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Abstract: In the manufacturing and assembly of a toroidal drive mechanism, errors have a great
influence on the load sharing of the mechanism. In order to improve the load-sharing characteristics
of the mechanism, a floating oil film structure system is designed to support the planetary gear and to
compensate for inaccuracies in the manufacturing and assembly of the mechanism parts in this paper.
The elasticity and hydrodynamic effect of the floating oil film allow the planetary gear to achieve its
own small floatation and produce a certain axial displacement, which compensates for the influence
of error and achieves load sharing. To examine the effect of the floating oil film structure, the floating
oil film bearing is simulated by FLUENT, the characteristics of the floating oil film are analyzed,
and the stiffness and damping coefficients of the floating oil film are calculated. In ADAMS, the
method of equivalent replacement of the floating oil film with spring damping is adopted to conduct
a dynamic analysis on the toroidal drive mechanism with the floating oil film load-sharing structure,
and the results show that the system with a floating oil film structure can effectively compensate the
influence of errors and improve the uniform load performance.

Keywords: toroidal drive; load sharing; floating oil film; load-sharing structure; dynamic analysis;
load-sharing effect

1. Introduction

The toroidal drive mechanism has a number of planetary gears, a toroidal planetary
worm (i.e., center worm), and a ring gear to transfer motion and power by meshing,
so it has achieved a “power split”. In a toroidal planetary worm drive, the surface of
the worm and worm wheel is a kind of space meshing surface, a ruled surface and is
developable. This mechanism has the characteristics of a large bearing capacity, high
transmission efficiency, large transmission ratio, and compact structure, and is a new type
of transmission mechanism with good transmission performance [1]. However, owing to
the complicated transmission structure, the manufacturing of the center worm and ring
gear is difficult, and errors in processing and assembly are therefore readily produced.
These errors may lead to an unbalanced loading between the planetary gears, resulting in
an eccentric load phenomenon and reductions in the transmission performance and service
life of the mechanism [2]. Therefore, the addition of an appropriate load-sharing structure
can compensate for the influence of errors, solve the problem of uneven load distribution,
and play a key role in excellent transmission performance of the toroidal drive mechanism.

In the field of toroidal load sharing, scholars have conducted in-depth theoretical
and experimental research on toroidal drive load sharing, and have obtained significant
research results [3–5]. Boedo [4] focused upon a practical design for big-end connecting rod
journal bearings, which allow for rapid prediction of three key tribological performance
measures: cyclic minimum film thickness, cyclic average oil flow and cyclic average power
loss. Booker [5] presented an approach for simplified analytical, graphical, and numerical
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solutions to extremely general problems of dynamically loaded bearings. Morris et al. [6]
presented the thermo-mixed-hydrodynamics of compression rings and big-end bearings. In
addition, a floating oil film can probably influence the dynamic wear or surface interaction
mechanisms between workpiece mating parts [7,8], such as floating surface mechanism
of action [9,10], dynamic polished wear [7,11,12] or surface treatment with some polish-
ing methods [13–15], etc. Thus, in order to improve load-sharing characteristics of the
mechanism, a floating oil film load-sharing structure requires further analysis.

In this paper, in order to improve the load-sharing characteristics of the toroidal drive
mechanism, a floating oil film structure system is designed to support the planetary gear
and to compensate for inaccuracies. The hydrodynamic effect of the floating oil film is
used to make the planetary gear shift, compensate for the influence of errors, and achieve
the effect of load sharing. To verify the effect of the floating oil film structure, the floating
oil film bearing is simulated using FLUENT, and the stiffness and damping coefficients
of the floating oil film are calculated. In ADAMS, the method of equivalent replacement
of the floating oil film with spring damping is adopted to conduct a dynamic analysis of
the toroidal drive mechanism with the floating oil film load-sharing structure, and the
effectiveness and feasibility of this structure are verified by comparing the changes in
transmission performance of the system over time.

2. Planetary Gear Supports with Load-Sharing Structure
2.1. Introduction to Toroidal Drive Mechanism

Figure 1 shows a toroidal drive retarder, which is mainly composed of a center worm,
planetary gears, planetary frame, ring gear, and cylindrical rollers. The center worm is for
power input, and a number of free-rolling cylindrical rollers are evenly distributed on the
planetary gear; the cylindrical rollers mesh with the center worm and ring gear, respectively,
to achieve rotation. When the ring gear is fixed as the frame, the planetary gear rotates
while driving the revolution of the planetary frame, and finally the planetary frame outputs
motion and power [16]. The mechanism adopts the form of a spatial pure-rolling drive
with multiple cylindrical rollers participating in the driving motion and power, which is a
new and efficient driving structure [17].
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Figure 1. Diagram of toroidal drive retarder.

