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Abstract: Aerostatic bearings are widely used in ultra-precision manufacturing equipment as a crucial
support component. However, turbulent vortices in the recess can induce micro-vibration of the
aerostatic bearing, which can severely affect stability. To further suppress the formation of turbulent
vortices and reduce the micro-vibration, an aerostatic bearing with a square micro-hole arrayed
restrictor (SMAR) was designed and the influences of structural parameters of the SMAR on its static
and dynamic performance were investigated using numerical simulations and experiments. The
transient flow characteristics of aerostatic bearings with different numbers and spacing of micro-holes
were studied using 3D large eddy simulation (LES), and the formation mechanism of turbulent
vortices and the law of turbulent interaction between adjacent micro-holes were analyzed. The
static performance and micro-vibration of the aerostatic bearing were measured experimentally to
verify the effectiveness of the SMAR. The results show that the formation of turbulent vortices and
micro-vibrations can be effectively reduced by the optimized design of the SMAR, while the static
performance of the bearing is basically unchanged. The micro-vibration decreases rapidly with the
number of micro-holes ranging from 1 to 36 and remains steady with the number of micro-holes
ranging from 36 to 100. The micro-vibration decreases rapidly with the spacing of micro-holes ranging
from 2 dn to 8 dn and remains steady with the spacing of micro-holes ranging from 8 dn to 10 dn. This
study contributes to further understanding the mechanism of turbulent vortex formation in aerostatic
bearings with a SMAR.

Keywords: square micro-hole arrayed restrictor; large eddy simulation; spacing of micro-holes;
turbulent vortex; micro-vibration

1. Introduction

Aerostatic bearings are widely used in semiconductor and precision equipment man-
ufacturing because of their advantages, such as the near absence of friction, low heat
generation, and high positioning accuracy [1–3]. Despite these advantages, the load ca-
pacity, stiffness, and stability of aerostatic bearings still need to be improved [4–6]. Chen
et al. [7] found that recessed orifice restrictors can provide significantly higher load bearing
capacity and stiffness compared to the inherent orifice restrictors. Zheng et al. [8] analyzed
the transient pressure changes in the air film of aerostatic bearings by establishing a kinetic
model and found that the recess has a significant effect on the load capacity of aerostatic
bearings. Wen et al. [9] found that the structure of recess and uniform pressure tanks can
significantly improve the static performance of aerostatic bearings. Zhou et al. [10] used
pressure-sensitive film and image processing techniques to measure the air film pressure
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distribution in aerostatic bearings with a recess. The theoretically calculated values were in
general agreement with the experimental values.

However, although the recess structure can improve the pressure distribution in the
air film and improve the static properties of the aerostatic bearing, it will also cause micro-
vibration, or pneumatic hammer, which can reduce the stability or even damage the entire
device [11]. Therefore, improving aerostatic bearing stability has become a hotspot in
recent years of research. Yoshimura et al. [12] studied an aerostatic bearing with a T-shaped
recess and found that pressure fluctuations caused micro-vibrations due to the unsteady
airflow around the edge of bearings. Chen et al. [13] compared aerostatic bearings with
and without recess and found that the instability of aerostatic bearings was related to
the formation of vortices in the recess. Yifei et al. [14] studied the flow field of aerostatic
bearings for numerical calculation and found that the vortex formed in the air film would
affect the stability of aerostatic bearings. Zhu et al. [15] used the large eddy simulation
method to simulate the airflow of aerostatic bearings with recess, and it was found that
the vortex shedding phenomenon exists in the recess, and the pressure fluctuation caused
by the turbulent vortex can cause micro-vibration of aerostatic bearings. Therefore, it
can be concluded that the turbulent vortex formed in the recess is the main cause of the
micro-vibration of the aerostatic bearing.

In order to improve the stability of aerostatic bearings, some researchers have also
made related efforts to suppress the micro-vibration of the aerostatic bearing. Aoyama
et al. [16], found that a rounded corner of the orifice outlet can suppress the formation of
turbulent vortices near the orifice outlet and reduce the micro-vibration of the aerostatic
bearing. Gao et al. [17], studied the effect of six different recess structures on the airflow
characteristics and found that a conical recess with a certain curvature can suppress the
formation of turbulent vortices in the recess. Chen et al. [18], proposed a novel restrictor
structure with a micro-hole array and found that the structure can significantly inhibit the
formation of turbulent vortices and thus reduce micro-vibrations through simulation calcu-
lations and experimental studies. Feng et al. [19], designed and fabricated four different
orifice structures of aerostatic bearings using 3-D printing technology. The simulation and
experimental results showed that the arc hole bearing can significantly improve the stability
of the aerostatic bearing, and its static performance remains unchanged. In conclusion,
the stability of aerostatic bearings with orifice restrictors can be improved by effectively
suppressing the formation of turbulent vortices in the recess.

