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Abstract: The dark sector, composed of fields that are neutral under the standard model (SM) gauge
group, can couple to the SM through the Higgs, hypercharge and neutrino portals, and pull the SM
towards its scale by loop corrections. This instability, which is not possible to prevent in the known
SM completions, such as supersymmetry, due to the sizable couplings to the SM, calls for alternative
mechanisms that can neutralize sensitivities of the SM to the dark sector scale and to the ultraviolet
cutoff above it. Here we review such a mechanism in which incorporation of gravity into the SM
predicts the existence of a dark sector and allows it to be naturally coupled to the SM. We discuss
and illustrate salient processes that can probe the naturally coupled dark sectors.

Keywords: hierarchy problem; naturally coupled dark sector; emergent gravity

1. Introduction

The standard model of elementary particles (SM), spectrally completed with the
discovery of the Higgs boson at the LHC [1], has so far shown excellent agreement with
all the experimental data [2]. It is a renormalizable quantum field theory (QFT). Possible
new physics beyond the SM (BSM), whose scale puts an ultraviolet (UV) momentum cutoff
Λ on the SM loops, must step in at Λ ' TeV if the SM Higgs boson mass is to remain at
its experimental value [1,3–5]; however, the LHC experiments have shown that the SM
continues to hold well [6] up to energies well above its TeV cutoff.

This reign of the SM, an experimental fact, contradicts the existence of various phe-
nomena begging for a consistent explanation. Indeed, there are astrophysical (dark matter,
dark photon), cosmological (dark energy, inflation) and other (neutrino masses, flavor,
unification, · · · ) phenomena that cannot be accounted for within the SM; therefore, we
need to have a BSM sector around and beyond a TeV [7,8]. In general, the SM + BSM is a
coverall renormalizable QFT, with possible non-renormalizable interactions induced by
high-scale physics.

The SM-singlet BSM fields, which form dark energy, dark matter and possibly more,
make up the dark sector (DS). The DS, which forms 95% of the Universe [9–11], is known
via only its gravitational interactions. The efforts to detect it by experiments [12–17] and
observations [18–22] are continuing. The DS and SM can have renormalizable and non-
renormalizable interactions. At the renormalizable level, they couple via three distinct
portals: The Higgs portal [23]

λ2
H′i
(H†H)(H′†i H′i ) (1)

through which the DS scalars H′i couple to the SM Higgs doublet H, the hypercharge
portal [24]

λV′i
V′iµνBµν (2)
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through which the DS gauge bosons V′µi couple to the SM hypercharge gauge boson Bµ,
and finally the neutrino portal

λN′i
LHN′i + h.c. (3)

through which the DS right-handed neutrinos N′i couple to the SM Higgs doublet and the
lepton doublet L.

The SM-nonsinglet BSM fields, which are charged under the SM gauge group, make
up the visible sector (VS). The VS interacts with the SM via the usual gauge interactions
and via the Higgs portal in (1) and the hypercharge portal in (2). It is severely constrained
by collider bounds [2,6].

The fundamental problem with the QFTs is that loop corrections throw their bosonic
sectors at the UV boundary. The Higgs boson mass mh, for instance, acquires a loop
correction (λ2

SM−BSM = λ2
H′ ,V′ ,N′ where X′ can be both DS and VS fields)

δm2
h = chΛ2

℘ + ∑
z

chBSMλ2
SM−BSM M2

BSM log
M2

BSM
Λ2

℘
(4)

which removes the SM from its natural scale (the Fermi scale) when the UV momentum
cutoff Λ℘ is large (Λ℘ � mh) or when the BSM scale is large (MBSM � mh), with few
percent loop factors ch and chBSM. It is clear that the mechanism that neutralizes the Λ2

℘

contribution in (4) must also keep the heavy BSM contribution small by allowing the SM-
BSM couplings λSM−BSM to be sufficiently small. This actually is a crucial point because
the known completions of the SM (supersymmetry, extra dimensions, compositeness and
their hybrids) have been sidelined by the LHC experiments due to the fact that their BSM
sectors (superpartners in supersymmetry, Kaluza–Klein levels in extra dimensions and
technifermions in compositeness) require λSM−BSM ' λSM as a result of their defining
symmetries. Thus, if the electroweak scale is to be stabilized with a view to satisfying the
LHC bounds then there must exist a mechanism that

neutralizes the Λ2
℘ term in (4), and (5)

allows for SM-BSM couplings λSM−BSM to be sufficiently small (6)

where λSM is a typical SM coupling. In search for a mechanism that can accomplish both (5)
and (6), one realizes that the SM fails to cover two major physical phenomena:

BSM sector (dark matter, inflaton, right-handed neutrinos, . . . ), and (7)

gravity. (8)

This means that the mechanism that accomplishes (5) and (6) must account for both (7)
and (8). In other words, it must be able to form a satisfactory BSM sector and incorporate
gravity into SM + BSM.

In the present work we review a mechanism that predicts (7), covers (8) and accom-
plishes both (5) and (6). The mechanism is essentially an extension of Sakharov’s induced
gravity into gauge sector [25–27]. The review is based on the papers [28–32] and the
talks [33–37].

In Section 2 below we review the aforementioned mechanism. We show that the
incorporation of gravity into the SM predicts a BSM sector and allows SM-BSM couplings
to be sufficiently small. This will constitute the naturally coupled dark sector emphasized
in the title. (This section is largely based on [28,29,33,34].)