2.2. Design of Floating Oil Film Load-Sharing Structure

Referring to the design of a hybrid sliding bearing [18], the purpose of the floating oil
film load-sharing structure is to serve as an intermediate ring between the planetary gear
and the outer ring (or shaft) of the planetary gear bearing. A certain radial clearance is left
between the intermediate ring and the inner hole of the planetary gear, and oil is supplied
to the clearance through the oil duct. During the transmission process, the planetary gear
drives the lubricating oil into the gap to rotate in the same direction and at the same speed,
and the planetary gear and lubricating oil bear the load in the same direction. A thick oil
film is then formed, a hydrodynamic effect is produced, and load sharing of the planetary
gear is achieved, as shown in Figure 2.
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Figure 2. Floating oil film load-sharing structure of planetary gear.

The main parameters of intermediate ring of the planetary gear are listed in Table 1.

Table 1. Design parameters of intermediate ring.

Parameters Symbol Value

Inner diameter of intermediate ring D 22 mm
Outer diameter of intermediate ring d 24 mm

Width of intermediate ring l 24 mm
Radial clearance ϕ 0.05 mm

eccentricity ε 0.3
Width to diameter ratio l/D 0.5

Surface roughness Ra 1.6 µm

Figure 3 shows the center displacement track of the planetary gear. The oil film formed
between the intermediate ring and the planetary gear in the rotation of the planetary gear.
When the planetary gear is overloaded, the thickness of the oil film decreases and the
oil wedge angle also decreases; under a light load, the thickness of the oil film increases
proportionally and the oil wedge angle also increases accordingly. In other words, each
planetary gear produces different displacements of the planetary gear shaft to adjust the
load and achieve load sharing. In other load-sharing methods, the elastic characteristics
of the components are affected by the load of the planetary gear, the relative stiffness of
the elastic components is larger, and the effect of damping is smaller; deformation then
readily leads to fatigue wear, reducing the service life [19]. The floating oil film load-
sharing structure uses the stiffness and damping effect of the oil film, is independent of
the properties of the component, and can automatically adjust the thickness of the oil film
according to load variation to achieve load sharing. At the same time, the oil film has
the function of lubrication and damping, which reduces the vibration and friction of the
system [20].
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2.3. Calculation of Floating Oil Film Load-Sharing Coefficient

When the ring gear is fixed, the center worm is connected to the motor to input
torque; after the load is applied, the center worm engages with one of the four planetary
gears. Manufacturing and assembly errors cause a certain backlash where the other three
planetary gears engage with the center worm. When the input torque is further increased,
and under the influence of the engaging force, elastic deformation will occur at the support
of the cylindrical roller and planetary shaft to compensate for the meshing backlash of the
other planetary gears, and the remaining planet gears are in the meshed state [21]. When
the center worm meshes with the ith planetary gear (i = 1, 2, 3, 4), the angles created by
the elastic deformation are set as θs and θpi, and the following equation for the load on the
tooth surface can be obtained:{

Fspi = Kspi
(
rsθs − rpiθpi − ∆spi

)
FpiI = KpiI

(
rpiθpi − rIθI − ∆piI

) (1)

In Equation (1), Fspi and FpiI are the load on the tooth surface when the ith planetary
gear meshes with the center worm and the ring gear, respectively; Kspi and KpiI are the
meshing stiffness when the ith planetary gear meshes with the center worm and the ring
gear, respectively; rs, rpi and rI are the radius of the center worm, the ith planetary gear
and the ring gear; θs, θpi and θI are the angles on the center worm, the ith planetary gear
and the ring gear created by the elastic deformation; and ∆spi and ∆piI are the accumulated
errors when the ith planetary gear meshes with the center worm and the internal gear ring.