From the above references, aerostatic bearings with recesses have better static prop-
erties than those without recesses, but it is easier to induce turbulent vortex flow and
micro-vibration. Although it has been found that the effect of vortices can be effectively
reduced by controlling the operating parameters and changing the recess or orifice struc-
tures, it still does not meet the increasing accuracy requirements of ultra-precision motion
platforms. Therefore, different structure optimization methods must be explored to further
improve the stability of the aerostatic bearing.

In this paper, an aerostatic bearing with a square micro-hole arrayed restrictor (SMAR)
is designed based on the analysis of the turbulent vortex formation mechanism. The
flow characteristics can be modified to suppress the formation of turbulent vortices by
optimizing the number and spacing of micro-holes. The theoretical load capacity, stiffness,
and pressure fluctuations of the aerostatic bearing with the SMAR are obtained by the
3D LES. The effect of the number and spacing of micro-holes on the vortex structure and
the micro-vibration of the aerostatic bearing has been clarified. Finally, the static and
micro-vibration characteristics of the aerostatic bearing with the SMAR are verified by
experiments.

2. Aerostatic Bearing with SMAR Design and Numerical Simulation Method
2.1. Design of Aerostatic Bearing with a SMAR

As shown in Figure 1, the main structure of the aerostatic bearing is a bearing pad, an
orifice, a recess, and an air film. The airflow enters the recess through the orifice and then
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spreads around to form a high-pressure air film. The high-pressure air film can support the
bearing load [20–22]. The diameter of the aerostatic bearing is D = 80 mm, the diameter
of the recess is Dq = 5 mm, the height of the recess is hq = 0.1 mm, the height of the orifice
is hk = 0.3 mm, the diameter of the orifice is dn, the thickness of air film is hm = 15 µm, the
inlet pressure is Ps = 0.5 MPa, and the outlet pressure is P0 = 0.1 MPa.
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Figure 1. Structure of aerostatic bearing with a recess.

Figure 2 shows the vorticity cloud diagram, pressure cloud diagram, and stream-
lines for the aerostatic bearing with different orifice diameters by LES (orifice diameter is
dn = 0.28/0.2/0.12/0.04 mm). Figure 2a shows that a series of turbulent vortices are formed
after the high-pressure air flows into the recess, and the turbulent complexity and vorticity
decrease with decreasing orifice diameter. From the pressure distribution in Figure 2b, it
can be seen that there is a low-pressure region at the center of the turbulent vortex, and the
pressure distribution in the recess gradually decreases with decreasing orifice diameter. As
seen in Figure 2b, the flow is deflected after entering the recess from the orifice, and the
deflection angle decreases as the diameter of the orifice decreases.
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From the above analysis, it can be seen that reducing the orifice diameter suppresses
the formation of turbulent vortices. It also reduces the pressure distribution in the recess,
which leads to a decrease in the load capacity. If the orifice diameter can be reduced and the
load capacity of the aerostatic bearing can be guaranteed, the flow field state of the aerostatic
bearing can be improved, and its stability can be enhanced. Based on the above ideas, this
paper designs an aerostatic bearing with a SMAR by keeping the total restriction area constant.
The SMAR replaces the traditional single orifice with a square array of micro-holes (total
restriction area is S = 2π(dn/2)2 mm2) to increase the number of holes and reduce the diameter
of individual holes. The structure of the aerostatic bearing with a SMAR is shown in Figure 3,
and the structural and operating parameters are shown in Table 1.
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Figure 3. Structure of aerostatic bearing with (a) single-hole and (b–f) SMAR.

Table 1. Parameter variables of aerostatic bearing with a SMAR.