In Section 3 we give an in-depth discussion of the naturally coupled dark sector, and
study certain processes characteristic of its salient features. We review there collider and
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dark matter signatures along with a general classification of the dark sector. (This section is
largely based on [28,29,38,39].)

In Section 4 we give future prospects and conclude.

2. Dark Sector: A Necessity for QFT–GR Concord

The SM needs be furthered for gathering a BSM sector and involving the gravity. This
necessitates QFTs to be brought together with the gravity. In essence, what needs be done
is to carry the QFTs into curved spacetime concordantly.

In an effort to realize the requisite concord, it proves useful to start with the classical
field theory limit [40]. Then, taken as a classical field theory governed by an action
Scl(η, ψ, ∂ψ) of the classical fields ψ in the flat spacetime of metric ηµν, the SM can be
carried into curved spacetime of a putative curved metric gµν by letting

Scl(η, ψ, ∂ψ) ↪→ Scl(g, ψ,∇ψ) (9)

in accordance with the equivalence principle map [41]

ηµν ↪→ gµν , ∂µ ↪→ ∇µ (10)

in which ∇µ is the covariant derivative of the Levi–Civita connection

gΓλ
µν =

1
2

gλρ
(
∂µgνρ + ∂νgρµ − ∂ρgµν

)
(11)

so that ∇αgµν = 0 in parallel with ∂αηµν = 0. The Levi–Civita connection determines the
Ricci curvature Rµν(gΓ) and the scalar curvature R(g) = gµνRµν(gΓ).

The image of the SM in (9) is incomplete in regard to both (7) and (8). These sectors
must added by hand since the equivalence principle map in (10) can induce neither the
BSM sector nor the gravity (curvature sector). The BSM sector can be modeled by a classical
field theory with generic couplings to the SM. The curvature sector, on the other hand,
must have the form

“curvature sector” =
∫

d4x
√
−g
{
− M̃2

2
R(g) + c̃2R(g)2 +

c̃3

M̃2 R(g)3 + . . .
}

(12)

if it is to lead to the general relativity (GR) [42–44]. Thus, it is with judiciously added BSM
and curvature sectors that there arises a proper setup. To realize QFT–GR concord, all that is
needed is the quantization of the curved spacetime classical action in (9) with the curvature
sector in (12). This, however, is not possible simply because it is not possible to quantize
the GR [45,46]. It is this non-renormalizable nature of GR that prevents reconciliation of
the SM + BSM with the GR as two proper QFTs.

This non-quantizable nature of the GR obstructs the QFT–GR concord. To overcome
this obstruction, it proves efficacious to take gravity classical as it is already not quantizable
and adopt the effective SM as it resembles the classical SM in (9) in view of its long-
wavelength field spectrum and loop-corrected couplings. To see where this approach
leads to, it is first necessary to construct the SM effective action. The matter loops whose
momenta vary in the range (Λ℘ explicitly breaks the Poincare invariance [47,48])

−Λ2
℘ ≤ ηµν`µ`ν ≤ Λ2

℘ (13)

modify the classical action Scl(η, ψ) by adding an anomalous gauge boson mass term

δSV(η, Λ℘) =
∫

d4x
√
−η cVΛ2

℘ Tr
[
ηµνVµVν

]
(14)

which breaks gauge symmetries explicitly and leads therefore to explicit color and charge
breaking (CCB) [49,50]. The loop factor cV is given in Table 1 for the SM gauge bosons.
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The matter loops add power-law corrections

δS∅φ(η, Λ℘) =
∫

d4x
√
−η

{
−c∅Λ4

℘ −∑
i

cψi m
2
i Λ2

℘ − cφφ2Λ2
℘

}
(15)

which push the scalar masses mφ towards the UV scale to give cause to the big hierarchy
problem [3–5] (the loop factor cφ is given in Table 1 for the SM Higgs boson). They give
rise to a UV-sized vacuum energy (the loop factors c∅ and cψi are given in Table 1), with of
course no physical consequences in the flat spacetime [51–54].

Finally, the matter loops also add logarithmic corrections

δS(η, ψ, log Λ℘) ⊃ −∑
i

ĉψi m
4
i log

m2
i

Λ2
℘
−∑

i,φ
ĉφψi m

2
i log

m2
i

Λ2
℘

φ2 −∑
i, f

ĉ f ψi
log

m2
i

Λ2
℘

m f f f (16)

which respect all the symmetries of the QFT (as in the dimensional regularization [55–57]).

Table 1. The loop factors cV at one loop and various problems they cause (taken from Reference [33]).