When the ring gear is fixed, θI = 0, and the sum of the two sides of Equation (1) gives
us the following for the total load:{

∑n
i=1 Fspi = nKspi

(
rsθs − rpiθpi

)
− Kspi∆spi

∑n
i=1 FpiI = nKpiIrpiθpi − KpiI∆piI

(2)

According to the power split characteristics of the center worm and planetary gear,
input torque T can be obtained:

T = rs ∑n
i=1 Fspi (3)

The theoretical average load of the planetary gear is known to be

Fspi= T/nrs (4)

At equilibrium, the forces on the planetary gear are balanced,

FpiI = Fspi (5)

The load-sharing coefficient refers to the ratio between the maximum load of the
planetary gear and the center worm or ring gear and the theoretical average load. The
load-sharing coefficient of the planetary gear can be obtained from Equations (1)–(5):

Kspi =
Fspimax

T/nrs
(6)

3. Numerical Simulation of Planetary Gear Floating Oil Film
3.1. Establishment and Meshing of Floating Oil Film Model

A three-dimensional (3D) model of the toroidal floating oil film bearing was established
with a width to diameter ratio of 0.5, the inside of the floating oil film bearing was a fixed
wall surface, the outside was a rotating wall surface, and the bearing had an oil inlet
hole at the top. The basic parameters of the floating oil film bearing were as follows:
diameter of bearing pad D = 48 mm, bearing width B = 24 mm, oil inlet diameter and height
h1 = 0.5 mm, and eccentricity ε = 0.3.
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The 3D model of the floating oil film bearing was imported into ANSYS ICEM mod-
elling software using hexahedral mesh for the mesh division; the result is shown in Figure 4.
The value of the mesh determinant 2 × 2 × 2 was greater than 0.7 and the internal angle
was greater than 18◦, which led to a high partition quality and met the requirements of
mesh quality [21].
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3.2. Steady-State Flow Field Calculation of Floating Oil Film

The steady-state flow field of the floating oil film was solved using FLUENT 14.0
software, the SIMPLE algorithm was used as the pressure–velocity coupling algorithm,
Presto software was used to interpolate a discrete form of the pressure equation, and a
second-order upwind method was used to interpolate a discrete form of the momentum
equation [22]. The initial rotation rate of the planetary gear was set to 1000 rpm, the
eccentricity was 0.3, and the oil pressure was 0.2 MPa. The resulting pressure contours are
shown in Figure 5.
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Based on the obtained pressure contours of the floating oil film, the following charac-
teristics of the floating oil film can be obtained:

1. The floating oil film structure creates a stable oil pressure. The pressure is highest
at the right-side inlet, with a value of 0.2 MPa. The pressures in the upper and
lower oil chambers of the inlet gradually decrease, because when the floating oil
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film bearing operates, it moves down owing to gravity, which leads to a reduction
in the oil film clearance of the lower oil chamber and an increase in that of the upper
oil chamber. Positive and negative pressure regions are formed, which conform to
hydrodynamic principles.

2. In the axial direction, because the floating oil film bearing discharges oil at both ends
and these ends are at atmospheric pressure, the pressure of the oil film decreases in
the axial direction and is at atmospheric pressure at the boundary.

3. In the circumferential direction, the oil film rotates in the same direction as the
planetary gear, and the lubricating oil is throughout the entire clearance. When the
lubricating oil moves from the oil inlet into the oil cavity, the pressure is at a maximum.
With the rotation of the planet gear, the pressure of the oil film gradually decreases
axially along the neck surface until the negative pressure zone is burst; the supply of
lubricating oil then continues and a new pressure distribution of the oil film develops.

3.3. Force Field Characteristic Analysis of Floating Oil Film

The pressure and bearing capacity are the key characteristic parameters of the floating
oil film and determine the resistance of the planetary gear to external load, that is, the
effectiveness of the floating oil film load-sharing structure [23]. The pressure and bearing
capacity of the floating oil film are influenced by the design parameters, the working
conditions, and many other factors, among which eccentricity is one of the most important;
the eccentricity is therefore selected in this analysis as the main factor influencing the
floating oil film. Owing to the eccentricity, the state of the floating oil film in each direction
will change, producing new dynamic characteristics. However, an excessive eccentricity
will produce strong hydrodynamic effects, and the lubricating oil in the clearances will be
prone to backflow, which may cause the rupture of the oil film [24]. Therefore, the influence
of eccentricity between 0.3 and 0.6 was first studied, at a rotational speed of 2000 rpm
and oil inlet pressure of 0.2 MPa. The pressure distribution of the oil film for different
eccentricity s is shown in Figure 6.
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As shown in Figure 6, the pressure of the oil film positive-pressure zone increases
with the increasing eccentricity, but the pressure of the oil film negative-pressure zone
decreases. This is because, with the increase in eccentricity, the oil film produces a larger
wedge clearance, the positive-pressure oil chamber above the oil film increases gradually,
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the negative-pressure oil chamber under the oil film decreases gradually, the oil film is
significantly squeezed, the hydrodynamic effect is more pronounced, and the pressure of
the oil film increases.