Parameter Variables Value

Number of micro-holes n 1 9 16 36 64 100
Orifice diameter dn/mm 0.3 0.1 0.075 0.05 0.0375 0.03

spacing of micro-holes l/mm 0.1~1.0
Inlet pressure Ps/MPa 0.5~0.6

Air film thickness hm/µm 5~30
Outlet pressure P0/MPa 0.1

2.2. LES

The transient flow field characteristics of aerostatic bearings can be obtained by solv-
ing the full Navier–Stokes (N–S) equations. Li et al. [23,24], proposed a reconstruction
discontinuous Galerkin method, which can solve the N–S equations more efficiently, ac-
curately, and robustly. Kabir et al. [25,26]. found that the Bézier method can better solve
the initial value and boundary value problems. Reynolds Averaged Navier–Stokes (RANS)
simulation method can be used to study turbulence, but it cannot accurately analyze the
instantaneous details of turbulence [15,18]. Direct numerical simulation (DNS) can directly
solve N–S equations without turbulence models, which can obtain accurate results in
theory, but the calculation scale is huge. Large eddy simulation (LES) can directly calculate
large-scale turbulent vortices and simulate small-scale turbulent vortices. The accuracy
and computational cost of LES are between RANS and DNS, and it is widely used in the
simulation of the transient flow field of aerostatic bearings [15,27].

The control equations of the large eddy simulation (LES) model are the time-dependent
Favre Filtered Navier–Stokes equations [27], including the momentum equation and the
continuity equation:

∂ρ

∂t
+

∂

∂xi
(ρũi) = 0 (1)

∂

∂t
(ρũi) +

∂

∂xj
(ρũiũj) = −

∂P
∂xi

+
∂σ̃ij

∂xj
− ∂

∂xj
(τ̃ij) (2)

where: density ρ and pressure P are spatially filtered (denoted by “−”), velocity ui and uj
are density–weighted using Favre filter (denoted by “˜”). is the viscous stress tensor, which
can be defined as:

σ̃ij = µ(
∂ũi
∂xj

+
∂ũj

∂xj
− 2

3
δij

∂ũk
∂xk

) (3)

τij is the subgrid-scale (SGS) stress, which cannot be derived by direct calculation of the
differential equations, so the vortex viscosity concept is assumed, as shown in Equation (4):
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τij= 2µSGSSij −
1
3

τkkδij (4)

Sij =
1
2
(

∂ui
∂xj

+
∂uj

∂xi
) (5)

This paper uses the WALE model for the SGS, which can better resolve the near-wall
turbulence and more accurately characterize the zero turbulent viscosity of the laminar
shear flow [28,29].

2.3. Computational Mesh and Solution Set

Due to the symmetry of the aerostatic bearing structure, a 1/4 air domain model is
established in the simulation process to improve computational efficiency. A hexahedral
structured mesh is used for numerical calculations, and the mesh is shown in Figure 4a. In
order to enhance the resolution accuracy of turbulent vortices in the near-wall region of
the flow field, refinement is performed at the recess. The resolution scale of the near-wall
mesh is characterized by the value of y+, which is no more than 1 [15]. The y+ is defined
as y+ =

√
ρτwy/µ, where y is the distance from the center of the first layer of the near-wall

mesh to the boundary. The τw is the wall shear stress. The conclusion of grid independence
is obtained by comparing the load capacity fluctuation and its standard deviation in the
simulation results (as described in Section 3.2), as shown in Table 2. It turns out that
the mesh before and after refinement has little effect on the numerical simulation results.
Therefore, the subsequent numerical simulation results in this paper can be considered to
be grid independent.

Lubricants 2022, 10, x FOR PEER REVIEW 6 of 17 
 

Recess

Orifice
Air film 

   

(a) (b) 

Figure 4. (a) Computational grid; (b) Boundary conditions. 

To enhance the computational efficiency and ensure sufficient computational accu-

racy, the PISO (Pressure-Implicit with Splitting of Operators) algorithm is chosen for the 

pressure–velocity interaction algorithm in the paper, and the second-order windward in-

terpolation is chosen for the density and turbulent kinetic energy. The time step is ob-

tained by the CFL (Courant–Friedrichs–Lewy) condition, and the CFL condition is shown 

in the equation [30]: 

/ 1u t x    (6) 

where: u is the characteristic velocity within the flow field, Δt is the time step, and Δx is 

the flow field grid characteristic scale. 

