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Abstract: In this article, we focus on utilising electrical impedance spectroscopy (EIS) for the assess-
ment of global and contact impedances in roller bearings. Our primary objective is to establish a
quantitative prediction of lubricant film thickness in elasto-hydrodynamic lubrication (EHL) and
investigate the impedance transition from ohmic to capacitive behaviour as the system shifts from
boundary lubrication to EHL. To achieve this, we conduct measurements of electrical impedance,
bearing and oil temperature, and frictional torque in a cylindrical roller thrust bearing (CRTB) sub-
jected to pure axial loading across various rotational speeds and supply oil temperatures. The
measured impedance data is analysed and translated into a quantitative measure of lubricant film
thickness within the contacts using the impedance-based and capacitance-based methods. For EHL,
we observe that the measured capacitance of the EHL contact deviates from the theoretical value
based on a Hertzian contact shape by a factor ranging from 3 to 11, depending on rotational speed,
load, and temperature. The translation of complex impedance values to film thickness, employing the
impedance and capacitance method, is then compared with the analytically estimated film thickness
using the Moes correlation, corrected for inlet shear heating effects. This comparison demonstrates a
robust agreement within 2% for EHL film thickness measurement. Monitoring the bearing resistance
and capacitance via EIS across rotational speeds clearly shows the transition from boundary to mixed
lubrication as well as the transition from mixed lubrication to EHL. Finally, we have observed that
monitoring the electrical impedance appears to have the potential to perform the run-in of bearings
in a controlled way.

Keywords: electrical impedance spectroscopy; EHL film thickness; roller bearings; lubrication
regime identification

1. Introduction

The energy efficiency and durability of machines and powertrains are of paramount
importance for fostering a more sustainable economy. A key strategy for attaining this
objective is the minimisation of both frictional losses and wear damage in bearings [1]. Ide-
ally, bearings operate in the so-called elasto-hydrodynamic lubrication (EHL) regime [2,3],
where a thin pressurised lubricant film fully separates the contacting surfaces, such that
both friction and wear are minimal. At high loads, low rotational speeds, or low lubricant
viscosity, however, mixed lubrication or boundary lubrication may occur, resulting in high
friction accompanied by a decrease in energy efficiency. For very high entrainment speeds,
shear heating takes place at the rolling contact inlet in the recirculation zone of excess
lubricant being repelled. This raises the oil temperature, affecting the oil viscosity and
resulting in a thinner lubricant film [4] and an increased risk for mixed lubrication.

The transition from boundary to full-film behaviour represents a dynamic process that
depends upon varying operational parameters. These parameters include rotational speed,
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loading, temperature, and corresponding viscosity, each of which may undergo changes at
different rates during machine operation. Given the importance of lubrication in terms of
energy efficiency and bearing lifetime, accurate and reliable knowledge of the instantaneous
lubricant film thicknesses under all operating conditions would be invaluable. In EHL
contacts, which maximally span a few square millimetres, film thicknesses are in the
range of 50 nm to 1.5 µm. Owing to the high rotational speeds, the pass-by time of the
roller contacts in the bearing falls within the range of 10−5 to 10−3 s, rendering in situ
measurement a challenging task.

Hence, this paper aims to contribute to this endeavour by exploring in situ mea-
surement techniques, and more specifically, the electrical impedance spectroscopy tech-
nique [5,6], to determine the film thickness in elasto-hydrodynamic conditions as well as
the breakdown of the oil film for mixed lubrication. Using such a technique (Figure 1), the
complex impedance Z of lubricated cylindrical roller thrust bearing is measured by apply-
ing an AC voltage over the entire bearing, incorporating all contacts with (theoretically)
uniform contact conditions. The technique provides rich information on the ohmic and
capacitive contributions of the impedance used to distinguish between full-film and mixed
lubrication regimes.
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1.1. State of the Art

In the pursuit of our goal, specific techniques for measuring in situ contact parameters,
such as film thickness, are most captivating and promising since they enable us to monitor
the lubrication condition in real operational scenarios. However, the advancement of such
in situ techniques is quite slow due to the challenging physical conditions inherent to EHL
contacts [7]. Broadly speaking, in situ measurement techniques for contact conditions can
be classified into three groups based on their measurement principle and the correlation of
their measured parameter to the desired characteristic within the EHL contacts. The three
categories encompass electrical [8], optical [9], and acoustic [10] methods.

