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Abstract: Thin-film sensors were used to measure the oil film pressure distribution at the piston
pin-bore interface in order to ascertain the stress distribution on the piston pin of a gasoline engine
during actual operation. Thin-film sensors have been manufactured by a sputtering method to a total
film thickness of about 3–6 µm. The features of thin-film sensors have been utilized to successfully
measure the oil film pressure on engine main bearings, connecting rod bearings and piston skirts of
both diesel and gasoline automotive engines. However, as engine lubrication conditions have become
more severe year by year, it has become necessary to develop thin-film pressure sensors with higher
durability. The use of diamond-like carbon (DLC) coating for the protective film of the thin-film
sensor has enabled accurate measurement of oil film pressure under engine operating conditions. The
AVL EXCITETM Power Unit was used in simulations with the application of elastic fluid lubrication
theory. The calculated values were compared with measured data, and a comparison was made of
the effect of the model constraint condition.

Keywords: heat engine; engine component or element; piston pin bore; thin-film sensor; oil film
pressure; Elasto-hydrodynamic lubrication; Model based development

1. Introduction

Internal combustion engines have been required to provide cleaner exhaust emissions
and higher fuel economy in recent years. At the same time, hybrids and plug-in hybrids
will increase the number of electrified parts, requiring further downsizing of the engine
itself. Consequently, it is expected that piston pin bore will experience higher surface
pressures and temperatures owing to increased maximum cylinder pressure and reduced
bearing surface area. These parts have so far been designed on the basis of experience and
theoretical calculations, such as those conducted with computer-aided engineering (CAE)
software [1,2]. Further improvement of CAE capabilities requires accurate comparisons
with corresponding experimental data. Automobile engines have many sliding parts, and
various tribological problems such as friction loss reduction to improve thermal efficiency,
oil consumption, wear, and seizure that are contradictory phenomena for friction reduction.
Designs are needed that can optimally balance these issues at low friction levels without
causing abnormal noise or reliability problems. This is why predictive studies based on
CAE simulations are indispensable. From the development of fundamental technologies
to the engineering of products, it is necessary to be able to determine specifications en-
abling engine operation under optimal lubrication conditions, based on accurate theoretical
predictions of lubrication regimes under wide-ranging operating conditions.
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Based on this background, our laboratory has been engaged in the development of
thin-film sensors. These thin-film sensors have a metal film resistor of approximately 5 µm
in thickness and are characterized by inducing virtually no shape or rigidity changes in the
object being measured. To date, these thin-film sensors have been successfully applied to
measure the oil film pressure on main bearings [3–5], big-end bearings [5,6], and piston
skirts [7–10] where clearances are narrow, and measurements are difficult to obtain. In
this study, in which unit fatigue tests were conducted on the piston pin bore, thin-film
sensors were formed on the piston pin to successfully measure the oil film pressure at three
positions. Subsequently, tests were conducted under harsh engine operating conditions that
made it extremely difficult to perform measurements [11–13]. The reason for this difficulty
in measuring oil film pressure under engine operating conditions was that the thin-film
sensor had durability problems due to film damage and peeling caused by metal particles
in the oil under high surface pressure. With the aim of solving this problem, we focused
on DLC, which has been reported to improve durability in many applications to internal
combustion engine parts [14–18]. We improved the durability of the thin-film sensor using
DLC and successfully measured the oil film pressure on the piston pin during actual engine
operation. This paper describes the substantial improvement of the application range of
thin-film pressure sensors resulting from that success.