The instantaneous load capacity F of the aerostatic bearing can be obtained by inte-

grating the pressure distribution on the air film surface as follows: 

2

0

0 0

( )

R

F p p rdrd



= −   (7) 

The standard deviation of the fluctuation of the instantaneous load capacity is used 

to describe the magnitude of micro-vibration of the aerostatic bearing, as shown in Equa-

tion (8): 

 (8) 

where: Fi represents the time-varying load capacity of the ith time step. �̅� represents the 

average load capacity which is the average value of instantaneous load capacity. m repre-

sents the number of iteration steps. 𝐹𝑖 − �̅� represents the load capacity fluctuation. 

The stiffness is the derivative of the average bearing capacity for the amount of 

change in the height of the air film, as shown in Equation (9): 

d F
K

dh
=  (9) 

3. Results and Discussion 

3.1. Turbulent Vortex Formation Mechanism 

To illustrate the formation mechanism of turbulent vortices in the recess (as described 

in Section 2.1), the airflow inside the recess is simplified, as shown in Figure 5. After the 

high-pressure airflow V1 enters the recess, it separates from the upper wall because of the 

sudden expansion of the orifice outlet and forms the separation region A. The airflow V1 

vertically reaches the lower wall, forming compression region B. The airflow channel C is 

formed between the separation region A and the compression region B. The airflow V1 

flows into the recess through channel C and changes to airflow V2 with the deflect angle 

α. The airflow V2 changes to V3 after impacting the lower wall. Subsequently, V3 impacts 

the upper wall, causing velocity separation and forming airflow V4 and V5. These airflows 

Figure 4. (a) Computational grid; (b) Boundary conditions.

Table 2. Grid independence verification parameter (where δ denotes mesh scale (µm3)).

Mesh
Recess Orifice Air film

y+
max Total Number

Fluctuations of
Load

Capacity F(N)

Standard
Deviation σδmin δmax δmin δmax δmin δmax

Coarse 1.26 1590
30.25 103.15 1267 9825

1.6 2084581 0.38 0.049
Fine 0.58 632 0.7 3423926 0.39 0.051

Figure 4b shows the boundary conditions of the aerostatic bearing, the inlet pressure
is Ps, and the outlet pressure P0 is set as the ambient pressure. The left and right sections of
the model are set as symmetric, and the rest of the boundaries are set as a wall. The gas
inside the aerostatic bearing is assumed to be the ideal air.

To enhance the computational efficiency and ensure sufficient computational accuracy,
the PISO (Pressure-Implicit with Splitting of Operators) algorithm is chosen for the pressure–
velocity interaction algorithm in the paper, and the second-order windward interpolation
is chosen for the density and turbulent kinetic energy. The time step is obtained by the CFL
(Courant–Friedrichs–Lewy) condition, and the CFL condition is shown in the equation [30]:

u∆t/∆x < 1 (6)
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where: u is the characteristic velocity within the flow field, ∆t is the time step, and ∆x is the
flow field grid characteristic scale.

The instantaneous load capacity F of the aerostatic bearing can be obtained by inte-
grating the pressure distribution on the air film surface as follows:

F =

R∫
0

2π∫
0

(p− p0)rdrdθ (7)

The standard deviation of the fluctuation of the instantaneous load capacity is used to
describe the magnitude of micro-vibration of the aerostatic bearing, as shown in Equation (8):

σ =

√
∑m

i=1 (Fi − F)
m

(8)

where: Fi represents the time-varying load capacity of the ith time step. F represents
the average load capacity which is the average value of instantaneous load capacity. m
represents the number of iteration steps. Fi − F represents the load capacity fluctuation.

The stiffness is the derivative of the average bearing capacity for the amount of change
in the height of the air film, as shown in Equation (9):

K =
dF
dh

(9)

3. Results and Discussion
3.1. Turbulent Vortex Formation Mechanism

To illustrate the formation mechanism of turbulent vortices in the recess (as described
in Section 2.1), the airflow inside the recess is simplified, as shown in Figure 5. After the
high-pressure airflow V1 enters the recess, it separates from the upper wall because of the
sudden expansion of the orifice outlet and forms the separation region A. The airflow V1
vertically reaches the lower wall, forming compression region B. The airflow channel C
is formed between the separation region A and the compression region B. The airflow V1
flows into the recess through channel C and changes to airflow V2 with the deflect angle α.
The airflow V2 changes to V3 after impacting the lower wall. Subsequently, V3 impacts the
upper wall, causing velocity separation and forming airflow V4 and V5. These airflows
with different directions and velocities interact with the surrounding air and form a series
of turbulent vortices of different scales. Moreover, turbulent vortices experience formation,
development, shedding, and dissipation in the recess, which affects the stability of the
aerostatic bearing.
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3.2. Effect of the Different Numbers of Micro-Holes on Micro-Vibration Characteristics

To investigate the effect of different numbers of micro-holes on the static and micro-
vibrational properties of the aerostatic bearing, the simulation analysis of the aerostatic
bearing was carried out based on keeping the spacing of micro-holes constant.