As indicated in Table 2, the bearing capacity of the oil film increases with increasing
eccentricity. When the eccentricity increases, the wedge angle between the clearances then
increases, the squeezing action of the oil film intensifies, and the maximum pressure of the
oil film increases, such that the oil film can bear more load.

Table 2. Bearing capacity of oil film for different eccentricity.

Eccentricity ε 0.3 0.4 0.5 0.6

x Direction Wx (N) 162 187 236 280
y Direction Wy (N) 753 1125 1402 2187

Bearing capacity W (N) 770 1140 1422 2205

In the design of the floating oil film load-sharing structure, the eccentricity should
therefore be increased appropriately, because that can improve the pressure and the bearing
capacity of the floating oil film and enhance the resistance of the planetary gear to external
loads. However, too large an eccentricity will cause oil backflow. The pressure and
temperature of the oil film should also be controlled to avoid rupture of the oil film caused
by excessive pressure and temperature.

3.4. Calculation of Equivalent Stiffness and Damping of Floating Oil Film
3.4.1. Difference Calculation Model of Stiffness and Damping

When the oil film bearing is disturbed by displacement or velocity in the static equilib-
rium position, the reaction force by the oil film on the shaft neck will change [25]. When the
disturbance is small and with a small amplitude, the relationship can be regarded as linear
and the oil film can be regarded as having linearized stiffness and damping, as shown in
Figure 7.
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The oil film force is approximated as a linear function of the minute displacement
and velocity of the shaft neck. In Equation (7), the subscript 0 indicates that the derivative
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is taken at the static equilibrium position. The oil film force increment caused by the
disturbance displacement is defined as the stiffness coefficient of the oil film, that is,

kxx =
∂Fx

∂x
kxy =

∂Fx

∂y
kyx =

∂Fy

∂x
kyy =

∂Fy

∂y
(8)

The oil film force increment caused by the speed displacement is defined as the
damping coefficient of the oil film, that is,

cxx =
∂Fx

∂
.
x

cxy =
∂Fx

∂
.
y

cyx =
∂Fy

∂
.
x

cyy =
∂Fy

∂
.
y

(9)

In the formulae, the first subscript represents the direction of the force, and the second
represents the direction of the displacement or velocity. Thus, the dynamic characteristics
of the oil film depend directly on the disturbance pressure.

3.4.2. Calculation of Stiffness and Damping of Floating Oil Film

A disturbance velocity of v = 25 µm/s and disturbance displacement of s = 25 µm
was applied to the floating oil film bearing, the planetary gear rotational speed was set
to 1000 rpm, and the oil inlet pressure was set to 0.2 MPa. The oil film force before and
after the disturbance was calculated by FLUENT post-processing, and the stiffness and
damping coefficients of the oil film were calculated by substituting the oil film force into
Equations (8) and (9). The coefficients are listed in Table 3.

Table 3. Stiffness and damping coefficients of floating oil film.

Parameter Value Parameter Value

Direct stiffness kxx (N/mm) 1.354 Direct damping cxx (N·s/mm) 12.5
Direct stiffness kyy (N/mm) 8.765 Direct damping cyy (N·s/mm) 24.0
Cross stiffness kxy (N/mm) 6.084 Cross damping cxy (N·s/mm) 1.392
Cross stiffness kyx (N/mm) 3.924 Cross damping cyx (N·s/mm) −1.390

4. Discussion
4.1. Establishment of Floating Oil Film Rotor Model

Considering the complexity of the toroidal drive mechanism model [2], the 3D model
was first established using the 3D software UG, and the exported Parasolid file was im-
ported into ADAMS to establish the simulation model. The established virtual prototype
model is shown in Figure 8, which is mainly composed of a center worm, planetary gears,
planetary frame and ring gear. The joints and constraints between parts are shown in
Table 4.
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Table 4. Joints and constraints between parts.