Traditionally, EHL film thickness measurements are performed by means of optical
interferometric methods [11]. Although such methods are highly accurate, they rely on
a fully transparent raceway surface and, hence, are limited to classic ball-on-glass disc
laboratory setups, which are not necessarily representative of full metallic bearing contact
conjunctions. Acoustic methods, on the other hand, use ultrasonic waves to measure the
thickness of the oil film through opaque metal surfaces [12]. They offer non-intrusive
measurement but can be complex to integrate into a bearing due to the large sensor size,
and the resolution may not always be sufficient for small EHL contacts. Comprehending
the underlying principles and recognising the limitations of these techniques is crucial to
obtaining reliable results for real applications [13].

Electrical measurement techniques, finally, rely on the electrical conductivity of the
involved materials and surfaces, which makes them very well suited for metallic machine
components such as roller bearings, even in terms of in situ measurements under transient
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conditions. Traditionally, voltage discharge, electrical resistance, and capacitance methods
have been used as primary methods. Note that all of the aforementioned methods involve,
to some extent, the a priori knowledge of specific fluid properties, i.e., optical, acoustic, or
electrical, as a function of pressure and temperature.

In the 1950s and 1960s, electrical techniques were used to measure film thickness in an
attempt to evaluate whether the results from EHL calculations were plausible. The electrical
voltage [14,15] and resistance methods [16,17] enable the assessment of oil film breakdown.
The applicability of these methods is, however, limited to scenarios involving light loads,
very low speeds, and a simple linear geometry. Moreover, the success was limited due
to various issues with the calibration procedures to map the measured variables to a film
thickness in the EHL regime. As a result, these methods have found more significant use
in exploring the mechanisms of friction and wear under conditions of mixed lubrication
than EHL [18,19]. Conversely, the electrical capacitance technique assesses the central EHL
film thickness hc in the contact by gauging the electrical capacitance (Figure 2) [20–25], and
calculating the Hertzian capacitance CH, approximating the EHL contact shape as Hertzian
contact in conjunction with parallel surfaces, i.e.,

CH =
εOεr,Oil AH

hc
(1)

where εr,Oil is the relative permittivity of the oil, εO is the dielectric constant in vacuum,
and AH represents the Hertzian contact area.
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Instead of relying on previous correlation, Wilson [26] and later, Cen and Lugt [27]
addressed this challenge by generating a calibration curve for a specific load. For a given
lubricant, these authors conducted a sweep over a particular range of rotational speeds,
measuring the capacitance and bearing temperature. For each rotational velocity, the
measured capacitance was mapped against the film thickness calculated using Hamrock
and Dowson’s equation. This process established a relationship between film thickness
and capacitance, assuming that Hamrock and Dowson’s equation is sufficiently accurate
and reliable under the given conditions. The calibration relationship was obtained for oil;
however, the authors also applied the obtained correlation to measure the film thickness
for grease-lubricated bearings, assuming fully flooded lubrication conditions.

In 1996, Bartz [28] proposed a correction factor kC for the Hertzian capacitance
CH in order to take into account the capacitance contribution outside the loaded area,
i.e., CO. Indeed, the single contact capacitance in the bearing CK contains three individual
capacitances in parallel, which are Cinlet for the inlet zone, CH for the Hertzian contact zone,
and CCav for the outlet zone subject to cavitation (Figure 2).

CK = CO + CH = Cinlet + CH + CCav = kc ·CH (2)
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Note that the correction factor kC depends on the geometry as well as various operating
conditions (load, temperature, lubricant, etc.) and has a value between 3 and 4 in the case
of initial point contacts (ball on plate), as determined by Bartz [28].

The method was subsequently enhanced by Jablonka et al. [29,30]. In contrast to
Bartz [28], these authors demonstrated that oil film thickness could be accurately measured,
comparable to the precision of optical methods, by calculating explicitly the electrical
capacitances outside the loaded area CO, instead of lumping its effect into a correction
factor (detailed in Section 2.3). Note that these authors considered a fully flooded area
including a fully established inlet area Cinlet, and a cavitating area CCav [31–33], whereas
for starved lubrication conditions, the flooded area at the inlet of the contact will become
smaller [34,35] as well as the cavitating zone. Note that since the dielectric constant of
the lubricant depends on the contact pressure and temperature distribution, accurately
determining the film thickness from these measurements is challenging. For the specific
case of axial rolling element bearings, where all rolling elements are subjected to identical
conditions, measuring the global bearing capacitance Cbearing, allows for the inference of
the representative film thickness of all identical contacts.