Figure 6 shows the average load capacity and stiffness of the aerostatic bearing for
different numbers of micro-holes. As can be seen from Figure 6, the load capacity and
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stiffness of aerostatic bearings with different numbers of micro-holes are basically the same.
Thus, changing the number of micro-holes does not affect the static performance of the
aerostatic bearing.
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Figure 7 shows the pressure cloud diagram, streamlines, and velocity cloud diagram
on the symmetry surface of aerostatic bearings with different micro-hole numbers. It can
be seen that the aerostatic bearing with a single-hole restrictor has the largest turbulent
vorticity, the deflection angle α of the airflow V2, and compression region B in the recess
compared to the aerostatic bearing with the SMAR. Among the aerostatic bearings with the
SMAR, the deflection angle α, the complexity of the turbulent vortices, and the region B in
the recesses decrease significantly as the number of micro-holes increases, but the velocity
of the airflow V1 in the orifice increases.
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In addition, more turbulent vortices are generated between the micro-holes than
outside due to the interaction of different airflows V2 between neighboring micro-holes.
However, as the number of micro-holes increases, the interaction effect will gradually
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weaken or even disappear. This is because the velocity and deflection angle α of airflow
V2 decrease as the number of micro-holes increases. Therefore, the airflow outside the
array holes is more likely to interact with the surrounding air and gradually dissipate. The
interaction of different airflows V2 from adjacent holes is gradually weakened.

In order to capture the transient turbulent flow details of the airflow among adjacent
micro-holes, the flow field variation of the aerostatic bearing is analyzed by 3-D LES.
Figure 8 shows the iso-surfaces of vorticity of the aerostatic bearing with the different
numbers of micro-holes. As can be seen from Figure 8, compared with the aerostatic
bearing with a SMAR, more high vorticity vortexes are formed near the orifice of the
aerostatic bearing with a single hole. In the aerostatic bearing with a SMAR, the vorticity
and complexity of turbulent vortices in the recess gradually decrease with the increase in
micro-holes. Moreover, the interaction of turbulent vortices among the adjacent micro-holes
also gradually decreases, and the vortex structure tends to be orderly and stable. Compared
with 2D, the 3D flow field can more clearly observe the airflow interaction among all
adjacent micro-holes and the details of vortex structure changes which helps analyze the
mechanism of micro-vibration suppression.
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To quantitatively analyze the suppressing effect of the SMAR on turbulent vortices,
the variation of the load capacity fluctuation of aerostatic bearings with time is shown in
Figure 9. It can be seen that with the increase in the number of micro-holes, the amplitude
of load capacity fluctuation decreases. The corresponding standard deviation is shown in
Figure 10. It can be seen that the standard deviation of the load capacity fluctuation will
decline rapidly with the number of micro-holes from 1 to 36 and remains stable from 36
to 100. It can be concluded that increasing the number of micro-holes can suppress the
micro-vibration of the aerostatic bearing and improves its stability.
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3.3. Effect of the Spacing of Micro-Holes Variation on Micro-Vibration Characteristics

In this section, the effect of a change in the spacing of micro-holes on the static and
micro-vibration characteristics of the aerostatic bearing is studied.

Figure 11 shows the average load capacity and stiffness of the aerostatic bearing (the
number of micro-holes is n = 36) with different spacing of micro-holes. It can be seen that
the average load capacity and stiffness of the aerostatic bearing with different spacing
of micro-holes are consistent, which indicates that changing the spacing of micro-holes
basically does not affect the static performance of the aerostatic bearing.
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load capacity curves; (b) Stiffness variation curves.
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Figure 12 shows the pressure cloud diagram, streamlines, and velocity cloud diagram
of the symmetry surface of the aerostatic bearing (number of micro-holes is n = 36) with
different spacing of micro-holes. It can be seen that the pressure distribution in the recess is
almost unaffected by the variation of the micro-hole spacing. However, as the spacing of
micro-holes increases, the effect of the airflow interaction between adjacent micro-holes
becomes weaker. This is because the change of the micro-hole spacing has almost no effect
on the velocity and deflection angle α of airflow V2. The smaller the hole spacing is, the
stronger the interaction between airflow V2 from adjacent holes will be. With the increase
in the spacing of micro-holes, airflow V2 interacts more with the surrounding air and
dissipates gradually, avoiding direct interaction with different airflows V2 from adjacent
holes, so the airflow field becomes more stable.
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Figure 12. 2D flow structures in the recess of aerostatic bearing with different spacing of micro-holes:
(a) Pressure cloud diagram and streamlines; (b) Velocity cloud diagram.

