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Abstract: The uniformity of microstructure and wear properties exist in the T15 coating for the laser
cladding on 42CrMo steel. It can be improved by a post-heat treatment process. Temperature ranges
from 1100 to 1240 ◦C were applied on the cladding layer to investigate the effect of the heat treatment
on the wear resistance and hardness gradient. The post-heat treatment can efficiently improve the
inhomogeneity of microstructure. The lower wear rate is obtained after the quenching process at
1100 ◦C, and the wear rate is increased though the tempering process. The carbides at the grain
boundary are decomposed and integrated into the matrix during the high temperature quenching
process. The carbides are precipitated and dispersed in the grain during the tempering process. The
content of martensite and alloy carbide is significantly increased through the heat treatment process.
The microhardness of the cladding layer is 910 HV after quenching and 750 HV after tempering.
The wear mechanism of the cladding layer is mainly abrasive wear and fatigue wear. The crack and
falling off from cladding layers are significantly reduced for the quenching–tempering process.

Keywords: laser cladding; heat treatment; inhomogeneity; T15; wear resistance

1. Introduction

42CrMo steel was widely used in the manufacturing of driving gear rings for tracked
vehicles. Due to the high load and poor working conditions, the higher hardness and
strong wear resistance was required for the part’s surface [1]. As an advanced coating
preparation and surface modification technology, laser cladding provided an effective
solution for the multifunctional coating with higher hardness and better wear resistance
for the common alloy steel [2]. The fine grain structure, small heat affected zone and matrix
deformation could be achieved by using a laser cladding process [3]. The life and surface
properties were promoted by the laser cladding process with relatively small consumption
of high-performance materials [4–7].

The wear rate could be decreased remarkably by cladding different materials with high
strength and wear resistance [8–10]. The surface wear resistance was 2.4 times the original
42CrMo steel by applying the NiCrBSi/Mo composite coating for the roller [11]. The
weight loss of NiCr-TiC composite cladding layer is 1/3 of the stainless steel substrate [12].
As a high-speed steel, T15 is applied broadly in cutting tools, stamping dies and other
manufacturing fields, because of its high strength, high hardness and excellent wear
resistance [13–15].

As defects formed in the coating layer during the laser cladding process, the optimiza-
tion of process parameters and material alloy composition was the key study point [16].
The average grain size and porosity of the cladding layer are reduced by ultrasonic-assisted
vibration [17]. The cracking phenomenon of T-800 coating improved laser cladding assisted
with pre-heat [18]. The Ni60 laser cladding layer with refined grains and no crack can be
obtained by applying CeO2 and Y2O3 [19].
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The distribution of alloying elements was inhomogeneous in the coating under the
rapid heating and cooling rate [20,21]. The inhomogeneity distribution of alloy composition
and microstructure had great influence on the coating hardness and wear resistance [22–26].

The microstructures of the heat-affected zone (HAZ) and properties of the cladding
layer could be improved by the post-heat treatment [27]. The phase proportion of FeCoCr-
NiAlx laser-cladding laser layer could be controlled by using auxiliary heat treatment,
resulting in the effective improvement for the mechanical properties [28].

In this paper, the inhomogeneity of T15 coating on 42CrMo steel was studied and
the post-heat treatment was put forward to improve the microstructure uniformity and
tribological properties of the cladding layer. The microstructure, phase, hardness and
tribological properties were analyzed for the original and heat-treated coatings. The wear
mechanisms of the coatings were also investigated.

2. Experimental Methods

42CrMo steel was used as the substrate with the dimension of 100 × 100 × 10 mm.
Before the laser cladding experiment, the oxide layer and oil stain on the surface should be
removed. T15 powder with the particle size of 50~80 µm was selected as the coating matrix
powder, as shown in Figure 1. The powder was heated in a vacuum drying box at 90 ◦C
for 2 h. The chemical compositions were obtained by a direct-reading spectrometer for
42CrMo and by ICP-OES for the T15 powder, and the testing results are shown in Table 1.
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Figure 1. Micromorphology of T15 powder.

Table 1. Chemical composition of 42CrMo and T15 powder (wt. %).

C Co Cr Mo Mn Si W V Fe

42CrMo 0.42 . . . 0.99 0.19 0.63 0.21 . . . . . . Bal.
T15 1.6 5.4 4.5 . . . 0.45 0.48 11.7 4.7 Bal.

The laser cladding experimental equipment was a Disk laser (TruDisk 4002, Trumpf,
Ditzingen, Germany) and a KUKA robot system (KR60-3, KUKA, Augsburg, Germany).
Argon gas was used as the powder carrier and protective gas to prevent the melt pool from
oxidizing. The protective gas flow was 20 L/min [29]. T15 cladding layer thickness was
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about 1 mm. The process parameters of laser cladding are shown in the Table 2. After
cladding, the coatings were cut into small specimens with size 10 × 10 × 10 mm by wire
cutting for heat treatment and further analysis.