Number Joints between Parts Constraints

1 Center worm and ground Rotary pair
2 Planetary gears and planetary frame Rotary pair
3 Planetary frame and ground Rotary pair
4 Ring gear and ground Fixed joint

Referring to the linearized floating oil film mechanical model, the floating oil film was
modelled as an equivalent spring; circumferentially, the floating oil film was equivalent
to four rotating spring dampers, as shown in Figure 9. As shown in Table 3, the spring
attribute parameters were input into the model to complete the rotor dynamics simulation
model. The center worm rotational speed is equal to 2000 rpm and the transmission power
is 8 Kw.

Lubricants 2023, 10, x FOR PEER REVIEW 10 of 18 
 

 

 
Figure 9. Equivalent spring model of floating oil film. 

4.2. Analysis of Dynamic Simulation Results 
To verify the effectiveness of the floating oil film load-sharing structure and analyze 

the influence of the structure on the transmission performance of the mechanism, the 
ADAMS simulation data with and without the load-sharing structures of the toroidal 
drive mechanism were compared. We set the input speed of the central worm as 2000 
rpm and the transmission power as 8 kw for simulation analysis. 

4.2.1. Analysis of Planetary Gear Speed 
Figure 10 shows the change diagram of the angular velocity of planetary gear 1 in 

the toroidal drive mechanism without and with the floating oil film load-sharing struc-
ture. Figure 10 indicates that the fluctuation of the angular velocity of the planetary gear 
with the load-sharing structure is smaller than without. The oil film therefore has a cer-
tain buffering and damping effect on the system; it can balance the load, stabilize the 
transmission, and reduce the planetary gear velocity mutation, therefore improving the 
load-sharing performance of the system. The change diagrams of the angular velocity of 
other planetary gears are similar to that of planetary gear 1, with only small differences 
in values, and therefore they require no elaboration. 

 
(a) without load-sharing structure 

 
(b) with floating load-sharing structure 

Figure 10. Comparison of angular velocity of planetary gear 1. 
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4.2. Analysis of Dynamic Simulation Results

To verify the effectiveness of the floating oil film load-sharing structure and analyze
the influence of the structure on the transmission performance of the mechanism, the
ADAMS simulation data with and without the load-sharing structures of the toroidal drive
mechanism were compared. We set the input speed of the central worm as 2000 rpm and
the transmission power as 8 kw for simulation analysis.

4.2.1. Analysis of Planetary Gear Speed

Figure 10 shows the change diagram of the angular velocity of planetary gear 1 in
the toroidal drive mechanism without and with the floating oil film load-sharing structure.
Figure 10 indicates that the fluctuation of the angular velocity of the planetary gear with the
load-sharing structure is smaller than without. The oil film therefore has a certain buffering
and damping effect on the system; it can balance the load, stabilize the transmission,
and reduce the planetary gear velocity mutation, therefore improving the load-sharing
performance of the system. The change diagrams of the angular velocity of other planetary
gears are similar to that of planetary gear 1, with only small differences in values, and
therefore they require no elaboration.

Figure 11 shows the change diagram of angular velocity of the planetary frame in the
toroidal drive mechanism without and with the floating oil film load-sharing structure.
The diagram indicates that the angular velocity of the planetary frame with the load-
sharing structure has a smaller fluctuation range and the output speed of the system is
more stable. This indicates that the floating oil film load-sharing structure can effectively
improve the transmission stability of the system and is conducive to a stable output power
of the mechanism.
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4.2.2. Analysis of Planetary Gear Engaging Force

Two of the four planetary gears were compared to observe the changes in the en-
gaging force. Figure 12 shows the engaging force changes between the planetary gear
and the center worm in the toroidal drive mechanism without and with the floating oil
film load-sharing structure. As indicated in the figure, owing to systematic errors and
other factors, the engaging forces of the two planetary gears vary in different manners,
and unbalanced loading occurs. The engaging force of each planetary gear without the
load-sharing structure fluctuates significantly over time, which is not conducive to an
even and stable load transfer for the planetary gear. However, after the floating oil film
load-sharing structure is adopted, the engaging force of each planetary gear decreases with
time, the fluctuation amplitude of the engaging force decreases, and the eccentric loading
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of the planetary gear decreases, except for the sudden change of load when a few rollers
are engaging in and engaging out. This indicates that the floating oil film load-sharing
structure has a certain effect on the load sharing of the planetary gear that is conducive to
even load transfer and a more stable system drive.
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Figure 12. Comparison of engaging force of planetary gear and center worm.