Figure 13 shows the iso-surfaces of vorticity of the aerostatic bearing (the number of
micro-holes is n = 36) with different spacing of micro-holes. In the 3D flow field, the details
of the airflow interactions between all adjacent holes can be easily captured. As can be
seen from Figure 13, as the spacing of micro-holes increases, the complexity and vorticity
of turbulent vortices gradually decrease, especially among adjacent orifices. The vortex
structure in the recess also develops in the direction of order and stability.

Figure 14 shows the variation curve of the load capacity of aerostatic bearings (number
of micro-holes is n = 9/36/64) with time. It can be seen that with the increase in spacing of
micro-holes, the amplitude of load capacity fluctuation of three types of aerostatic bearings
decreases. Figure 15 shows the corresponding standard deviation. It can be seen that the
standard deviation of load capacity fluctuation will decline quickly during the micro-hole
spacing from 2 dn to 8 dn and remains stable during the spacing from 8 dn to 10 dn. It can be
concluded that increasing the spacing of micro-holes can suppress the micro-vibration of
the aerostatic bearing.
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4. Experimental Research 
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4. Experimental Research

Several aerostatic bearings with a SMAR were produced to verify the validity of the
LES method and results. In addition, the static and dynamic performance of aerostatic
bearings were tested. The influence of the number and spacing of micro-holes on load
capacity and micro-vibration characteristics of the aerostatic bearing with a SMAR was
verified by experiments.

4.1. Manufacturing the Aerostatic Bearing with a SMAR

The photo of aerostatic bearings with n = 1 single-hole, n = 9 SMAR (l = 3 dn), and
n = 36 SMAR (l = 4/6/8 dn) are shown in Figure 16. Details of the SMAR are captured
by electron microscope. The aerostatic bearing consists of two parts, the restrictor, and
the bearing pad. The bearing pad is made of aluminum alloy. The single-hole restrictor is
made of a cylindrical ruby, processed by laser drilling, and then assembled into the recess
of the bearing pad. The micro-hole diameter of the SMAR designed in this study can reach
the micron-level, while the picosecond laser drilling technology can achieve micron-level
accuracy and can ensure a more uniform micro-hole size. Therefore, the SMAR is made of
cylindrical aluminum alloy by using a picosecond laser processing technology and then
installed in the recess on the bearing pad.
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4.2. Load Capacity Testing

Figure 17 shows the experimental platform of load capacity testing. The experimental
platform consists of a cylinder, a force transducer (PBCL, range 200–700 kg, Zhongjing,
Shanghai, China), an inductance micrometer (TESA-TT20-GTL22, range ±2 mm, resolution
0.1 µm, TESA, Switzerland), two aerostatic bearings with a SMAR (n = 9, l = 3 dn, and n = 36,
l = 6 dn), and a marble platform. The thickness of the air film is changed by adjusting the
cylinder pressure and measured by the inductance micrometer mounted on the marble. The
load capacity of the aerostatic bearing is measured by the force transducer. After multiple
measurements, the average value was taken.

Figure 18 compares the experimental and simulation results of the load capacity of the
aerostatic bearing with different numbers of micro-holes. The experimental results are in
good agreement with the simulation results, and the maximum error is less than 5%.
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Figure 18. Comparison of experimental and simulation results of load capacity. (a) number of
micro-holes is n = 9, l = 3 dn; (b) number of micro-holes is n = 36, l = 6 dn.