Loop Factor SM Fields SM Value Problems Caused

cV gluon 21g2
3

16π2 color breaking

cV weak gauge bosons 21g2
2

16π2 isospin breaking

cV hypercharge gauge boson 39g2
1

32π2 hypercharge breaking

cφ Higgs boson h g2
2str[m2]

8π2 M2
W
≈ − g2

2m2
t

π2 M2
W

big hierarchy problem

c∅ = − str[1]
128π2 over all the SM fields 31

32π2 none (flat spacetime)

∑i cψi m
2
i = str[m2]

32π2 over all the SM fields ≈− m2
t

4π2 none (flat spacetime)

The loop corrections (14)–(16) add up to form the quantum effective action

S(η, ψ, Λ℘) = Scl(η, ψ) + δSψ(η, log Λ℘) + δS∅φ(η, Λ℘) + δSV(η, Λ℘) (17)

which represents long-wavelength sector of the exact QFT (namely the SM) in that all high-
frequency quantum fluctuations have been integrated out to get the corrections (14)–(16). If
this effective action does indeed act like classical field theories then it must get to curved
spacetime as

S(g, ψ, Λ℘) ↪→ S(g, ψ, Λ℘) +
∫

d4x
√
−g
{
− M̃2

2
R(g) + c̃2R(g)2 +

c̃3

M̃2 R(g)3 + . . .
}

(18)

as follows from the equivalence principle map (10) and the curvature sector in (12). The
curvature sector here is the one in (12). The problem with this curved spacetime action
is that M̃, c̃2, c̃3, · · · are all bare constants carrying no loop corrections [29,31]. However,
for a proper concord between the gravity and the SM all constants must be at the same
loop level. This discord, which reveals the difference between truly classical and effective
field theories, implies that effective QFTs do not allow put-by-hand curvature sectors; they
necessitate curvature sector to be born from the effective action itself. In other words,
curvature must arise from within S(g, ψ, Λ℘) itself so that no incalculable bare constants
can arise in the curved spacetime action.

This result can be taken to imply that mass scales in the effective action S(g, ψ, Λ℘)
must have some association with the spacetime curvature. To reveal the nature of this
association and to determine if it is an equivalence relation it proves useful to give priority
to the gauge boson mass action (14) as part of the SM effective action S(η, ψ, Λ℘) in (17).



Galaxies 2021, 9, 33 5 of 18

It is clear that it breaks gauge symmetries explicitly, and continues to do so in the curved
spacetime if carried there via the discordant map in (18).

Here comes to mind a critical question: Can one carry (14) into curved spacetime in
a way restoring gauge symmetries? Can gauge invariance be the fundamental principle
that governs how QFTs to be taken into curved spacetime? The answer will turn out to be
affirmative. To see how, it proves efficacious to start with a simple identity [28,29,31]

δSV

(
η, Λ2

℘

)
= δSV

(
η, Λ2

℘

)
− IV(η) + IV(η) (19)

in which the kinetic structure

IV(η) =
∫

d4x
√
−η

cV
2

Tr
{

ηµαηνβVµνVαβ
}

(20)

is added to δSV
(
η, Λ2

℘

)
and subtracted back. Now, at the right-hand side of (19), if δSV

is equated to (14), “− IV” is kept unchanged and yet “ + IV” is expanded with by-parts
integration, then, the identity (19) takes the form

δSV

(
η, Λ2

℘

)
= −IV(η) +

∫
d4x
√
−ηcVTr

{
Vµ
(
−D2

µν + Λ2
℘ηµν

)
Vν + ∂µ

(
ηαβVαVβµ

)}
(21)

where Vµν is the field strength tensor of Vµ, Dµ is the gauge-covariant derivative, with
D2

µν = D2ηµν − DµDν −Vµν and D2 = ηµνDµDν. This reshaped effective action becomes

δSV

(
g, Λ2

℘

)
= −IV(g) +

∫
d4x
√
−gcVTr

{
Vµ
(
−D2

µν + Λ2
℘gµν

)
Vν +∇µ

(
gαβVαVβµ

)}
(22)

under the equivalence principle map in (10) such that Dµ is the gauge-covariant derivative
in curved geometry, and D2

µν = D2gµν −DµDν −Vµν with D2 = gµνDµDν.
Now, a brief examination of (22) immediately reveals that it would vanish identically

if Λ2
℘gµν were replaced with Rµν(gΓ) since∫

d4x
√
−gcVTr

{
Vµ
(
−D2

µν + Rµν(
gΓ)
)

Vν +∇µ

(
gαβVαVβµ

)}
= IV(g) (23)

as follows from by-parts integration [28,29,34]. This rather appealing feature is actually
wholly flawed because Λ2

℘gµν ↪→ Rµν(gΓ) contradicts with ηµν ↪→ gµν. If this contradiction
were not there the CCB [49,50] would be solved by the metamorphosis of Λ2

℘gµν into
Rµν(gΓ). This contradiction can be prevented by implementing a more general map [34]

Λ2
℘gµν ↪→Rµν(Γ) (24)

by utilizing the Ricci curvature Rµν(Γ) of a symmetric affine connection Γλ
µν, which has

nothing to do with the Levi–Civita connection gΓλ
µν) [58–60]. The idea is that the equivalence

principle that maps ηµν to gµν is extended by the curvature map (24) to establish a relationship
between Λ2

℘gµν and Rµν(Γ). The contradiction is removed because the maps (10) and (24)
involve independent dynamical variables [34]. The curvature map can also be interpreted
as the substance needed to relate general covariance to gravity [42–44]. The curvature map
(24) can also be interpreted as a Poincare affinity relation [28] in that Λ2

℘ (curvature) breaks
the Poincare symmetry in flat spacetime (curved spacetime), and the two quantities assume
a certain affinity that facilitates the curvature map in (24). As a result, the action (22) takes
a completely new form

δSV(g,R) = −I(g, V) +
∫

d4x
√
−gcVTr

{
Vµ
(
−D2

µν +Rµν(Γ)
)

Vν +∇µ

(
gαβVαVβµ

)}
(25)
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under the maps (10) and (24), and simplifies to

