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Abstract: The implementation of magnesium alloys in a multitude of industries has been proven to
be a mere effect of their attractive light weight, corrosion resistant, and biodegradable properties.
These traits allow these materials to portray an excellent sustainable machinability. However, with
increasing demand, it is essential to explore sustainable means of increasing production while
mitigating reductions in sustainability. The current work aims to assess and optimize the high-
speed machinability of AZ91 with the use of a vegetable oil-based minimum quantity lubrication
(MQL) system using the grey relational analysis (GRA) on the basis of chip morphology and tool
wear. The investigation entailed a full factorial design with MQL flow rate, cutting speed, and feed
rate as the control parameters and flank wear, land width, chip contact length, saw-tooth pitch,
chip segmentation ratio, chip compression ratio, and shear angle as the output responses. The
optimal control parameters predicted and experimentally confirmed were an MQL flow rate of
40 mL/h, cutting speed of 300 m/min, and feed rate of 0.3 mm/rev. The usage of said optimal
parameters results in a grey relational grade improvement of 0.2675 in comparison to the referenced
first experimental run. Moreover, the MQL flow rate was regarded as the critical variable with a
contribution percentage of 20% for the grey relational grade.

Keywords: MQL; orthogonal turning; magnesium alloy; AZ91; chip morphology

1. Introduction

The demand for magnesium alloys is on a continuous upward trend in industries,
such as automotive [1,2], biomedical [3–5], and aerospace [6,7]. This is due to the alloys’
appealing light weight [8], biodegradability [9], corrosion resistance [10], and high specific
strength [11]. In regard to similar light weight alloys, magnesium alloys are softer than
most aluminium and titanium alloys [12] resulting in lower cutting energy requirements.
Moreover, due to the prefaced softness, an excellent surface finish is easily achievable.
However, in the literature, their general machinability assessment is scarce and limited in
comparison to other conventional alloys.

Viswanathan et al. [13] aimed to investigate the varying effects of the cutting parame-
ters on the machinability indicators of AZ91D in dry turning. A grey relational analysis
(GRA) was conducted to optimize the cutting parameters based on cutting forces, flank
wear, surface roughness, and material removal rate (MRR). Increased cutting forces and
flank wear evolution were noted at elevated feed rates and cut depths. Additionally, in-
creased cutting speeds led to minor increases in flank wear land width. The build-up of the
workpiece material on the tool, due to adhesion, was noted as a large contributor of the
tool wear evolution. However, better surface quality was noted at elevated cutting speeds
and deteriorated with increasing feed rate and cut depth. The depth of the cut and feed
rate were closely tied and regarded as the most influential input parameters. A similar
investigation was carried out by Shi et al. [14] who monitored cutting forces, surface quality,
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and chip morphology during the dry end-milling of AZ91D. Cutting forces were inversely
related to cutting speed, while elevated cutting forces were noted at higher feed rates.
Corollary effects can be seen on the chip morphology since higher feed rates resulted in
the formation of loose and damaged saw-tooth chips which were attributed to the intense
shearing. Moreover, cutting speed was found to the main influencing parameter of chip
length with higher cutting speeds resulting in longer curly chip segments.

Generally, during the machining of magnesium alloys, the main reported mechanism
of tool wear is adhesion. This is usually signified by the excessive amounts of built-up edge
(BUE) and built-up layer (BUL) along the cutting tool. A study by Ramesh et al. [15] was
aimed at investigating and optimizing the cutting parameters and their effects of tool wear
evolution and surface roughness during the dry turning of AZ91D. An increase in any of the
cutting parameters resulted in a progressive increase of tool wear and surface roughness,
with the feed rate ranked as the critical parameter. A more tool-wear centred study was
conducted by Tönshoff and Winkler [16] who investigated the effects of varying tool coating
materials on BUL formation, cutting forces, and surface roughness during the high-speed
dry turning of AZ91HP. Polycrystalline diamond (PCD) and titanium nitride (TiN) coated
tools were utilized along a set of constant machining parameters. Large amounts of adhered
material, in the form of BUL/BUE, were noted on the TiN cutting tool as a result of the
elevated cutting temperatures. Cutting forces were relatively constant through the first
half of the cutting length and portrayed an aggressive oscillatory behaviour towards the
end of the cutting length. This was attributed to the excessive formation of BUE/BUL that
resulted in the alteration of the cutting-edge geometry.

The prevailing occurrence of adhesion during the machining of magnesium alloys
can also be seen in other machining processes, such as drilling. Wang et al. [17] aimed to
map the wear progression mechanisms to the cutting parameters during the dry drilling
of AZ91 magnesium alloy. Using an HSS drilling tool, a large range of cutting speeds and
feed rates were tested and the wear map was developed and contained adhesive wear,
diffusion wear, and abrasive wear. The combinations of low speed and high feed, as well
as high speed and low feed resulted in regions of abrasive wear. Similarly, the review
compiled by Carou et al. [18] emphasized the presence of adhered material and its setbacks.
Another indicator for the occurrence of friction that affects tool life is tool-chip contact
length (CCL). Nasr and Outeiro [19] conducted a sensitivity analysis of the CCL, cutting
forces, and shear angle during dry and cryogenic orthogonal turning of AZ31B-O. The
CCL showed a significant increase with an elevated feed rate which is corelated to the
increase in cutting forces along the increasing feed rate. Zakaria et al. [20] additionally
investigated CCL by examining the effects of submerged convective cooling (SCC) and
varying machining parameters on the formation of BUL/BUE, cutting forces, and CCL in
the orthogonal turning of AZ31 with a benchmarked dry cutting test. Elevated chip contact
lengths and cutting forces were noted at increased cutting speeds in the dry cutting test.