Table 2. Laser cladding process parameters.

Order Power
(W)

Powder Feeding
Voltage (V)

Scanning Speed
(mm/s) Overlap Rate

1 2000 50 7 30%
2 2300 40 6 40%
3 2300 50 8 40%
4 2300 60 9 40%
5 2300 70 6 40%

The cladding samples were heated by muffle furnace (FB, IRM, Lilienthal, Germany).
The cladding layer was quenched at 1100 ◦C, 1190 ◦C and 1240 ◦C, respectively, to study
its effect on the microstructure uniformity and wear resistance of the cladding layer. The
process parameters of heat treatment were shown Figure 2.
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Figure 2. Heat treatment process curve of cladding layer.

The hardness of samples was tested by the Vickers hardness tester (HVS-1000A,
Huayin, Laizhou, China). The test load was 300 g and the loading time was 15 s. Twenty
points with an interval of 0.1 mm were measured continuously, and the average value of
three times was taken as the hardness value of this point.

The dry sliding wear properties at room temperature were tested by a CFT-I friction
and wear testing system (CFT-I, Zhongke Kaihua, Lanzhou, China). The test configuration
is schematically illustrated in Figure 3. The grinding ball was YG6 with a hardness of
93 HRC and a diameter of 6 mm. The wear mark is located in the middle of the non-
overlapping area. The test conditions are shown in Table 3.

Table 3. Details of the wear test conditions.

Load (N) Speed (r/min) Test
Duration (min)

Sliding
Distance (m)

Reciprocating
Length (mm)

50 100 120 120 5

The wear volume (V) was measured by the contour scanning instrument. The wear
volumes were calculated by using the equation: where V was the volume loss (mm3),
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L is the experimental load (N) and S is total test distance (m). The test configuration is
schematically illustrated in Figure 4.
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length of wear scar, w is the width of wear scar, h is the depth of wear scar, s is the cross sectional area
of wear scar, R is the Grinding ball radius).

From the calculated wear volume, the wear rates were evaluated using the following
Equation (1) [30].

W =
V

L × S
(1)

The microstructures and morphology of the wear trace were characterized by the
scanning electron microscope (SEM, ZEISS, Sigma500, Oberkochen, Germany) equipped
with energy dispersive spectroscopy (EDS) analysis system. The phase of the coating was
identified by X-ray diffraction (XRD, Empyrean, Panaco, Almelo, Holland).

3. Results and Discussion
3.1. Microstructures and Hardness

After grinding, polishing and corrosion, there were obvious “black-and-white” areas
on the surface of all cladding layers. The macro morphology of sample 1 was shown in
Figure 5a. The “black-and-white” areas were marked as position 1 and 2, respectively. It
can be found from Figure 5b that there was a large hardness gradient on the coating surface.
Figure 5c,d showed microstructure of the T15 coating at positions 1 and 2. The coating was
mainly composed of the equiaxed crystal and alloy carbides. The average size of grain size
at position 2 was about 3.8 µm, which was much smaller than at position 1 with about 7 µm.
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The network alloy carbides were situated on the grain boundary, because alloy elements
were excluded to the grain boundary in the process of forming equiaxed crystals [31]. The
number of stress corrosion cracks at position 1 were more than position 2, which were
formed at the combined action of large residual tensile stress and acid corrosive agent [32].
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Figure 5. Surface macro morphology, microstructure and hardness of cladding layer: (a) macro
morphology, (b) hardness gradient, (c) position 1, (d) position 2.

Figure 6 shows the surface scanning results of EDS at positions 1 and 2, respectively.
Element segregation existed in both “black-and-white” areas of the cladding layer. A large
number of W, V and Cr elements were enriched at the grain boundary [33], because these
alloy elements with larger atomic radius were difficult to be a solid soluble with iron
element [31]. However, the Co element was companied with the Fe element distributed
in the inner grain. The lattice structure, atomic radius and electronic structure of the Co
element may be similar to that of the Fe element in the matrix [34].
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3.2. SEM Morphology after Quenching

A multi-channel transverse lap model was constructed, as shown in Figure 7. A
heat-affected zone (HAZ) was only formed on the 42CrMo matrix during the first cladding
surface. In subsequent cladding, the number of HAZ was changed because of the remelting
zone (RZ). One HAZ was located on the arc surface of the prior cladding layer and the
other was located on the 42CrMo substrate. Combined with the macro morphology of the
coating, it was speculated that the black area was cladding zone (CZ) and the white bright
zone was the HAZ of the arc surface of the front cladding layer.
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Figure 8 shows the surface macro morphology of sample 1 after different quenching
temperatures. The “black-and-white” area of the coatings surface and cross-section was
eliminated after quenching. The structural uniformity of the coating was improved because
the alloy carbides and elements were melted into the matrix and uniformly precipitated
again at high temperature quenching [35].
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According to the wear rate of sample 1 at different quenching temperatures (shown
in Table 4), it can be clearly seen that the wear resistance of the coating can be further
improved after quenching at 1100 ◦C. Therefore, the following focused on the changes
of microstructure, hardness and tribological performance of cladding layers at 1100 ◦C
quenching.