δSV(g,R, R)=
∫

d4x
√
−gcVTr

{
Vµ
(
Rµν(Γ)− Rµν(

gΓ)
)
Vν
}

(26)

by the identity (23). The gauge boson mass term in (14) has been transformed into a pure
curvature term. The anomalous gauge boson masses have been completely metamorphosed
but the resulting action, the action (26), is non-vanishing and gauge symmetries continue
to be explicitly broken. This problem, the CCB [49,50], can have a solution only if Rµν(Γ)
approaches to Rµν(gΓ), dynamically. The question of if and when this happens depends on
the dynamics of the affine connection Γλ

µν.
With a view at determining the Γλ

µν dynamics, it proves useful to start with the log-
arithmic UV sensitivities. The identity (23), which is what reduces the action (25) to (26),
rests on the condition that cV must remain untouched under the curvature map (24). In
other words, log Λ℘, which can appear in cV at higher loops, must remain intact while Λ2

℘

transforms into affine curvature as in (24). This condition, which is in agreement with the
Poincare-respecting (Poincare-breaking) nature of log Λ℘ (Λ2

℘), puts the remnant QFT in
dimensional regularization scheme [28,29,56,57]. Indeed, as follows from (16) via the maps
(10) and (24), the logarithmic corrections in curved spacetime

δS(g, ψ, log Λ℘) ⊃ −∑
i

ĉψi m
4
i log

m2
i

Λ2
℘
−∑

i,φ
ĉφψi m

2
i log

m2
i

Λ2
℘

φ2 −∑
i, f

ĉ f ψi
log

m2
i

Λ2
℘

m f f f (27)

lead to the log-regularized action

SQFT(g, ψ, log Λ℘) = Scl(g, ψ) + δS(g, ψ, log Λ℘) (28)

which can always be interpreted in the language of the dimensional regularization via the
transformation [55–57]

log Λ2
℘ =

1
ε
− γE + 1 + log 4πµ2 (29)

which trades log Λ℘ for 1/ε-substraction (MS) renormalization scale µ in 4 + ε dimen-
sions. In general, variations of the scattering amplitudes with µ are described by the
renormalization group equations [55].

It is clear that, under the maps (10) and (24), the flat spacetime effective action (15) of
the power-law UV corrections leads to the curvature sector

“curvature sector” =
∫

d4x
√
−g
{
−QµνRµν(Γ) +

1
16

c∅
(

gµνRµν(Γ)
)2 − cV Rµν(

gΓ)Tr{VµVν}
}

(30)

in which the disformal metric

Qµν =

(
1
4 ∑

i
cψi m

2
i +

1
4

cφφ2 +
1
8

c∅gαβRαβ(Γ)

)
gµν − cVTr

{
VµVν

}
(31)

involves all the scalars φ and vectors Vµ. This curvature sector satisfies the condition (5) in
the Introduction.

The emergent curvature sector (30) takes the place of the by-hand curvature sector in (12).
It removes the discord in (18) and induces the fundamental scale of gravity

M2
Pl =

1
2 ∑

i
cψi m

2
i (32)
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as a pure quantum effect. Its one-loop value (M2
Pl)1−loop = str

{
m2}/64π2, as follows from

Table 1, ensures that, in the SM, M2
Pl comes out wrong in both size and sign. It cannot come

out right unless there exists an additional matter in the spectrum because

Planck scale necessitates a BSM sector (33)

whose bosons must either outweigh (some 1000 Planck-mass bosons) or outnumber (some
1032 electroweak-mass bosons) the fermions [28,29,31]. The other crucial feature is that:

The BSM sector does not have to interact with the SM (34)

since M2
Pl , supertrace of particle mass-squareds, is independent of if the SM + BSM fields are

mixing or not [28,29,31]. This property is precisely what is needed to satisfy the condition (6)
in the Introduction.

Stationarity of the action (30) against variations in Γλ
µν leads to the Γλ

µν equation of motion

Γ∇λQµν = 0 (35)

whose solution [58–62]

Γλ
µν = gΓλ

µν +
1
2
(Q−1)λρ

(
∇µQνρ +∇νQρµ −∇ρQµν

)
(36)

remains in close proximity of the Levi–Civita connection gΓλ
µν thanks to the enormity of

MPl . Corresponding to (36) the affine Ricci curvature expands as

Rµν(Γ) = Rµν(
gΓ) +

1
M2

Pl

(
∇α∇µδ

β
ν +∇α∇νδ

β
µ −�δα

µδ
β
ν −∇ν∇µgαβ

)
Qαβ +O

(
M−4

Pl

)
(37)

with a remainder which involves only derivatives of φ and Vµ [28,29].
The curvature solution (37) ensures that the CCB action in (26) gets strongly suppressed∫
d4x
√
−g ∑

V
cVTr

{
Vµ
(
Rµν(Γ)− Rµν(

gΓ)
)
Vν
}
=
∫

d4x
√
−g
{

0 +O
(

M−2
Pl

)}
(38)

and thus the CCB gets prevented up to O
(

M−2
Pl

)
effects [29]. Thus, the affine connection

Γλ
µν possesses right dynamics to suppress the problematic curvature difference (26).