Nasr and Outeiro [19] investigated the chip compression ratio (CCR) and shear angle
of the resultantly prevalent saw-tooth chips. The CCR increased with increasing feed rate
and the shear angle decreased with the increasing feed rate. Fang et al. [21] investigated
the limits of such a process by monitoring mean flank temperatures during the high-speed
dry end-milling of AZ91. Flank face temperatures of over 250 ◦C were recorded during
the machining process. If further increased, this could pose a large risk due to magnesium
chip ignition. Viswanathan et al. [22] investigated and optimized the process parameters
based on flank wear, surface roughness, cutting forces, and cutting temperatures during
turning of AZ91D in dry and MQL conditions. The usage of MQL resulted in less flank
wear and surface roughness, as compared to dry cutting. However, cutting forces increased
during the usage of MQL, which is likely due to the minor mitigation of thermal softening.
According to the conducted GRA, the cutting environment was the second most critical
variable following the feed rate. The cut depth and cutting speed were ranked third
and fourth, respectively. The optimum predicted and validated cutting condition was
the highest cutting speed coupled with the lowest feed rate and cut depth under MQL
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conditions. A similar study was conducted by Cagan et al. [23] exploring the effects of
cutting parameters on tool wear, cutting forces, and chip morphology categorization during
the turning of AZ91D in dry and MQL environments. The presence of adhered material, in
the form of BUL/BUE, was noted on the tool in both cutting environments. However, the
usage of MQL resulted in less cutting forces due to the lubrication effect of the cutting fluid.

MQL systems have not been utilized and tested thoroughly for magnesium alloy
machining, as compared to other alloys. The use of more sustainable cutting fluids, such
as vegetable oil-based cutting fluids (VCFs), has also yet to be prefaced for magnesium
alloys. Vegetable esters are a possible replacement to conventional petroleum-based cutting
fluids since they react with the surface of the machined metal and produce chlorides
and sulphides which reduce tribological tool-workpiece/tool-chip friction mechanics and
cutting temperatures [24]. The usage of vegetable oil-based cutting fluids has been assessed
for other lightweight alloys, such as titanium and aluminium alloys and offered promising
results [25]. The use of vegetable oil-based cutting fluids can result in improved tool life,
surface quality, and cutting forces in comparison to conventional dry and petroleum-based
flood cooling techniques in a multitude of ferrous and nonferrous alloys [26,27].

Akyuz [28] investigated the effect of aluminium content towards the wear resistance
and machining performance for the AZ cast magnesium alloys. It was found that AZ91
provided the highest wear resistance. Whereas AZ21 was found with poor machinability.
Kuczmaszewski et al. [29] focused his work to investigate the shape and fragmentation
of chips when machining AZ91HP. The study indicated that less chip fragmentation was
obtained when a rake angle of 30◦ was utilized in the study. Pradeepkumar et al. [30]
utilized the concepts of response surface methodology, artificial neural network, and genetic
algorithm to investigate the surface integrity of the machined component made out of
magnesium alloy. The study found that RSM and ANN models provided 2.4% and 1.52%
average error, respectively. Then, the ANN model was coupled with a genetic algorithm
to obtain the optimized conditions for surface integrity. A brief summary of the literature
review activity can be found in Table 1.

Chip morphology is an important indicator of machinability which can assess shearing
forces and signify cutting energy and surface finish. However, due to the relative novelty
of magnesium alloys, a thorough investigation of chip morphology parameters is yet to
be found in the field of available literature. To further increase the machinability, as well
as maintain sustainability, magnesium machinability has also been scarcely tested under
minimum quantity lubrication (MQL) conditions. Additionally, since no thorough optimiza-
tion/analysis of chip morphology parameters was found within the literature regarding
the conventional or highspeed machining of magnesium alloys, this work intends to do
just that. The present study aimed at the assessment and optimization of the machinability
of AZ91 magnesium alloy in orthogonal turning, based on tool wear and chip morphology
parameters in an MQL cutting environment using GRA and other statistical techniques.
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Table 1. Literature review summary.

Source No. Authors Material
Topics of Interest

along Scope of
Investigation

Cutting
Environment

Machining
Parameters Tool Take-Away Conclusions

13 Viswanathan
et al. AZ91D

GRA, Cutting forces,
Flank wear, Surface

roughness, MRR
Dry

Turning
Vc = 40–120 m/min
f = 0.1–0.3 mm/rev

DOC= 0.5–1 mm

PVD
CNMG120408

insert

Cutting forces and flank wear
increased with feed rate and cut

depth. Surface roughness
decreased at elevated cutting

speeds and increased with
increasing feed rate and cut

depth.

14 Shi et al. AZ91D
Cutting forces,

Surface roughness,
Chip morphology

Dry

End-milling
Vc = 50–400 m/min
f = 0.4–0.8 mm/rev

DOC = 1.5 mm

Uncoated
390-11T304E-NLH13A

insert

Cutting forces decreased at
increasing cutting speeds and

increased at increasing feed rate.
Surface roughness increased

with increasing cutting
parameters. Elevated feed rate

resulted in loose saw-tooth
chips.

15 Ramesh et al. AZ91D GRA, Surface
roughess, Tool wear Dry

Turning
Vc = 40–120 m/min
f = 0.1–0.2 mm/rev
DOC = 0.5–1 mm

PCD
SNMG120404

Increased in any cutting
parameter. Increased tool wear

and surface roughness. Feed
rate, Cutting speed, and depth

of cut ranked as influencing
parameters 1,2, and 3

respectively.

16 Tönshoff &
Winkler AZ9AHP

BUL/BUE, Cutting
forces, Surface

roughness
Dry

Turning
Vc = 900 m/min
f = 0.4 mm/rev
DOC = 1.5 mm

HW, HC, PCD
CCMW 120408
CCMT 120408

Increased BUL/BUE noted on
TiN tool. Cutting forces elevated

due to BUL/BUE. Surface
quality hindered by presence of

adhered material.
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Table 1. Cont.

