0.96 361 7.18
maxR (yellow) 253 3.46 1.81 2.12 42.2 344 45 2.05 389 3.60

105 ppm
Nom (blue) 253 2.99 1.40 5.00 40.0 445 30 2.94 339 2.43
opt ρ (red) 188 4.74 4.06 1.24 21.1 154 86 1.01 329 6.84
maxR (yellow) 251 3.31 1.79 2.19 41.8 348 40 2.29 354 3.24
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