The curvature solution (37) reduces the metric-affine curvature sector in (30) [58–63]
to the GR curvature sector

“curvature sector” =
∫

d4x
√
−g
{
−1

2
M2

Pl R(g)− 1
4

cφφ2R(g)− 1
16

c∅R(g)2 +O
(

M−2
Pl

)}
(39)

which proves that the UV-sensitivity problems listed in Table 1 are all gone. The curvature
scalar directly couples to scalar fields [64,65], with a quadratic part [66,67], which can lead
to the Starobinsky inflation [68–70].

At long last, the SM + BSM and gravity come together concordantly

SQFT∪GR=SQFT(g, ψ, log Λ℘)+
∫

d4x
√
−g
{
−1

2
M2

Pl R(g)− 1
4

cφφ2R(g)− 1
16

c∅R(g)2 +O
(

M−2
Pl

)}
(40)

in which M2
Pl , cφ and c∅ are all bona fide loop-induced constants computed in the flat

spacetime such that the remnant log Λ℘ dependencies can always be put in the dimensional
regularization language via the relation (29). These constants can be computed for a given
SM + BSM, and the resulting curved spacetime effective SM + BSM of (40) can be tested via
collider (such as the FCC and dark matter searches), astrophysical (such as neutron stars
and black holes) or cosmological (such as inflation and structure formation) phenomena.



Galaxies 2021, 9, 33 8 of 18

Increasing precision in collider experiments [71,72], astrophysical observations [9–11,73]
and cosmological measurements [9–11,74,75] is expected to refine its BSM sector as well as
the higher-curvature terms.

The whole mechanism above is termed as symmergence in that gravity emerges in a way
restoring the gauge symmetries. Symmergence differs from the known completions of the
SM by its ability to satisfy the conditions (5) and (6), and predict the existence of a BSM sec-
tor. For clarification, it proves useful to contrast symmergence with another method based
on subtraction of the Λ2

℘ terms [76]. This method is particularly relevant in that it subtracts
(absorbs into critical surface) Λ2

℘ terms, retains only log Λ℘ terms (dimensional regulariza-
tion), predicts no BSM sector and leaves out gravity entirely. Symmergence [28,29,31], on
the other hand, sets an equivalence between Λ2

℘ and spacetime curvature via their Poincare
affinity, retains only log Λ℘ terms (dimensional regularization), predicts the existence of a
BSM sector and makes gravity emerge in a way restoring the gauge symmetries.

3. Naturally Coupled Dark Sector

Symmergence has reconciled gravity with the SM + BSM at the same loop level. It
has solved the problems in Table 1. This, however, is only the Λ2

℘ part of the Higgs mass
correction in (4). Its logarithmic part remains as a potential source of hierarchy problem for
heavy BSM.

TheO
(

M−2
Pl

)
remainder in (40), which results from the higher-orders of the curvature

expansion in (37), implies that the scalar and gauge fields in SM + BSM can have doubly
Planck-suppressed, non-renormalizable, all-derivative interactions. These tiny interactions
can hardly have any significant impact on low-energy processes. In what follows, there-
fore, analyses of the DS-SM couplings will be limited to renormalizable-level interactions
between the two.

The problem, as revealed by the logarithmic action in (27), is that the heavy BSM fields
H′, V′, N′, . . . pull the Higgs boson mass (and the vacuum energy) towards MBSM via their
various couplings (similar to the portals in (1)–(3)). This SM-BSM hierarchy problem (the
little hierarchy problem [77–79] of supersymmetry) is as important as the UV-induced ones
listed in Table 1. In fact, known UV completions of the SM [7,8] (supersymmetry, extra
dimensions, compositeness and their hybrids) have been sidelined by the LHC experiments
due to this SM-BSM hierarchy problem in that their BSM sectors (superpartners in super-
symmetry, Kaluza–Klein levels in extra dimensions and technifermions in compositeness)
invariably require λSM−BSM ' λSM by their symmetry structures (λSM is a typical SM
coupling).

Symmergence is not sidelined by the LHC experiments. It survives the bounds. The
reason is that it predicts the existence of a BSM sector (as derived in (33)) that does not
have to couple to the SM (as found in (34)). The SM and BSM can have no coupling
(λSM−BSM = 0), weak coupling (λSM−BSM � λSM), or sizable coupling (λSM−BSM ' λSM)
as long as the experimental and observational constraints are satisfied. This freedom is
a feature of symmergence and, as will be discussed below, the BSM is essentially a dark
sector since λSM−BSM ' λSM is already disfavored by the LHC. To clarify further one notes
that in supersymmetry, extra dimensions, compositeness and their hybrids [7,8]:

λSM−BSM ' λSM =⇒ BSM must be light! (MBSM & mh) (41)

whereas in symmergence [29,31]:

λSM−BSM = “small” =⇒ BSM can lie at any scale! (MBSM & mh , MBSM � mh) (42)

so that the LHC experiments are able to sideline sparticles (the BSM of supersymmetry),
Kaluza–Klein levels (the BSM of extra dimensions) and technifermions (the BSM of com-
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positeness) but not the BSM of the symmergence! In fact, if the SM-BSM couplings obey
the bound

λSM−BSM .
m2

H
M2

BSM
(43)

then the correction (4) to Higgs boson mass resides within the LHC bounds. This bound
imposes a seesawic relation between the Higgs condensation parameter m2

H (m2
h = −2m2

H
in the SM) and the BSM masses. This seesawic relation has important implications for
collider and other searches: It means heavier the BSM smaller its coupling to the SM (the
SM is decoupled from heavy sectors). It means also heavier the BSM larger the luminosity
needed to probe it at colliders. It further means heavier the dark matter (belonging to
the BSM) smaller its scattering cross section from the nucleons and harder its detection in
direct searches. In this sense, seesawic coupling has novel implications for collider and
other searches.