Source No. Authors Material
Topics of Interest

along Scope of
Investigation

Cutting
Environment

Machining
Parameters Tool Take-Away Conclusions

17 J. Wang et al. AZ91 Tool wear Dry
Drilling

Vc = 1000–8000 rpm
f = 0.05–0.3 mm/rev

Uncoated HSS
drill tool

Majority of the wear map
dominated by adhesive wear
with area at the centre of the

map identified with excessive
BUE.

18 Carou et al. Magnesium alloys machinability review Main mechanism of tool wear
progression is adhesion,

19 Nasr & Outeiro AZ31B-O CCL, CCR, Cutting
forces, Shear angle Dry, Cryogenic

Orthogonal turning
Vc = 100 m/min

f = 0.1 & 0.2 mm/rev
DOC = 3 mm

Uncoated carbide insert
CCL and cutting forces

increased with increasing feed
rate.

20 Zakaria et al. AZ31 BUL/BUE, Cutting
forces, CCL Dry, SCC

Orthogonal turning
Vc = 120–240 m/min

f = 0.2 mm/rev
DOC = 1 mm

Uncoated
CNMA120408

insert

Cutting forces and CCL
increased at increased cutting
speeds. Increased friction at
tool-chip interface results in

increased melting and adhesion
of chips as well as elevated

forces.

21 Fang et al. AZ91 Mean flank
temperatures Dry

End-milling
Vc = 408–1088

m/min
f = 50–7000 mm/min

DOC = 0.05–3 mm

Tungsten carbide
ball-nose end mills

Flank temperatures exceeded
250 ◦C which could pose

possible chip ignition risks.

22 Viswanathan
et al. AZ91D

GRA, Flank wear,
Surface roughness,

Cutting forces,
Cutting temperatures

Dry/MQL

Turning
Vc = 40–140 m/min
f = 0.1–0.3 mm/min

DOC = 0.5–1 mm

Uncoated
CNMG 120408

insert

MQL resulted in less flank wear,
surface roughness, and cutting
temperatures. Increased cutting

forces noted under MQL.
Cutting environment is the

second most critical variable
after feed rate.
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Table 1. Cont.

Source No. Authors Material
Topics of Interest

along Scope of
Investigation

Cutting
Environment

Machining
Parameters Tool Take-Away Conclusions

23 Cagan et al. AZ91D
Tool wear, Cutting

forces, Chip
morphology

Dry/MQL

Turning
Vc = 500–1000

m/min
f = 0.05–0.2 mm/min
DOC = 0.5–1.5 mm

CCGT, DCGT, VCGT

FBU noted in all cutting
parameters and environments.

MQL resulted in reduced
cutting forces. Cut depth found

to be most critical parameter
and cutting environment to be

least critical.

28 Akyuz
AZ01, AZ21,

AZ41, AZ61 and
AZ91

Wear resistance and
Cutting force Dry

Feed rate (f) 0.10
mm/rev,

DoC 0.5 mm,
Cutting speed (Vc)
56, 112, 168 m/min

CCGT 120408 FL K10

It was found that AZ91
provided the highest wear

resistance. Whereas AZ 21 was
found with poor machinability.

29 Kuczmaszewski
et al. AZ91 HP Chip fragmentation Dry

Cutting speed
400–800 m/min,

Feed rate 0.15–0.3
mm/tooth

16 mm carbide
end mill

The study provided that less
chip fragmentation was

obtained when rake angle of 30◦

was utilized in the study.

30 Pradeepkumar
et al. AZ91D Surface roughness Dry

Spindle rev 750–1000
rpm, Feed 75–100

rev/min
End milling cutter

The study found that RSM and
ANN models provided 2.4% and

1.52% average error,
respectively.
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2. Materials and Methods
2.1. Tool and Material Information

Extruded AZ91 rods were conventionally machined into workpieces with discs of
1.5 mm thickness and 50 mm diameter in preparation for orthogonal turning, as seen in
Figure 1a. Table 2 shows the chemical composition and mechanical properties of AZ91.
Titanium nitride (TiN) coated TNMG160404-TN2000 CVD cutting inserts, as shown in
Figure 1b, and manufactured by Widia were utilized and clamped into the Dormer Pramet
PTGNR 2020 K16 tool holder.
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Figure 1. (a) AZ91 workpiece specimen prepared for orthogonal cutting; (b) geometry in millimetre
of the cutting insert.

Table 2. Chemical composition and mechanical properties of AZ91 at room temperature [31,32].

Element Content, wt%

AZ91

Al Zn Mn Si Ni Cu Fe Mg
8.3~9.7 0.35~1.0 0.15~0.5 0.1 0.002 0.03 0.005 Balance

Ultimate strength Hardness Elongation Poisson’s Ratio Density
172 MPa 59 HB 3.4% 0.35 1.78 g/cm3

2.2. Machining Set-Up

The cutting tests conducted on a Jyoti DX 135 nvu CNC turning centre invoked
the usage of ECULUBRIC E200L, a vegetable oil-based natural glyceride cutting fluid
at room temperature. The measurement of tool wear, chip-tool contact length, and chip
morphology was performed using an optical microscope (Model: SWT350T, Swift Optical
Instruments, Inc., Schertz, TX, USA), as shown in Figure 2. Figure 2 shows the pictorial
illustration of the measurements of the chip morphology, tool wear, and contact length.
The optical microscope has a double-layered mechanical stage with a slide holder, stage
size of 130 mm × 130 mm, and stage X-Y range of 70 mm × 30 mm. The said cutting fluid
has a flash point and ignition point of 325 ◦C and 365 ◦C, respectively, as well as a density,
viscosity, and partition coefficient of 0.92 g/cm3, 70 cP, and <3%, respectively. A UNIST
SPR-2000-3GALLV MQL system tank containing the cutting fluid was pressurized to 2 bars
and connected to the spray nozzle, as seen in Figure 3a. The variable flow rate spray nozzle
was located at 12 mm above the cutting zone, and supplied a mist of air and cutting fluid
directly into the tool-workpiece/tool-chip interface, as seen in Figure 3b.
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Figure 3. (a) CNC lathe and MQL setup; (b) cutting setup.