2. EHL Simulation of Piston Pin-Bore Oil Film Pressure

The AVL EXCITETM Power Unit was used to conduct oil film pressure simulations,
and the results were then compared with the experimental values. The conditions sim-
ulating the unit fatigue tester used in this study are shown in Figure 1. Finite element
(FE) models of the piston and piston pin were created, and a degeneration model was
used in evaluating the sliding surface deformation induced by contact pressure between
the oil film and surface roughness. Measured physical values were input for the surface
properties between the two contacting objects: the piston and the piston pin. The cylinder
pressure and inertial force obtained in engine operating tests were input as the loading
conditions. An elastohydrodynamics (EHD) joint was applied between the piston and
piston pin, and between the piston pin and the connecting rod small end. The same two
joints were set up between the piston and the piston pin to apply joints to the front and
rear sides, respectively.
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ation [19,20]. The measured pressure acting on the outer circumference of the piston pin
bore in the tests was defined as the boundary condition. The surface roughness contact
model [21] shown in Equation (2), which was proposed by Greenwood and Tripp, was used
in evaluating contact with surface asperities. In the engine tests, the oil film pressure was
measured using the anti-rotation bracket shown in Figure 7 and described in Section 3.4.
To replicate this, in the simulation model in Figure 1, the piston and piston pin were re-
strained using a spring element as an FTAB (force table) joint. Because the actual stiffness
of the anti-rotation mechanism was unknown, it was assumed to be 10 N/mm based on a
correlation with the experimental results.
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h : Nominal oil film thickness
hT : Local oil film thickness
p : Mean hydrodynamic pressure
η : Viscosity
U : Sliding velocity
σ : Combined roughness
ϕx, ϕy : Pressure flow factor
ϕs : Shear flow factor
pa : Contact pressure
σs : Standard devitations of combined roughness
β : Peak radius at surface summit
ηs : Surface density of asperity peaks on each surface
E∗ : Composite young’s modulus in contact area
F5

2
: Contact load by shape factor

3. Experimental Equipment and Methodology
3.1. Engine Specifications and Experimental System

Tests were conducted using a 4-cylinder gasoline engine (made in Japan) with the
specifications shown in Table 1. The piston had a 90 mm bore, and the piston pin was
22 mm in diameter and 62 mm long. Thin-film pressure sensors were fabricated on the
piston pin. Figure 2 shows the configuration of the experimental system. The signals of the
thin-film sensors fabricated on the piston pin were extracted via a cable through a linkage
system outside the engine. The cylinder pressure, oil and water temperatures, timing
marks and other data were recorded simultaneously. The operating conditions of the test
engine are shown in Table 2. Three engine speed levels were defined: from engine start to
idling at 1000 rpm, partial load at 2000 rpm and full load at 3000 rpm. The oil and water
temperatures rose naturally without any control under each set of operating conditions.

Table 1. Engine specifications.

Item Specification

Engine type In-line 4-cylinder gasoline engine

Bore × Stroke (mm) 90 × 98
Displacement (cm3) 2494
Compression ratio 10.4
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Table 2. Operating conditions of engine test.

Engine Speed (rpm) Load (Nm) Oil Temp. (◦C) Water Temp. (◦C) Piston Pin Temp. (◦C)

Engine start to 1000 rpm No load 32.0 40.4 50.5–52.1
2000 Partial load 86.1 57.3 111.4
3000 Full load 107.0 78.8 141.7