Table 5 shows a comparison of the mean value of the external engaging force without
and with the floating oil film load-sharing structure. The external engaging forces of
the mechanism with the load-sharing structure are similar and relatively concentrated,
indicating that the mechanism with the floating oil film load-sharing structure can achieve
load sharing.

Table 5. Comparison of mean value of external engaging force without and with floating oil film
load-sharing structure.

Contact Pairs
Mean Value of External Engaging Force (N)

No Load-Sharing
Structure

Floating Oil Film
Load-Sharing Structure

Planetary gear 1 and center worm 2758 2567
Planetary gear 2 and center worm 2428 2480
Planetary gear 3 and center worm 2655 2523
Planetary gear 4 and center worm 2406 2515

Figure 13 shows comparison diagrams of the forces acting on the planetary gear
and the ring gear in the toroidal drive mechanism without and with the floating oil film
load-sharing structure. As indicated in the figure, after the floating oil film load-sharing
structure is adopted, the fluctuation range of the engaging force between the planetary
gear and the ring gear decreases, and the planetary gear can adjust the meshing position
with the ring gear, which compensates for the influence of the machining and assembly
errors of the planetary gear on the driving and meshing and improves the system load-
sharing performance.
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Table 6 shows a comparison of the mean value of the internal engaging forces between
the planetary gear and ring gear in the toroidal drive mechanism without and with the
floating oil film load-sharing structure. The transmission load of the mechanism with
the load-sharing structure tends to be balanced; in contrast, without the load-sharing
structure, the force of the planetary gear in the toroidal drive mechanism is either too large
or too small.

Table 6. Comparison of mean value of internal engaging force without and with floating oil film
load-sharing structure.

Contact Pairs
Mean Value of Internal Engaging Force (N)

No Load-Sharing
Structure

Floating Oil Film
Load-Sharing Structure

Planetary gear 1 and ring gear 2561 2494
Planetary gear 2 and ring gear 2358 2418
Planetary gear 3 and ring gear 2535 2488
Planetary gear 4 and ring gear 2322 2406

4.2.3. Analysis of Planetary Gear Axial Displacement

The axial motion of the planetary gear was simulated using ADAMS. Figure 14 shows
the center displacement diagram of planetary gear 1 in the toroidal drive mechanism with
the floating oil film structure. The center displacement diagrams of other planetary gears
are similar to that of planetary gear 1, with only small numerical differences. As indicated in
the figure, when the mechanism runs under stable working conditions, the floating oil film
produces a hydrodynamic effect that allows the planetary gear to resist the external load.
The axis of the planetary gear moves above and below the center position approximately
0.06 mm in the x and y directions, which plays a role in adjusting the meshing position
and the loading of the planetary gear, effectively compensating for the influence of error,
balancing the load, and achieving load sharing.
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4.3. Dynamic Force Analysis of Floating Oil Film

Figure 15 shows the change in the equivalent oil film force of planetary gear 1 in the
transmission process. The changes for other planetary gears are similar to that of planetary
gear 1 with only small differences in value, and therefore do not require an explanation.
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Figure 15 shows that, in the initial stage, the speed of the planet gear is low, the
transmission is not stable, and the bearing capacity of the oil film fluctuates significantly. As
the planetary gear speed improves, the system runs in a stable manner, and the fluctuation
in the bearing capacity of the oil film is reduced. When the system reaches a stable
operating condition, the floating oil film forms a stable hydrodynamic effect and stable
bearing capacity controlled at 3 KN, which is greater than the average load of the planetary
gears in Tables 4 and 5. Therefore, the oil film structure can withstand the impact of the
load in the operating range, assist the planetary gear in resisting the displacement of the
center caused by external loads, allow the position of the meshing point of the planetary
gear with the center worm and ring gear to adjust by itself, compensate for the influence of
machining and assembly errors on the load transmission, and achieve a load-sharing effect.
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Theoretically, the floating oil film will generate the dynamic wear or surface interaction
mechanisms between workpiece mating parts [7,8], such as the dynamic polished wear
and floating surface mechanism of action [26,27].