2.3. Full Factorial Experimental Design

The control parameters chosen for this full factorial experimentation were the cutting
fluid flow rate, cutting speed (Vc), and feed rate (f) at a constant depth of cut (DOC) of
1.5 mm. The magnitudes of each level along with the parameter letter designation, in
preparation for GRA, can be seen in Table 3. The full factorial design was computed by
number of experiments = Xˆk, where X is the number of levels, and k is the number of
variables for the factors. So, in our case, it was 3 × 3 = 27 experiments and with two
replications, the total experiments were 54. The Minitab program was utilized to formulate
the final full factorial experimental procedure table presented in Table 4. Each experimental
trial was conducted using a constant radial machining length of 10mm, which meant the
machining of an entire disc. Following an experimental trial, the chips were collected and
inspected for morphology and the utilized tool’s rake and flank face were examined for
chip contact length and flank wear. The cutting tool was oriented to a fresh cutting edge
or replaced prior to every experimental trial. For the sake of precision, the tests entailed a
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replication value of 2, which meant that every experiment was conducted twice under the
same cutting conditions.

Table 3. Experimental design.

MQL Flow Rate
(mL/h)

Cutting Speed
(m/min)

Feed
(mm/rev)

Levels A B C

3 120 300 0.5
2 80 250 0.4
1 40 200 0.3

Table 4. Experimental input and output raw responses.

Exp No. A:
MQL (mL/h) B: Vc (m/min) C: f (mm/rev) Vb (mm) CCL (mm) P (mm) CR (mm) SR (mm) ϕ (rad)

1 120 200 0.5 0.203 0.695 0.447 0.727 0.594 0.942
2 120 200 0.3 0.071 0.298 0.117 0.628 0.493 1.010
3 120 200 0.4 0.081 0.423 0.380 0.658 0.577 0.989
4 120 250 0.3 0.081 0.388 0.173 0.883 0.500 0.847
5 120 250 0.4 0.099 0.563 0.237 0.804 0.538 0.894
6 120 250 0.5 0.136 0.723 0.473 0.690 0.629 0.967
7 120 300 0.3 0.056 0.423 0.157 0.794 0.479 0.899
8 120 300 0.5 0.138 0.855 0.477 0.713 0.601 0.951
9 120 300 0.4 0.086 0.745 0.463 0.746 0.568 0.930
10 80 200 0.4 0.058 0.678 0.247 0.733 0.533 0.938
11 80 200 0.5 0.123 0.815 0.373 0.750 0.558 0.927
12 80 200 0.3 0.185 0.378 0.157 0.811 0.525 0.889
13 80 250 0.5 0.124 0.810 0.527 0.690 0.478 0.967
14 80 250 0.3 0.081 0.568 0.150 0.467 0.645 1.134
15 80 250 0.4 0.080 0.488 0.327 0.658 0.509 0.989
16 80 300 0.5 0.100 0.780 0.373 0.580 0.574 1.045
17 80 300 0.3 0.055 0.438 0.240 0.506 0.662 1.103
18 80 300 0.4 0.104 0.638 0.380 0.692 0.544 0.966
19 40 200 0.5 0.186 0.783 0.417 0.557 0.495 1.063
20 40 200 0.3 0.080 0.420 0.160 0.606 0.566 1.026
21 40 200 0.4 0.093 0.603 0.490 0.604 0.645 1.027
22 40 250 0.5 0.096 0.833 0.553 0.670 0.543 0.980
23 40 250 0.4 0.076 0.533 0.463 0.479 0.663 1.124
24 40 250 0.3 0.063 0.550 0.217 0.778 0.511 0.910
25 40 300 0.5 0.083 0.725 0.423 0.607 0.589 1.025
26 40 300 0.4 0.070 0.573 0.440 0.525 0.701 1.087
27 40 300 0.3 0.063 0.423 0.283 0.528 0.681 1.085

Where MQL = minimum quantity lubrication, Vc = cutting speed, f = feed, Vb = flank tool wear, CCL = chip
contact length, t max = peak distance, t min = valley distance, P = pitch distance, chip segmentation ratio (SR),
compression ratio = CR and shear angle (ϕ).

3. Results and Discussion
3.1. Data Processing and Parameter Computation

Average flank wear measurements were conducted following every experimental
trial, as presented in Figure 4a. The presence of BUL/BUE was noted on all measurement
images following every experimental trial, signifying the prevalence of adhesion as the
predominant mechanism of flank wear evolution. The rake face was also inspected for chip
contact length (CCL) following every experimental trial, as seen in Figure 4b. The average
readings of the flank wear land width (Vb) and CCL per experimental trial were considered
for further analysis.

The chips collected all presented exaggerated saw-tooth characteristics with the ma-
jority being fragmented into short length segments. The nature of these damaged/loose
saw-tooth chips indicates the intense shearing and plastic deformation that occurred due to
aggressive cutting parameters. Moreover, the chips collected were inspected for saw-tooth
morphology parameters following each experimental trial, as seen in Figure 5a. Three
saw-tooth segments were measured for tooth peak height (t max), valley height (t min),
and pitch (P), as portrayed in Figure 5b, and the mean value of each was considered for
further analysis. The tool wear and chip morphology data along with their corresponding
input parameters are presented in Table 5.
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Chip morphology parameters, such as chip compression ratio, chip segmentation ratio,
and shear angle are crucial to determining the degree of plastic deformation occurring due
to the selected cutting parameters. The chip compression ratio parameter is an indicator of
the interplay between the thermal softening and strain hardening phenomena that occur
within the chip formation process. Further, the shear angle is a key parameter by which
many of the remaining desired parameters can be computed through. Due to the presence
of saw-tooth chips, the computation of the chip compression ratio (CR) was conducted, as
presented in [33], by which an average value of chip thickness is utilized to compute the
chip compression ratio, as presented in Equation (1).