3.2. Structure of Thin-Film Pressure Sensors and Fabricated Positions

Figure 3 shows the measurement system of the thin-film sensor. The pressure sensing
part of the thin-film sensor is a resistance element made of an alloy of about 120 Ω to
500 Ω. Due to the principle that the electrical resistivity of the alloy changes according to a
change in pressure, the electrical resistance of the alloy changes slightly. This resistance
change is converted into a voltage change by a Wheatstone bridge circuit and recorded by
a data logger. Since the thin-film sensor is formed directly on the measurement surface by
physical vapor deposition (sputtering), there is no need to process sensor mounting holes
that are required for piezo pressure sensors and pressure transducers. Therefore, it has the
advantage of not causing a decrease in the rigidity of the measuring part [6].
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Figure 4a shows the sensor geometry. The pressure-sensitive part was 0.8 mm in
diameter and consisted of two arcs, each having a line width of 20 µm and connected in
the center in the shape of two semi-circles. This geometry was selected to minimize the
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gauge factor of the thin-film pressure sensor [6]. Figure 4b shows the basic structure of
the sensors fabricated on the piston pin of the gasoline test engine. The structure of the
thin film sensor is to deposit a 3 µm alumina film on the surface of the pin boss to ensure
insulation between the sensor film and the piston pin, and then deposit a 0.2 µm sensor
film that senses pressure on this alumina film. In order to prevent functional deterioration
due to contact with the piston pin bosses facing this sensor film, DLC was formed as a
protective film to a thickness of 2 µm. The total thickness of the sensor was 5.2 µm. In
this research, by changing the protective film material from Al2O3 to DLC (diamond-like
carbon), the durability of the sensor could be increased significantly.
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Figure 4. Structure of thin-film sensor and piston pin-bore shape: (a) sensor geometry; (b) structure
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For the sensors used in the engine operating tests, the piston pin diameter was nar-
rowed beforehand, taking into account the total sensor thickness of 5.2 µm, so that the
specified piston pin diameter would be obtained after the sensor was fabricated. This
was intended to ensure optimal oil clearance between the piston pin and piston pin bore
following sensor fabrication. Figure 4c shows the positions of the thin-film sensors fab-
ricated on the piston pin sliding surface and the piston pin-bore geometry. The oil film
pressure distribution was measured with thin-film sensors fabricated at three positions: 4,
7 and 10 mm from the inner end of the piston pin bore. The shape of the piston pin bore
had a 20 µm taper at its inner end. Figure 5 shows the overall appearance of the piston
pin. In the figure, 5(a) shows the sensor design with three sensors positioned at 4, 7 and
10 mm, and 5(b) shows a photo of the overall pressure sensor after the DLC protective
film was fabricated. Before evaluation tests were conducted using the linkage mechanism,
durability tests were performed on the thin-film sensors fabricated on the piston pin. The
test conditions included an engine speed of 6000 rpm, a full load as the upper limit, and
1 h of operation. The results confirmed that there was no peeling of or damage to the
thin-film sensors.
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3.3. Pressure and Temperature Sensitivities

Figure 6 presents the pressure calibration results. The pressure calibration method in-
volved placing the thin-film sensors fabricated on the piston pin in a pressure vessel that was
pressurized using an ultrahigh-pressure hydraulic pump. The change in sensor resistance
due to the pressure was converted to a voltage variation using a bridge box and a strain am-
plifier to determine the calibration value. The results in Figure 6 indicate that the thin-film
sensors provided pressure sensitivity in a range of αp = 17.5–18.5 µΩ/Ω with nonlinearity
and hysteresis of less 1% and temperature sensitivity of αT = −6–−12 (µΩ/Ω)/°C.
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3.4. Lubrication Method between Piston and Pin

The method used to measure lubrication between the piston and the piston pin is
illustrated in Figure 7. The bracket (1) in the figure was used in this study as a means of
preventing rotation. The surface of the pin hole must be suitably lubricated to prevent
piston pin hole cracking or seizure. Oil was supplied by an oil jet to lubricate the piston
and the piston pin, as well as from an oil hole in the connecting rod’s small end and a side
relief valve.
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4. Experimental Results
4.1. Oil Film Pressure Results Measured with Thin-Film Pressure Sensors

Figure 8 shows the relationship between oil film pressure and cylinder pressure at
each sensor position (4 mm, 7 mm, and 10 mm in Figure 3) under partial load from the start
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of the engine up to 2000 rpm. Figure 9 shows the characteristics of the oil film pressure
against the in-cylinder pressure at 3000 rpm full load conditions with sensor positions of
4 mm and 7 mm. In these figures, the left vertical axis indicates the oil film pressure value
[MPa], the right vertical axis indicates the in-cylinder pressure [MPa], and the horizontal
axis indicates the crank angle [◦].
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In Figure 8, it can be seen that oil film pressure begins to generate at all three locations
almost simultaneously as the cylinder pressure increases up to about 1.4 MPa. It reaches
12 MPa at the 4 mm and 7 mm positions and 51 MPa at the 10 mm position. The oil film
pressure also decreased as the cylinder pressure decreased; however, it did not reach 0 MPa
at all three measurement points at the same time. In addition, at the 4 mm position, the
pressure instantly increased to 19 MPa when the crank angle was 45 ◦CA. As described
above, when using a thin-film sensor, it is possible to observe such a special phenomenon.