Table 4. Average wear rate of coatings at different heat treatment processes.

Heat Treatment Process Average Wear Rate (×10−6 mm3·N−1·m−1)

Original coating 0.73
Quenched (1100 ◦C) 0.54
Quenched (1190 ◦C) 1.2
Quenched (1240 ◦C) 1.34
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For the quenched coating (1100 ◦C), there was no significant difference in microstruc-
ture at scanning electron microscope. The surface microstructure of the cladding layer was
shown as in Figure 9a. During the process of high temperature quenching, the network
alloy carbides were gradually dissolved on the grain boundary of the cladding layer. A
large number of fine carbides gradually integrated into the matrix. Some unmelted particles
may be VC because of their high melting point [36].
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After quenching, there were a lot of residual stress, retained austenite and brittle phases
in the cladding layer. Tempering was immediately carried out to avoid cracks. Figure 9b
shows the microstructure of the quenched cladding layer after tempering treatment. A
large number of carbides in the grains of the cladding layer were uniformly distributed on
the matrix, which were mainly spherical and very small in size.

As shown in Figure 10a,b, the Fe, W, Cr, and Co alloying elements were uniformly
distributed except for the V element after post-heat treatment, which was consistent with
the above guess of class V carbides.

Figure 11 shows the XRD patterns of the original and heat-treated T15 cladding layer.
The phases of original CZ and HAZ could not be measured, respectively, due to the large
diameter of diffraction spot. Therefore, the phases of two different regions were not
distinguished. The phases compositions of the coatings after heat treatment were similar
to those of the original coating, which mainly consisted of martensite, austenite, MC and
M6C carbide. The percentage of alloy carbide increased obviously after the quenching and
tempering process, for the reason of the secondary precipitation of carbide during heat
treatment. Compared with the original cladding layer, the martensite diffraction peak of
heat-treated cladding shifted to the right and changed from double-peak to single-peak,
which indicated that the martensite structure had been changed by the heat treatment.

As seen from Figure 12, the hardness gradient of the cladding layer could significantly
be eliminated after heat treatment. The cladding layer increased to 910 HV after quenching.
This is because a large amount of martensite was formed in the cladding layer. After
quenching–tempering, the hardness reduced to 750 HV, because of the decomposition of
martensite or without good secondary hardening.

3.3. Wear Rate and Friction Coefficient

As seen from Figure 13, the cladding layer had experienced running in period and
stable period during the wear process. The friction coefficients increased rapidly during
the running-in period, which was accompanied with increased wear rate of T15 coatings.
The friction coefficient tended to be stable from rising, falling and rising. The friction
coefficients of the coatings varied from 0.5 to 0.8.



Lubricants 2022, 10, 271 9 of 14Lubricants 2022, 10, x FOR PEER REVIEW 9 of 15 
 

 

 
(a) 

 
(b) 

Figure 10. EDS area scanning results of the cladding layer after heat treatment: (a) quenched, (b) 
quenched–tempered. 

Figure 11 shows the XRD patterns of the original and heat-treated T15 cladding 
layer. The phases of original CZ and HAZ could not be measured, respectively, due to 
the large diameter of diffraction spot. Therefore, the phases of two different regions were 
not distinguished. The phases compositions of the coatings after heat treatment were 
similar to those of the original coating, which mainly consisted of martensite, austenite, 
MC and M6C carbide. The percentage of alloy carbide increased obviously after the 
quenching and tempering process, for the reason of the secondary precipitation of car-
bide during heat treatment. Compared with the original cladding layer, the martensite 
diffraction peak of heat-treated cladding shifted to the right and changed from dou-
ble-peak to single-peak, which indicated that the martensite structure had been changed 
by the heat treatment. 

Figure 10. EDS area scanning results of the cladding layer after heat treatment: (a) quenched,
(b) quenched–tempered.

Lubricants 2022, 10, x FOR PEER REVIEW 10 of 15 
 

 

 
Figure 11. XRD patterns of the T15 coating. 