CR =
tmax + tmin

2 f
(1)

Further, the computation of the chip segmentation ratio (SR) and shear angle (ϕ) were
conducted, as per the experimental investigation of Pervaiz et al. [34]. In the presence of a
saw-tooth chip, the segmentation ratio (SR) is considered as the ratio of peak and valley
differences to the peak height, as presented in Equation (2). Moreover, the shear angle (ϕ)
was computed through the rake angle (γ), as shown in Equation (3).

SR =
tmax − tmin

tmax
(2)

ϕ = tan−1
(

cosγ
CR − sinγ

)
(3)
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Table 5. GRA step 1: letter designation and output data.

Exp. No A B C Vb (mm) CCL (mm) P (mm) CR (mm) SR (mm) ϕ (rad)

1 3 1 3 0.203 0.695 0.447 0.727 0.594 0.942
2 3 1 1 0.071 0.298 0.117 0.628 0.493 1.010
3 3 1 2 0.081 0.423 0.380 0.658 0.577 0.989
4 3 2 1 0.081 0.388 0.173 0.883 0.500 0.847
5 3 2 2 0.099 0.563 0.237 0.804 0.538 0.894
6 3 2 3 0.136 0.723 0.473 0.690 0.629 0.967
7 3 3 1 0.056 0.423 0.157 0.794 0.479 0.899
8 3 3 3 0.138 0.855 0.477 0.713 0.601 0.951
9 3 3 2 0.086 0.745 0.463 0.746 0.568 0.930

10 2 1 2 0.058 0.678 0.247 0.733 0.533 0.938
11 2 1 3 0.123 0.815 0.373 0.750 0.558 0.927
12 2 1 1 0.185 0.378 0.157 0.811 0.525 0.889
13 2 2 3 0.124 0.810 0.527 0.690 0.478 0.967
14 2 2 1 0.081 0.568 0.150 0.467 0.645 1.134
15 2 2 2 0.080 0.488 0.327 0.658 0.509 0.989
16 2 3 3 0.100 0.780 0.373 0.580 0.574 1.045
17 2 3 1 0.055 0.438 0.240 0.506 0.662 1.103
18 2 3 2 0.104 0.638 0.380 0.692 0.544 0.966
19 1 1 3 0.186 0.783 0.417 0.557 0.495 1.063
20 1 1 1 0.080 0.420 0.160 0.606 0.566 1.026
21 1 1 2 0.093 0.603 0.490 0.604 0.645 1.027
22 1 2 3 0.096 0.833 0.553 0.670 0.543 0.980
23 1 2 2 0.076 0.533 0.463 0.479 0.663 1.124
24 1 2 1 0.063 0.550 0.217 0.778 0.511 0.910
25 1 3 3 0.083 0.725 0.423 0.607 0.589 1.025
26 1 3 2 0.070 0.573 0.440 0.525 0.701 1.087
27 1 3 1 0.063 0.423 0.283 0.528 0.681 1.085

Equations (1)–(3) were used to compute the chip morphology parameters for all
experimental trials and the final list of input and output parameters is presented in Table 4.
In the machining of aluminium, titanium, and even steel alloys, the compression ratio is
usually greater than 1 [35–39]. However, during the machining of light weight alloys at
speeds that are relatively high in comparison to their conventional ranges, largely elevated
cutting temperatures coupled with the material’s higher toughness results in occurrences
where the chip compression ratio is less than 1 [40]. A trend of decreasing chip compression
ratio can be seen in the increasing feed rate and cutting speed, as well as in the decreasing
rake angle during the machining of aluminium alloys and metal matrix composites (MMCs),
as seen by [41–43].

3.2. Full Factorial Design Based Data Analysis

As shown in Figure 6, normal probability charts of the output response data have been
plotted. A normal probability chart is a popular graphical representation of the normal
distribution of data. If the data points roughly form the straight line, then one can suggest
that data is normally distributed. The normality of the data, as observed in this case,
exhibits that it can be processed with statistical techniques in order to obtain reliable results.

The behaviour of each response was also obtained using the model of fit, as shown in
Equations (4)–(8). To simplify the model equations for each output responses, only the first
term interactions are considered. In the mentioned equations, the positive and negative
values of coefficients have certain meaning. The positive value indicates that the output
variable will increase with the associated increasing input variable. Moreover, the negative
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coefficients mean that the output variables will decrease with the associated decreasing
input variables.

Vb = 0.09893 − 0.00893 A1 + 0.00219 A2 + 0.00674 A3 + 0.02107 B1 − 0.00604 B2
− 0.01504 B3 − 0.01726 C1 − 0.01593 C2 + 0.03319 C3

(4)

CCL = 0.5981 + 0.0067 A1 + 0.0233 A2 − 0.0300 A3 − 0.0322 B1 + 0.0081 B2
+ 0.0241 B3 − 0.1663 C1 − 0.0154 C2 + 0.1818 C3

(5)

CR = 0.6624 − 0.0675 A1 − 0.0083 A2 + 0.0757 A3 + 0.0125 B1 + 0.0175 B2
− 0.0300 B3 + 0.0311 C1 − 0.0537 C2 + 0.0226 C3

P = 0.3387 + 0.0442 A1 − 0.0304 A2 − 0.0138 A3 − 0.0289 B1 + 0.0080 B2
+ 0.0209 B3 − 0.1549 C1 + 0.0421 C2 + 0.1128 C3

(6)

SR = 0.5704 + 0.0289 A1 − 0.0117 A2 − 0.0172 A3 − 0.0164 B1 − 0.0131 B2
+ 0.0295 B3 − 0.0387 C1 + 0.0326 C2 + 0.0061 C3

(7)