4.3. Micro-Vibration Testing

Figure 19 shows the experimental platform for micro-vibration testing. The experi-
mental platform consists of aerostatic bearings (n = 1 single-hole, n = 9 SMAR (l = 3 dn), and
n = 36 SMAR (l = 4/6/8dn)), weights, a laser displacement sensor (LK-G500, reproducibility
2 µm, KEYENCE, Japan), an accelerometer (ULT-2015, sensitivity 2500 mV/g, resolution
0.000004 g, QUATR, Beijing, China), a marble platform, a vibration isolation platform, a
data acquisition card (NI-9234, 24-bit, America), and a PC (Lenovo, China) terminal. The
thickness of the air film is changed by adjusting the weights and measured by the laser
displacement sensor. The vibration acceleration of the aerostatic bearing is obtained by the
accelerometer. The vibration signal is dealt with by a PC terminal.
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Figure 20a shows vibration accelerations in the time domain for bearings (thickness
is hm = 30 µm, inlet pressure is Ps = 0.6 MPa) with the different numbers of micro-holes.
As can be seen from Figure 20a, the vibration acceleration amplitude of the aerostatic
bearing with a single hole is the largest and the smallest at the aerostatic bearing with n =
36. Figure 20b shows vibration accelerations in the time domain for bearings (thickness is
hm = 30 µm, inlet pressure is Ps = 0.6 MPa) with different spacing of micro-holes. As can be
seen from Figure 20b, the vibration acceleration amplitude of the aerostatic bearing is the
largest at l = 4dn, followed by that at l = 6dn, and the smallest at l = 8dn.
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As shown in Figure 21, vibration acceleration in the frequency domain is FFT trans-
formed from the above time domain signal. From Figure 21a (thickness is hm = 30 µm, inlet
pressure is Ps = 0.6 MPa), it can be concluded that the peak amplitude gradually decreases
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with the increase in the number of micro-holes. From Figure 21b (thickness is hm = 30 µm,
inlet pressure is Ps = 0.6 MPa), it can be concluded that the peak amplitude gradually
decreases with the increase in the spacing of micro-holes. The above experimental results
prove that the SMAR can effectively suppress the micro-vibration and significantly improve
the stability of the aerostatic bearing.
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5. Conclusions

In this paper, an aerostatic bearing with a SMAR was designed to suppress turbulent
vortices and reduce micro-vibration, and the effects of different structural parameters on its
static and dynamic characteristics were investigated numerically and experimentally. The
transient flow characteristics of the aerostatic bearing with single-hole restrictor and the SMAR
were investigated. The LES method is used to resolve the details of transient 3D turbulence,
and the formation mechanism of turbulent vortices and the law of turbulent interaction
between adjacent micro-holes were analyzed. The accuracy of the simulation model and the
effectiveness of the SMAR is verified by load capacity testing and micro-vibration testing.
According to the results in this paper, the following conclusions can be drawn:

(1) The aerostatic bearing with the SMAR can effectively reduce the micro-vibration
characteristics by optimizing the structural parameters, while the load capacity and
stiffness basically keep constant when the SMAR keeps essentially the same total
restriction area.

(2) Increasing the number of micro-holes can suppress the formation of turbulent vortices
near the orifice by reducing the deflection angle α of the airflow and the range
of the compression region B. When the number of micro-holes is less than 36, the
micro-vibration of the aerostatic bearing decrease remarkably with the increase in
the number of micro-holes. When the number of micro-holes is more than 36, the
micro-vibration of the aerostatic bearing decreases insignificantly with the increase
in the number of micro-holes. However, the micro-hole number should be carefully
chosen in optimization design, because of manufacturing cost and possible blockage
of the micro-hole.

(3) Increasing the spacing of micro-holes can inhibit the formation of turbulent vortices
among the adjacent micro-holes by reducing the interaction of the different airflows
from different micro-holes. When the spacing of micro-holes is less than 8dn, the micro-
vibration of the aerostatic bearing decreases remarkably with the increase in the spacing
of micro-holes. When the spacing of micro-holes is more than 8dn, the micro-vibration of
the aerostatic bearing decrease insignificantly with the increase in the spacing of micro-
holes. In the optimization design, the larger spacing of micro-holes in the restrictor
should be selected to ensure a better micro-vibration suppression effect.
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This study provides a valuable reference for further reducing the micro-vibration of
aerostatic bearings and is helpful to further study the formation and interaction mechanism
of turbulent vortices in the aerostatic bearing. The limitation of this study is that the internal
airflow field characteristics of the aerostatic bearing in the recess have not been observed
by experiments such as particle image velocimetry (PIV), which is also the direction of our
future work.
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