As seen from Figure 12, the hardness gradient of the cladding layer could signifi-
cantly be eliminated after heat treatment. The cladding layer increased to 910 HV after 
quenching. This is because a large amount of martensite was formed in the cladding 
layer. After quenching–tempering, the hardness reduced to 750 HV, because of the de-
composition of martensite or without good secondary hardening. 

 
Figure 12. Surface microhardness of cladding layer. 

3.3. Wear Rate and Friction Coefficient 
As seen from Figure 13, the cladding layer had experienced running in period and 

stable period during the wear process. The friction coefficients increased rapidly during 
the running-in period, which was accompanied with increased wear rate of T15 coatings. 
The friction coefficient tended to be stable from rising, falling and rising. The friction co-
efficients of the coatings varied from 0.5 to 0.8. 

CZ HAZ CZ 

Figure 11. XRD patterns of the T15 coating.

For original CZ, HAZ, quenched and quenched and tempered cladding layers, the
average friction coefficients were 0.7, 0.71, 0.76 and 0.68, respectively, as shown in Figure 14.
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Post-heat treatment had no significant effect on the friction coefficient, because it was a
comprehensive characteristic coefficient affected by many factors. The small friction coeffi-
cient of tempered samples did not mean that its wear rate was small [37]. The average wear
rate of original CZ (7.3 × 10−7 mm3 × N−1 × m−1) was nearly twice that of HAZ. After the
quenching and quenching–tempering process, the microstructures and hardness gradient
of the cladding layer was uniform. The wear rate was 5.6 × 10−7 mm3 × N−1 × m−1 and
8.5 × 10−7 mm3 × N−1 × m−1 respectively.
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Figure 15 showed the wear trace morphology of different cladding layers. As shown
in Figure 15a, there were a large number of fatigue cracks, spalling and furrows on the
wear surface of original CZ for large residual stress and brittle phases. It indicated that
the main wear mechanism was fatigue failure and abrasive wear [38]. Under the cyclic
alternating load, microcracks appeared on surface, and then the residual stress promoted
the propagation of microcracks into macrocracks [39]. After quenching and quenching–
tempering, the wear mark surface of the sample was relatively smooth. This was due to
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the hardness improving and the residual stress reducing, avoiding the initiation and rapid
propagation of microcracks [40]. In addition, the number of fatigue cracks and the fatigue
shedding phenomenon was significantly reduced, as shown in Figure 15b,c. The results
showed that the wear mechanism was still mainly slight-abrasive wear and fatigue wear.
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Figure 15. The SEM wear trace morphology of cladding layer: (a) original CZ, (b) quenched,
(c) quenched–tempered.

Compared with quenched and tempered samples, there were many fatigue cracks
in the wear marks of quenched samples, because there were a lot of brittle martensite
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and residual stress on the surface. The plasticity and strength of tempered coating was
improved for a lot of dispersed carbides. Due to the low surface hardness of the tempered
sample, deep furrows were formed under the action of hard wear debris.

As seen from Figure 16, the average friction coefficient of coatings with different param-
eters hovered around 0.7. For different coatings, the standard deviation of the average wear
rate was 0.21 mm3 × N−1 × m−1. After quenching (1100 ◦C) and quenching–tempering
(1100 ◦C–540 ◦C), it was reduced to 0.07 and 0.09 mm3 × N−1 × m−1, respectively. Ac-
cording to the wear data of the above coating with different parameters, the experimental
accuracy was verified by the same post-heat treatment process.
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4. Conclusions

There were obvious “black-and-white” areas (cladding zone and heat-affected zone)
on the surface of the T15 cladding layer. The average size of equiaxed grains was finer.
The microhardness was about 200 HV higher in the CZ than HAZ. The average wear rate
of original CZ and HAZ was 7.3 × 10−7 mm3·N−1·m−1 and 4.3 × 10−7 mm3·N−1·m−1.
The alloy compounds were distributed in the grain boundaries for both regions. The
microstructure uniformity and hardness gradient of the surface was eliminated by the
post-heat treatment. The alloy elements except for V were dissolved into grains during the
quenching process.

The microhardness of cladding layers was 910 HV after quenching and 750 HV after
tempering. Post-heat treatment had no significant effect on the friction coefficient. After
quenching and quenching–tempering, the wear rate of sample 1 was 5.6 × 10−7 mm3·N−1·m−1

and 8.5 × 10−7 mm3·N−1·m−1, respectively. The wear mechanism of the cladding layer was
mainly abrasive wear and fatigue wear. The quenching residual stress could be eliminated
by the subsequent tempering process.

For the cladding layers with different cladding process parameters, the average friction
coefficient of coatings hovered around 0.7. In addition, the standard deviation of wear rate
was decreased after post-heat treatment.
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