ϕ = 0.9894 + 0.0469 A1 + 0.0059 A2 − 0.0529 A3 − 0.0104 B1 − 0.0103 B2
+ 0.0207 B3 − 0.0221 C1 + 0.0390 C2 − 0.0170 C3

(8)
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A Pareto diagram is a tool that is used to help in the identification of the significance of
factors towards their contribution on the output responses. Standardized effects show the
size of the effect relative to the total variation in the data. This diagram is used in the full
factorial analysis to figure out the focused areas for improvement. There is a reference line
on the diagram that represents a critical value (2.086 in Figure 7a), if the effect is more than
this value, then it is considered as significant. Figure 7a–f show that feed was found to be a
significant parameter for flank wear, chip contact length, pitch values, and segmentation
ratio. The MQL flow rate and feed were found to be significant for the peak and valley
values of the chips. For the shear angle, the MQL flow rate was found to be the most
dominant parameter.
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3.3. Grey Relational Analysis

The use of a grey relational analysis was invoked due to its highly reputable capabilities
for determining optimal parameters in complicated multi-variant problems [44]. Input
and output response lists are generated and presented in Table 5, following the letter
designation of the input parameters presented in Table 3.
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The data are then normalised, which allow each output response to be scaled down
to a value between 0 and 1 in reference to each parameter’s own range of data [45]. This
is achieved through initially determining which parameters would ideally be maximized
or minimized. In the current case, all output responses would optimally be minimized
except for the shear angle (ϕ), since a lower shear angle would indicate larger ratios of
segmentation. As presented by Jozić et al. [46], the manner to achieve the normalisation
of parameters that are optimally minimized (smaller-the-better) is presented through the
ratio of the difference between the maximum value (max

(
yij

)
) within a response range and

the current value (yij) to the difference between the maximum and minimum (min
(
yij

)
)

values in the selected range, as presented in Equation (9).

xij =
max

(
yij

)
− yij

max
(
yij

)
− min

(
yij

) (9)

A similar relation is mentioned by Jozić et al. [46] regarding the normalisation of
optimally maximized (larger-the-better) parameters. The relation is presented as the ratio
of the difference of the current value (yij) and the minimum value within the response
range (min

(
yij

)
) to the difference of the maximum (max

(
yij

)
) and minimum (min

(
yij

)
)

values within the response range, as shown in Equation (10).

xij =
yij − min

(
yij

)
max

(
yij

)
− min

(
yij

) (10)

The normalised output responses are presented in Table 6.

Table 6. GRA step 2: normalised output responses.

Vb (mm) CCL (mm) P (mm) CR (mm) SR (mm) ϕ (rad)

0 0.28725314 0.75688073 0.375 0.520179372 0.33101
0.89189189 1 0 0.61298077 0.067264574 0.567944
0.82432432 0.77558348 0.60321101 0.54086538 0.443946188 0.494774
0.82432432 0.83842011 0.12844037 0 0.098654709 0
0.7027027 0.52423698 0.27522936 0.18990385 0.269058296 0.163763
0.4527027 0.23698384 0.81651376 0.46394231 0.677130045 0.418118
0.99324324 0.77558348 0.09174312 0.21394231 0.004484305 0.181185
0.43918919 0 0.82568807 0.40865385 0.551569507 0.362369
0.79054054 0.19748654 0.79357798 0.32932692 0.403587444 0.289199
0.97972973 0.31777379 0.29816514 0.36057692 0.246636771 0.317073
0.54054054 0.07181329 0.58715596 0.31971154 0.358744395 0.278746
0.12162162 0.85637343 0.09174312 0.17307692 0.210762332 0.146341
0.53378378 0.08078995 0.94036697 0.46394231 0 0.418118
0.82432432 0.51526032 0.07568807 1 0.748878924 1
0.83108108 0.65888689 0.48165138 0.54086538 0.139013453 0.494774
0.69594595 0.13464991 0.58715596 0.72836538 0.430493274 0.689895

1 0.7486535 0.28211009 0.90625 0.825112108 0.891986
0.66891892 0.38958707 0.60321101 0.45913462 0.295964126 0.414634
0.11486486 0.12926391 0.68807339 0.78365385 0.076233184 0.752613
0.83108108 0.78096948 0.09862385 0.66586538 0.394618834 0.623693
0.74324324 0.4524237 0.85550459 0.67067308 0.748878924 0.627178
0.72297297 0.03949731 1 0.51201923 0.291479821 0.463415
0.85810811 0.57809695 0.79357798 0.97115385 0.829596413 0.965157
0.94594595 0.5475763 0.2293578 0.25240385 0.147982063 0.219512
0.81081081 0.23339318 0.70183486 0.66346154 0.497757848 0.620209
0.89864865 0.50628366 0.74082569 0.86057692 1 0.836237
0.94594595 0.77558348 0.38073394 0.85336538 0.910313901 0.829268
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Next, the standard deviation ∆xij is computed through finding the deviation of the
current response yij from the ideal reference case y0j, which corresponds to a value of 1, as
shown in Equation (11). The deviation sequence list is presented in Table 7.

∆xij = yij − y0j (11)

Table 7. GRA step 3: deviation sequence.