In the case of 3000 rpm full load shown in Figure 9, the oil film pressure was generated
as the cylinder pressure increased. At a cylinder pressure of 4.3 MPa at 5 ◦CA, the maximum
oil film pressure was measured at 52 MPa at the 4 mm position and 70 MPa at the 7 mm
position. The measurement upper limit of the thin-film pressure sensor can be over 1 GPa,
however in this experiment, the measurement upper limit was set to 120 MPa by setting
the data logger in this study (see the 7 mm data in Figure 11). At 3000 rpm full load at



Lubricants 2022, 10, 258 8 of 12

the 10 mm position, the pressure greatly exceeded 120 MPa; therefore, Figure 8 shows the
characteristics of the oil film pressure only at the 4 mm and 7 mm positions.

Next, Figure 10 shows the characteristics of the peak oil film pressure under each op-
erating condition: immediately after engine start [A], cranking by cell motor [B], 1000 rpm
no load [C], and 1000 rpm partial load [D]. Details of these [A] to [D] features are shown in
Figures 11–14. At the moment of engine start shown in Figure 11, the in-cylinder pressure
increased rapidly due to cranking, and the thin-film sensor indicated about 80 to 100 MPa
at the 10 mm position and exceeded 120 MPa at the 7 mm position. (120 MPa was recorded
as the maximum value due to the upper limit of data logger settings). It was suggested that
the piston pin was in direct contact with the pin bore because the supply oil from the oil jet
system shown in Figure 6 to the pin bore was not sufficient immediately after start-up. It
was thought that the 7 mm position was especially high because it corresponds to the edge
of the piston pin bore.
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Figure 12 shows cranking with a starter motor and Figure 13 shows idling after starting
the engine. The pressure at each measurement point increased according to the action of the
cylinder pressure. Figure 14 shows the tendency of the cylinder pressure and the oil film
pressure when the load is increased from no load to half load. In this engine, the in-cylinder



Lubricants 2022, 10, 258 10 of 12

pressure is unstable, however when the in-cylinder pressure approaches 2 MPa, as shown
in [E] and [F] in Figure 14, the oil film pressure exceeds 40 MPa at the 10 mm position.
On the other hand, when the cylinder pressure was 1 MPa or less, the oil film pressure
showed a pressure value of 50 MPa or more at the 4 mm position. Such a phenomenon is
thought to be a factor in the sound vibration of the piston, but this cause will be analyzed
in future research.

4.2. Correlation between Actual Engine and Unit Fatigue Tester

Figure 15 shows the results of a comparison between the measured oil film pressure
in the axial direction on the unit fatigue tester (solid blue line) and the oil film pressure
measured with the test engine (red plots). The vertical axis shows the measured oil film
pressure in relation to the sensor measurement positions on the horizontal axis. The dashed
blue line shows the results of the simulation conducted with the EXCITETM Power Unit.
Although only a small number of measurements were made in the present study, the oil
film pressures obtained at the 4 mm and 7 mm sensor positions with the unit fatigue tester
and the test engine showed good agreement. The results of the simulation conducted
using the conditions of the unit fatigue tester also showed good agreement. In order to
confirm the correlation between the test engine and the unit fatigue tester in future work,
it is planned to add more measurement positions in the tests and to conduct theoretical
simulations using a model of the test engine.
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5. Conclusions

1. The oil film pressure at the piston pin-bore interface was measured during engine
operation using thin-film pressure sensors fabricated on the sliding surface of the
piston pin.

2. The durability of the thin-film sensor was improved by using DLC as a protective
film, and oil film pressure measurement was achieved up to 3000 rpm and full load.

3. Simultaneous measurement of the oil film pressure at each part of the pin boss was
performed using a multi-point type thin film sensor, and the pressure change at each
measurement position was obtained. Also, the pressure generation state from the start
of the engine to the idling of the engine could be measured over time. As a result, we
were able to confirm the load sharing state and oil lubrication state of the piston pin
boss at each measurement position.

4. Immediately after engine startup, oil supply was not sufficient, and locally high
pressures of 100 MPa or higher were detected. Especially at the 7 mm position
corresponding to the edge of the pin bore, the pressure was over 120 MPa.
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5. In this study, tests were not conducted under high engine speed and load conditions
owing to the nature of the test engine used, but it is planned to conduct tests and
evaluations under such conditions in future work.
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