The BSM whose coupling to the SM obey the bound in (43) will hereon be called
naturally coupled BSM because fields of such BSM do not destabilize the SM Higgs sec-
tor. In a naturally coupled BSM, where BSM = VS + DS, the two subsectors possess the
following features:

1. The VS is endowed with SM charges and thus λSM−VS is fixated to be λSM−VS ' λSM
as in (41). This means that MVS & mh is a necessity. In other words, the VS sector
must weigh near the weak scale. This VS structure is that of the supersymmetry and
other completions, and is not favored by the current LHC searches.

2. The DS is SM-singlet as a whole and thus λSM−DS is free to take any perturbative
value. It has the form in (42). This means that MDS can lie at any scale from mh way
up to ultra-high scales.

These properties ensure that the naturally coupled heavy BSM is essentially naturally
coupled DS, and the naturalness bound in (43) is effective mainly for the DS. In this regard,
the DS is composed of two kinds of particles:

1. Black Particles. These kinds of particles have zero non-gravitational couplings to
the SM [80,81]. They form a secluded sector formed, for instance, by high-rank non-
Abelian gauge fields and fermions [31,35,82,83]. In view of the present searches, which
seem all negative, this black (pitch-dark) DS agrees with all the available data [84,85].
It is unique to symmergence in that λSM−DS obeys the naturalness bound in (43) and
hence can well be vanishing, λSM−Black DS = 0. In this case, the DS possesses only
gravitational couplings to the SM.

2. Dark Particles. This type of particles are neutral under the SM gauge group and
couple to the SM via the Higgs portal in (1), hypercharge portal in (2) and the neutrino
portal in (3) [9–11,31]. Indeed, scalars H′, Abelian vectors V′µ and fermions N′ are
dark particles and couple to the SM at the renormalizable level via

Sint =
∫

d4x
√
−g
{

λ2
H′

(
H† H

)(
H′† H′

)
+ λZ′BµνZ′µν +

[
λN′LHN′ + h.c.

]}
(44)

in which the couplings λ2
H′ , λZ′ , λN′ can take, from none to significant, a wide range

of values with characteristic experimental signals [29,31,84,85].

The DS, whose two subsectors are depicted in Figure 1, can have any kind of particles,
can have any perturbative couplings and can lie at any scale (from the weak scale to way
up to the Planck scale) as long as the gravitational scale in (32) comes out right. Non-
necessity of any sizable DS-SM couplings, as derived in (34), is what distinguishes the DS
of the symmergence from the BSM sectors of supersymmetry, extra dimensions, composite
models and others [7,8] where a sizable SM-BSM coupling is a symmetry requirement. The
schematic plot in Figure 2 is the variation of the DS-SM coupling with the BSM masses Mz′ .
The region allowed by natural couplings (the bound in (43)) is the one below the curve.
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Figure 1. The DS of symmergence has two distinct sectors: The black particles which have only
gravitational couplings to the SM, and dark particles that have gravitational couplings as well as
the portal couplings in (44). The current collider and direct search bounds do actually agree with a
black sector.

Figure 2. The allowed and disallowed regions for a naturally coupled DS obeying the bound in (43).
Here z′ is a typical DS field mentioned in (1)–(3). (taken from Reference [29]).

To elucidate the meaning and effects of the naturally coupled DS; it proves conve-
nient to study its certain salient features. The first point to study would be naturalness
condition (43) under the renormalization group flow of the model parameters. This is
important because the Higgs boson mass mast be kept stable under the logarithmic contri-
butions in (44). Depicted in Figure 3 are the scale dependencies of the Higgs boson mass
from the electroweak scale up to the GUT scale in the SM (black curve) and in the SM + DS
(red curve). In here, the DS is represented by a singlet scalar H′ such that SM–DS coupling
obeys the seesawic bound in (43) at the GUT scale. It thus follows that naturally coupled
dark sectors do indeed not disrupt the stability of the electroweak scale [38].
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Figure 3. The dependence of the Higgs boson mass on the mass scale Q in the SM (black curve) and
in the SM + DS with DS containing a scalar H′ coupling to the SM as in (44) obeying the naturalness
bound in (43). The naturally coupled DS does indeed respect the stability of the electroweak scale.
(taken from Reference [38], with the permission of the co-author.)

The Higgs boson scatterings can probe a naturally coupled DS. What needs be done
is to measure the scalar and vector masses and then determine if their production cross
sections are in accord with the seesawic couplings in (43). For instance, mH′ can be extracted
from HH → H′ → HH in Figure 4a or HH → H′H′ in Figure 4b. Then the ratio of their
cross sections

σ(HH → H′ → HH)

σ(HH → H′H′)
'
(

m2
H

m2
H′

)2

(45)

acts as a decisive probe of a naturally coupled heavy scalar H′ in the DS. This method
works also for the Z′ scatterings in Figure 4c,d. The scatterings as such (specifically the
2→ 2 scatterings here) can be directly tested at present [86,87] and future [88,89] colliders,
and decisions can be made on the seesawic nature of the DS [39].