Vb (mm) CCL (mm) P (mm) CR (mm) SR (mm) ϕ (rad)

1 0.712747 0.243119 0.625 0.479821 0.66899
0.1081081 0 1 0.387019 0.932735 0.432056
0.1756757 0.224417 0.396789 0.459135 0.556054 0.505226
0.1756757 0.16158 0.87156 1 0.901345 1
0.2972973 0.475763 0.724771 0.810096 0.730942 0.836237
0.5472973 0.763016 0.183486 0.536058 0.32287 0.581882
0.0067568 0.224417 0.908257 0.786058 0.995516 0.818815
0.5608108 1 0.174312 0.591346 0.44843 0.637631
0.2094595 0.802513 0.206422 0.670673 0.596413 0.710801
0.0202703 0.682226 0.701835 0.639423 0.753363 0.682927
0.4594595 0.928187 0.412844 0.680288 0.641256 0.721254
0.8783784 0.143627 0.908257 0.826923 0.789238 0.853659
0.4662162 0.91921 0.059633 0.536058 1 0.581882
0.1756757 0.48474 0.924312 0 0.251121 0
0.1689189 0.341113 0.518349 0.459135 0.860987 0.505226
0.3040541 0.86535 0.412844 0.271635 0.569507 0.310105

0 0.251346 0.71789 0.09375 0.174888 0.108014
0.3310811 0.610413 0.396789 0.540865 0.704036 0.585366
0.8851351 0.870736 0.311927 0.216346 0.923767 0.247387
0.1689189 0.219031 0.901376 0.334135 0.605381 0.376307
0.2567568 0.547576 0.144495 0.329327 0.251121 0.372822
0.277027 0.960503 0 0.487981 0.70852 0.536585

0.1418919 0.421903 0.206422 0.028846 0.170404 0.034843
0.0540541 0.452424 0.770642 0.747596 0.852018 0.780488
0.1891892 0.766607 0.298165 0.336538 0.502242 0.379791
0.1013514 0.493716 0.259174 0.139423 0 0.163763
0.0540541 0.224417 0.619266 0.146635 0.089686 0.170732

The grey relational coefficient GRC represents the difference between the regarded
optimal value and the current value. This is presented as the ratio of the difference
of minimum deviation ∆min and the product of the maximum deviation ∆max and the
distinguishing coefficient ξ, taken as 0.5 as per [46], to the sum of the standard deviation
∆xij and the product of ξ and ∆max, as presented in Equation (12).

GRCij =
∆min − ξ∆max

∆xij + ξ∆max
(12)

Finally, the grey relational grade GRG is computed as the average GRC of all output
responses along a single experimental trial, as seen in Equation (13). This allows for the
comparative ranking of the experimental input parameters on the basis of a unified scale
grade output response, with 1 being the best and 0 the worst. The GRG along with the
corresponding input parameters and their ranking is presented in Table 8. It is noted that
the highest MQL flow rate along with the lowest cutting speed and feed rate resulted in the
most optimized output responses.

GRGi =
1
n

n

∑
i=1

GRCi (13)
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Table 8. GRA step 4: GRC sequence.

Exp. No A B C Vb (mm) CCL (mm) P (mm) CR (mm) SR (mm) ϕ (rad) GRG Rank

1 3 1 3 0.333333 0.412287 0.67284 0.444444 0.510297 0.42772 0.46682 24
2 3 1 1 0.822222 1 0.333333 0.563686 0.348983 0.536449 0.600779 7
3 3 1 2 0.74 0.690211 0.557545 0.521303 0.473461 0.4974 0.579987 8
4 3 2 1 0.74 0.755767 0.364548 0.333333 0.3568 0.333333 0.48063 23
5 3 2 2 0.627119 0.51242 0.40824 0.381651 0.406193 0.374185 0.451635 25
6 3 2 3 0.477419 0.395878 0.731544 0.482599 0.607629 0.462158 0.526204 14
7 3 3 1 0.986667 0.690211 0.355049 0.388785 0.334333 0.379128 0.522362 15
8 3 3 3 0.471338 0.333333 0.741497 0.45815 0.527187 0.43951 0.495169 21
9 3 3 2 0.704762 0.383873 0.707792 0.427105 0.456033 0.41295 0.515419 16

10 2 1 2 0.961039 0.422931 0.416031 0.438819 0.398927 0.42268 0.510071 17
11 2 1 3 0.521127 0.350094 0.547739 0.423625 0.438114 0.409415 0.448352 26
12 2 1 1 0.362745 0.776848 0.355049 0.376812 0.387826 0.369369 0.438108 27
13 2 2 3 0.517483 0.352309 0.893443 0.482599 0.333333 0.462158 0.506887 19
14 2 2 1 0.74 0.507748 0.351047 1 0.665672 1 0.710744 5
15 2 2 2 0.747475 0.59445 0.490991 0.521303 0.367381 0.4974 0.5365 13
16 2 3 3 0.621849 0.366206 0.547739 0.647975 0.467505 0.617204 0.544746 12
17 2 3 1 1 0.665472 0.410546 0.842105 0.740864 0.82235 0.746889 3
18 2 3 2 0.601626 0.450283 0.557545 0.48037 0.41527 0.460674 0.494295 22
19 1 1 3 0.360976 0.364768 0.615819 0.697987 0.351181 0.668998 0.509955 18
20 1 1 1 0.747475 0.695381 0.356792 0.599424 0.452333 0.570577 0.57033 9
21 1 1 2 0.660714 0.477292 0.775801 0.602899 0.665672 0.572854 0.625872 6
22 1 2 3 0.643478 0.342348 1 0.506083 0.413729 0.482353 0.564665 11
23 1 2 2 0.778947 0.542356 0.707792 0.945455 0.745819 0.934853 0.775871 1
24 1 2 1 0.902439 0.524976 0.393502 0.400771 0.369818 0.390476 0.496997 20
25 1 3 3 0.72549 0.394755 0.626437 0.597701 0.498881 0.568317 0.568597 10
26 1 3 2 0.831461 0.503162 0.65861 0.781955 1 0.753281 0.754745 2
27 1 3 1 0.902439 0.690211 0.446721 0.773234 0.847909 0.745455 0.734328 4

Utilizing the Minitab program, the mean responses table has been generated, as pre-
sented in Table 9. Using the mean response table, Figure 8 has been constructed. According
to the maximum mean response values for each cutting parameter level, the optimal cutting
parameters were A1B3C1, which correlates to MQL = 40 mL/h, Vc = 300 m/min, and
f = 0.3 mm/rev. The grade for the first experimental run conducted, A3B1C3, was taken as
reference. Since a full factorial experimentation was conducted, a confirmation experiment
is not necessary, since the experimental parameter combination is already present within
the dataset. In comparison to the reference parameter combination, the predicted parameter
experimental results show a 34.42% improvement in the results, as presented in Table 10.