4.4. Analysis of Dynamic Load-Sharing Performance of Floating Oil Film

The load-sharing coefficient is an index to evaluate the load-sharing performance of the
system. The closer the coefficient value is to 1, the better the load-sharing performance. With
the data of the planetary gear force extracted from ADAMS, the load-sharing coefficient
solved using MATLAB, and data fitting performed using Equation (6), the curves of the
load-sharing coefficient of the toroidal drive mechanism without and with the floating oil
film load-sharing structure over a period of time were obtained, as shown in Figure 16.
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The comparison shows that when the floating oil film load-sharing structure is adopted,
the maximum load-sharing coefficient of the system decreases from 1.31 to 1.20, and the
minimum load-sharing coefficient increases from 0.72 to 0.83. The system with the floating
oil film load-sharing structure has a maximum load-sharing coefficient that is 0.11 lower
and a minimum coefficient that is 0.11 higher, and the fluctuation range of the load-sharing
coefficient of each planetary gear decreases, and the value of the coefficient is closer to 1.
Therefore, the floating oil film load-sharing structure of the planetary gear can adjust the
loading situation of each planetary gear, reduce the influence of error on the transmission
load, and effectively improve the load-sharing performance of system.
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5. Conclusions

1. Comparisons of the angular velocity of the planetary gear, the output angular velocity
of the planetary frame, and the engaging force of the planetary gear with the center
worm and ring gear demonstrate that the transmission performance of the system
with the floating oil film structure is improved, the rotations of the planetary gear
and the planetary frame are smoother, the fluctuation range and the mutation of
the meshing force of the planetary gear decrease, and the load-sharing performance
is improved.

2. When the center displacement curve of the planetary gear is simulated under stable
working conditions, the hydrodynamic effect of the floating oil film produces a floating
displacement in the planetary gear of approximately 0.06 mm in the x and y directions
to adjust the loading of the planetary gear, effectively compensating for the influence
of error and achieving load sharing.

3. The simulation and analysis of the bearing capacity of the floating oil film indicate
that, after stable operation of the floating oil film, the bearing capacity of the oil film
fluctuates at 3 kN, and the planetary gear can resist the central displacement caused
by the external load; thus, load sharing is achieved.

4. The engaging force of the planet gear was extracted and the load-sharing coefficient of
the system with the floating oil film load-sharing structure was calculated using MAT-
LAB. Compared with the system without the load-sharing structure, the system with
the floating oil film load-sharing structure has a maximum load-sharing coefficient
that is 0.11 lower and a minimum coefficient that is 0.11 higher, the fluctuation of the
coefficient is reduced, and the value of the coefficient is closer to 1. These demonstrate
that the floating oil film load-sharing structure of the planetary gear is effective and
that improving the load-sharing performance of the system is feasible.
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Nomenclature

B Bearing width (mm) l Width of intermediate ring (mm)
Cxx Direct damping coefficient (N·s/mm) l/D Width to diameter ratio
Cxy Cross damping coefficient (N·s/mm) Ra Surface roughness (µm)
Cyy Direct damping coefficient of oil film (N·s/mm) rI Radius of the ring gear (mm)
Cyx Cross damping coefficient of oil film (N·s/mm) rpi Radius of the ith planetary gear (mm)
D Inner diameter of intermediate ring (mm) rs Radius of the center worm (mm)
d Outer diameter of intermediate ring (mm) s Disturbance displacement (µm)

Fspi
Load on the tooth surface when ith

T Input torque (N·m)
planetary gear meshes with the center worm (N)

FpiI

Load on the tooth surface when the ith
v Disturbance velocity (µm/s)planetary gear meshes with the ring gear,

respectively (N)
h1 oil inlet diameter and height (mm) ε Eccentricity
Kxx Direct stiffness coefficient of oil film (N/mm) θI Angles on the ring gear created by elastic deformation (o)
Kxy Cross stiffness coefficient of oil film (N/mm) θpi Angles on the ith planetary gear (o)
Kyy Direct stiffness coefficient of oil film (N/mm) θs Angles on the center worm (o)
Kyx Cross stiffness coefficient of oil film (N/mm) ϕ Radial clearance (mm)



Lubricants 2023, 11, 161 16 of 17

Kspi
Meshing stiffness when the ith planetary

∆spi
Accumulated errors when the ith planetary gear

gear meshes with the center worm (N/mm) meshes with the center worm

KpiI
Meshing stiffness when the ith planetary

∆piI
Accumulated errors when the ith planetary gear

gear meshes with the ring gear, respectively (N/mm) meshes with the internal gear ring
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