To refine the the approximate analysis above, production of H′ at the LHC can be studied
via its mixing with the SM Higgs field as in (44) under the naturalness bound in (43). In this
regard, production cross sections for a set of final states are plotted in Figure 5 in which h2
is the heavy mix of the H and H′. It is clear that cross sections fall with MH′ in accordance
with the naturalness bound in (43). It is with higher and higher luminosities that a collider
can access heavier and heavier particles [39].
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Figure 4. Basic search channels for the BSM scalars H′ (a,b) and BSM vectors V′µ (c,d). (taken from
Reference [29]).
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pp→h2→W+W-→lνjj
pp→h2→W+W-→l+νl-ν

pp→h2→ZZ→l+l-jj
pp→h2→ZZ→4l

Figure 5. Effects of the heavy DS scalar H′ on the production of jets and leptons. The cross sections fall
with the H′ mass in accordance with the naturalness bound in (43). In general, the heavier the naturally
coupled dark sectors, the larger the luminosity needed to detect them. The negative searches at the LHC
may be a result of the naturally coupled nature of the dark sector scalars. (taken from Reference [39],
with the permission of the co-authors).

The naturally coupled dark matter is an important particle to study. Symmergence has
candidates for dark matter in both the black and dark DS sectors. The black matter satisfies
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all the bounds at present. It is with direct experiments or observations that one can determine
if the dark matter is black or dark (such as, for instance, less-baryonic galaxies similar to
cosmic seagull [90]). The DS scalar in (44) can well be a dark matter candidate, and it can be
probed directly at the LHC [91] and direct searches [84,85]. With a strictly vanishing vacuum
expectation value 〈H′〉 = 0 (with an odd Z2 partity with respect to the Higgs field) H′ possesses
no decay channels and gains absolute stability. Then its number density gets depleted due to
expansion of the Universe as well as its coannihilations into the SM particles via the processes
H′H′ → W+W−, ZZ, t̄t, · · · . With the scattering in H′H′ → HH in Figure 4b (equivalent to
annihilations into W/Z by the Goldstone equivalence theorem), the H′ scalars attain the
observed relic density [84,85,92,93] if

λ4
HH′

(
GeV
mH′

)2
≈ 10−7 (46)

which implies MH′ ≤ 400 GeV under the natural couplings in (43) for λHH′ . This bound
on mH′ implies that thermal dark matter, if saturated by a single scalar field such as H′,
must not weigh above the electroweak scale. This means that, under mild assumptions
about the structure of the dark matter, naturally coupled DS can be probed by measuring
the dark matter mass [84,85,91].

In addition to the approximate analysis above, the dark matter search can be analyzed
by detailed simulations with the imposition of the natural couplings in (43). Indeed, for
a scalar dark matter candidate H′, which couples to the SM Higgs fields as in (44), the
spin-independent scattering cross section from the nucleons vary with MH′ as in Figure 6.
The scan of the parameter space gives a relatively wide region (green) but the naturalness
condition in (43) restricts allowed range to the blue strip. The blue cross section is seen to
fall with m′H in accordance with (43) according to which heavier the H′ smaller its cross
section. The negative results at dark matter direct searches may thus be an indication of
the naturally coupled nature of the dark matter [38].

The right-handed neutrinos are the only known particles beyond the SM. If they couple
as in (3) with natural couplings in (43) then they are constrained to be relatively light

mN′ . 1000 TeV (47)

for active neutrinos to be able to acquire experimentally admissible Majorana
masses [94–96]. The naturally coupled right-handed neutrinos might be probed directly
at future experiments (combining Higgs factories and accelerator neutrinos [97]) if not
indirectly at the near-future SHiP experiment [98,99].

In this section, focus has been on the types of dark sectors, their natural couplings to
the SM, and salient ways of probing them. To better see what novelty the symmergence
brings up, it proves convenient to compare the analyses above with similar ones in the
literature. Indeed, the SM ports to dark sector haven been studied in great detail in the
literature (see the review volumes [23] for the Higgs portal, [24] for the hypercharge portal
and [100] for the neutrino portal). In these studies, the portal couplings are subjected to
collider bounds (the LHC and others) on one side and astrophysical and cosmological
bounds (such as dark matter searches) on the other. The model space is scanned with
dedicated simulation codes to determine allowed ranges of various couplings. In doing so,
however, loop corrections to the SM parameters (the Higgs boson mass, for instance) are
seldom taken into account (except for supersymmetric constructions, for instance). In other
words, the electroweak stability constraints (5) nor (6) are seldom taken into consideration.
The point is that generic portal models (with additional fields from the dark sector) can in
general not satisfy both of the constraints (5) nor (6). The cutoff (or matching) scale Λ℘,
lying above the BSM scale MBSM, is there as a physical scale indicative of gravity if not
other possible high-scale interactions. If the constraint (6) is imposed than the scanned
parameter space shrinks to that of the natural couplings (43). (This feature is illustrated
by the wide green (general couplings) and narrow blue (natural couplings) regions in
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Figure 6.) However, then the constraint (5) remains unneutralized and the Higgs boson
mass jumps to Λ℘. Alternatively, if one imposes the constraint (5) first (by invoking a
supersymmetric structure, for instance) then the constraint (6) remains unneutralized (since
symmetry of the model does not allow SM–DS couplings to take small values). In the end,
the Higgs boson mass jumps to MBSM. The conclusion is that the generic portal couplings
typically destabilize the electroweak scale, and various phenomenological discussions in
the literature seldom discuss this problem (see for instance the supersymmetry section of
the review [23]). It is here that symmergence stands out as a model proper to resolve both
of the constraints (5) and (6). It is in this sense that naturally coupled dark sectors are a
feature of the symmergence, and their revelation by experiments or observations will point
towards a mechanism such as symmergence.