Table 9. Mean output response table.

Response Table for Means
Level A B C

1 0.622373 0.527808 0.589019
2 0.54851 0.561126 0.58271
3 0.515445 0.597394 0.5146

Delta 0.106928 0.069586 0.074419
Rank 1 3 2

Average 0.56211

Table 10. Prediction and confirmation of the parameter combination.

Parameter Combination Grade

Reference parameter combination A3 B1 C3 0.46682
Optimal parameter combination available

in the experimentation A1 B3 C1 0.73432

GRG improvement 0.2675
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bution of the individual parameters and their interaction on the grey relational grade 
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uting variable was the MQL flow rate (20%), followed by the cutting speed (8.9%), and 
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The mean output response data in Table 10 was used to plot the mean response graph
presented in Figure 9. The Minitab program was additionally utilized to present the analysis
of variance (ANOVA), with a 95% confidence level, to reveal the percentage contribution
of the individual parameters and their interaction on the grey relational grade (GRG),
as presented in Table 11. As per the data presented, the largest individual contributing
variable was the MQL flow rate (20%), followed by the cutting speed (8.9%), and the feed
rate (5.59%) was deemed as the least critical variable.
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Table 11. Analysis of variance (ANOVA) of the GRG.

Source DF Seq SS Contribution Adj SS Adj MS F-Value p-Value

A: MQL 2 0.04541 20.00% 0.048534 0.024267 8.62 0.035
B: Cutting

Speed 2 0.02021 8.90% 0.006475 0.003238 1.15 0.403

C: Feed 2 0.01268 5.59% 0.012831 0.006416 2.28 0.218
A * B 4 0.05501 24.23% 0.071956 0.017989 6.39 0.050
A * C 4 0.01080 4.76% 0.019389 0.004847 1.72 0.306

A * B * C 8 0.07164 31.56% 0.071640 0.008955 3.18 0.139
Error 4 0.01126 4.96% 0.011256 0.002814
Total 26 0.22702 100.00%

95% Confidence Interval, R-Sq = 95.04%
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3.4. Chip Segmentation Ratio

The chips produced during the experimental trials were also observed for capturing
the segmentation of chips, as shown in Figure 10. The main individual contributor to
the segmentation ratio was found to be the MQL flow rate, as shown in the Figure 9, the
mean effect plots for the segmentation ratio. Figure 10a–c also show a higher variation in
segmentation by varying the MQL flow rate. The cutting speed and feed were ranked lower
than the MQL flow rate. Table 12 showed ANOVA results for the contribution of individual
parameters towards the segmentation ratio with the percentage contribution of 19.68% for
the MQL flow rate, 5.06% for the cutting speed, and 2.97% for feed. The dominant role
of the MQL flow rate towards segmentation can be linked with the improvement of heat
transfer and better temperature control during the cutting process. Figure 10d–f show the
representative condition for varying feed rates. It can be seen that the effect was smaller on
the segmentation ratio.
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Table 12. Analysis of variance for the transformed response.

Source DF Seq SS Contribution Adj SS Adj MS F-Value p-Value

A: MQL 2 0.023596 19.68% 0.015465 0.007732 4.37 0.098
B: Cutting

Speed 2 0.006070 5.06% 0.009190 0.004595 2.60 0.189

C: Feed 2 0.003557 2.97% 0.001430 0.000715 0.40 0.692
A * C 4 0.022416 18.69% 0.007807 0.001952 1.10 0.463
B * C 4 0.032207 26.86% 0.022962 0.005740 3.25 0.140

A * B * C 8 0.024991 20.84% 0.024991 0.003124 1.77 0.305
Error 4 0.007072 5.90% 0.007072 0.001768
Total 26 0.119910 100.00%

95% Confidence Interval, R-Sq = 94.01%

4. Conclusions and Future Suggestions

The current study investigated chip morphology and tool wear parameters during the
orthogonal high-speed turning of AZ91 magnesium alloy using a biodegradable vegetable
oil-based cutting fluid delivered through an MQL technique. A full factorial experimental
design was formulated using the MQL flow rate, cutting speed, and feed rate as input
parameters and flank wear, land width, chip contact length, saw-tooth pitch, chip com-
pression ratio, chip segmentation ratio, and shear angle as output parameters. A GRA
was conducted to determine and investigate the optimum cutting parameters based on the
regarded output parameters. Through the analysis of the results, the following conclusions
were drawn:

• The optimal control parameters predicted and experimentally confirmed were an MQL
flow rate of 40 mL/h, cutting speed of 300 m/min, and feed rate of 0.3 mm/rev;

• The usage of said optimal parameters results in a grey relational grade improvement
of 0.2675 in comparison to the referenced first experimental run;

• Using the variance analysis conducted by the Minitab program, the MQL was regarded
as one of the critical variables in the optimization process with a contribution of 20%.
This signifies the important role of the cooling and lubrication effects provided by the
usage of the MQL in reducing tribological friction forces and cutting temperatures;

• The third level interaction of the MQL with the cutting speed and feed, and the
second level interaction of the MQL flow rate with the cutting speed were found to be
significant contributing factors with a contribution of 31.56% and 24.23%, respectively;

• The main individual contributor to the segmentation ratio was found to be the MQL
flow rate with a percentage contribution of 19.68%. This is linked with the improved
heat transfer as the MQL flow rate increased;

• For a greater assessment of the application of vegetable oil-based cutting fluids (VCFs), it
is recommended that further output responses, such as surface quality, microhardness, and
microstructure, are investigated during the high-speed orthogonal cutting of magnesium
alloys to allow for the proper assessment of their feasibility and applicability.
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