Figure 6. Variation of the dark matter–nucleon spin-independent cross section with the dark matter
mass (mS is the same as MH′ ). The scan of the parameter space gives a relatively wide region (green)
but the naturalness condition in (43) restricts allowed range to the blue domain. The blue cross
section is seen to fall with m′H in accordance with (43) according to which the heavier the H′ the
smaller its cross section. The negative results at dark matter direct searches may be an indication
of the naturally coupled nature of the dark matter. (taken from [38], with the permission of the
co-author).

4. Conclusions and Future Prospects

In this mini review, the two physical requirements, References (5) and (6), which are
what are expected of a natural completion of the SM, have been discussed in depth, and
symmergence has been shown to satisfy both of them. Indeed, symmergence, as studied in
Section 2, predicted the existence of a BSM sector (33), guaranteed that the SM and BSM do
not have to interact (34), and incorporated gravity into SM + BSM and solved this way the
notorious UV-sensitivity problems of the SM. More specifically, symmergence has led to the
effective action SQFT∪GR as an intertwined whole of the SM + BSM and gravity, where the
BSM and gravity sectors emerge via the symmergence. Its gravitational and field-theoretic
parts are at the same loop level with mere log Λ℘ dependence (dimensional regularization).
Unlike the known UV completions, which cannot satisfy both of the constraints (5) and
(6), symmergence satisfies both of the constraints with allowance to natural couplings in
(43) with no fine-tuning in SM–DS interactions. It is in this sense that naturally coupled
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dark sectors can be taken to be an indicative of the symmergence in collider as well as
astrophysical searches.

We have revealed possibility of naturally coupled dark sectors in symmergence, charac-
terized their spectra (black and dark fields) and exemplified salient processes that can help
probing them. The processes include collider experiments, dark matter searches, neutrino
masses and possibly also dark energy models. The sample studies in this review can be
extended to multi-field, multi-scale processes involving BSM particles such as flavons, axions,
Affleck–Dine baryogenesis and natural inflation. The naturally coupled dark sectors become
relevant also in models of dark energy. It can be the cosmological constant (coming from the
logarithmic part (16)) or can be a dynamical field as has been modeled variously [9–11]. The
latter must couple to the SM naturally via the seesawic couplings in (43) if the electroweak
scale is to remain not destabilized. The naturally coupled dark sectors, whichever phe-
nomena they appear as, can be regarded as an indicative of the symmergence as they can
hardly arise in other completions of the SM. In this sense, the various phenomena discussed
above can reveal distinctive signatures of symmergence in collider processes as well as
astrophysical and cosmological phenomena.

This mini review is about the naturally coupled dark sectors, which are a special
prediction of the symmergence. However, effects of symmergence are not limited to the
naturally coupled dark sectors (though some of them can be viewed in this class). To this
end, for the sake of completeness, it proves useful to mention (with no analysis) some of its
important effects. First, the quadratic curvature term in (40), proportional to c∅, leads to
the Starobinsky inflation [70]. The inflaton occurs in the Einstein frame as an SM-singlet
scalar field after a conformal transformation of (40).

Second, the non-minimal coupling in (40), proportional to cφ, may realize multi-field
plateau inflation with the inclusion of a number of scalar fields [101,102].

Third, the symmergent effective action (40) provides a framework for studying decays,
scatterings and productions of particles in curved spacetime. The action (40) is the genera-
tor of one-particle-irreducible diagrams (vertices), which encode essential physics with all
masses and couplings computed at the desired loop level. Their connections with propa-
gators lead to connected diagrams, and replacement of the external legs in the connected
diagrams with appropriate particle and anti-particle wavefunctions result in the S-matrix
elements [49]. The S-matrix can be regarded as that of a semi-classical field theory in that
in the effective action (40) all the fields are long-wavelength mean fields. In fact, as already
illustrated in [28,40], scattering amplitudes can be thought of as containing wavefunctions in
the relativistic quantum mechanics. This means that the decays and scatterings of particles can
be approximated with those in the classical field theories. Then, as a future prospect, in view
of its nearly classical structure, the symmergent setup in (40) can be utilized to study particle
creation by gravitational field, Hawking radiation from black holes, semi-classical Einstein
field equations (vacuum expectation value of the energy–momentum tensor) and quantum
fluctuations in the early Universe. A detailed study of these phenomena is warranted because
their analyses are hampered by fundamental difficulties pertaining to QFTs in curved space-
time. Indeed, in curved spacetime QFTs the requisite wavefunctions become ambiguous due
to the fact that general covariance does not allow a unique vacuum state [103–105]. In fact, it
is for this reason that particles and their scatterings become tractable mainly in asymptotically
flat or conformally flat geometries [106–108] in which one makes use of the flat spacetime
wavefunctions. It thus is clear that a detailed study of the symmergent gravity in strong
gravity domains can reveal novel effects not found in the known approaches.

In view of these points, especially the third point, it is clear that symmergence provides
a framework in which various astrophysical and cosmological phenomena can be studied.
In addition, depending on the details of the dark sector, symmergence offers a rich collider
and dark matter phenomenology.
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