Under mixed lubrication conditions, the electrical capacitance approach becomes
ineffective due to the partial collapse of the oil film. Each contact behaves more as a
resistance than a capacitance. Therefore, since 2010, the electric impedance has been
preferred to determine the lubrication film thickness [36–40] in EHL as well as the oil-film
breakdown occurring in mixed and boundary lubrication [40,41]. The measured impedance
consists of an ohmic (or resistive) contribution R and a capacitive contribution C. The ohmic
contribution becomes important in cases of direct metallic contact, whereas capacitance is
dominant in cases of full-film lubrication.

Schnabel et al. [38] conducted measurements of the complex impedance in EHL
contacts and under mixed lubrication conditions, aiming to simultaneously monitor the oil
film component (electrical capacitance) and the oil film breakdown component (electrical
resistance). However, no quantitative estimates were derived for the oil film thickness or
the breakdown ratio. In contrast, Nihira et al. [39] performed quantitative measurements
of both the oil film thickness and oil film breakdown ratio concurrently, employing a
metallic ball colliding with a plate with lubricating oil in between. Regrettably, due to
the uncertainty regarding the extent of the lubricating oil filling in the surrounding EHL
contact, they neglected the capacitance outside the loaded area.

Using an electrical model taking into account the capacitance in both the loaded (in the
contact area) and unloaded zones (outside the contact area), Maruyama et al. [42] (detailed
in Section 2.2) for an EHL point contact derived a mathematical expression for the oil film
thickness and oil film breakdown α, which is an indicator for the occurrence of metallic
contact in EHL contacts, and the relative magnitude of the resistive contribution due to
metallic contact to the entire impedance.

In 2018, Maruyama et al. [42] showed that the oil film thickness could be measured
with an accuracy comparable to that of optical interferometry for a laboratory ball-on-disc
configuration. In 2019, the same authors [43] applied the electrical impedance method to
deep-groove ball bearings lubricated with oil at room temperature. They simultaneously
determined the oil film thickness and breakdown ratio from the experimentally measured
complex impedance. Furthermore, the obtained values for the film thickness were com-
pared against those predicted by Hamrock–Dowson’s equation. In the high-speed range,
the measured film thickness values were lower than those predicted by Hamrock and
Dowson. An explicit explanation was not provided in their paper.

In 2023, Maruyama et al. [44] monitored the temporal evolution of the electrical
impedance of a thrust needle roller bearing. Initially, the film thicknesses obtained from
the impedance method were observed to be lower than those predicted by Hamrock and
Dowson. A non-zero positive value of the breakdown ratio α was observed, indicating
mixed lubrication conditions. However, after one hour, the oil film breakdown ratio
α decreased and the ‘measured’ film thickness tended towards the theoretical value of
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Hamrock and Dowson. This transient behaviour clearly marked the occurrence of a run-in
period for the new bearing.

Recently, in 2023, Yua et al. [45] used the electrical impedance method to determine
the frequency response of the EHL contact for different operating conditions using an
MTM traction apparatus (ball on steel disc, PCS Instruments). The results enable the
identification of equivalent circuit models by fitting parallel resistor-capacitor models.
Using high-accuracy optical interferometry measurements obtained in a ball-on-glass setup
under the same contact and lubrication conditions as in the MTM, the electrical impedance
measurements were correlated against the measured film thickness. This directly linked
the measured resistance and capacitance values to the value of the measured central oil
film thickness, without the involvement of calculation models.

The literature discussed above predominantly focuses on capacitance- and impedance-
based approaches. However, the majority of the literature leans towards the capacitive
approach for point contact measurements (ball-on-disc, or ball bearings), which entails
complex calculations. Currently, there is a lack of direct comparison between both the
method of Jablonka et al. and that of Maruyama et al. to reconstruct the film thickness from
capacitance and impedance measurements, respectively, taking into account the accuracy
and reliability for different contact loads, speeds, and oil temperatures. Furthermore, the
application of both methods to determine EHL line contact film thickness in roller bearings
is underexposed. Additionally, the cause of the increasing deviation of the reconstructed
film thickness versus the theoretical value of Hamrock and Dowson at higher speeds,
as observed by Maruyama, is not clearly reported yet. Finally, to date, there seems to
be no detailed information on the transition from ohmic to capacitive behaviour when
migrating from mixed to full-film lubrication, though such information would be valuable
for understanding load partitioning between the lubricant film and the asperity contacts.

1.2. Goal of the Paper

In the current study, we focus on the direct comparison between the capacitance-
based approach of Jablonka et al. [29,30] and the impedance-based approach of
Maruyama et al. [42–44] for determining the film thickness in the identical EHL line con-
tacts of cylindrical roller thrust bearings (CRTB). The results of both approaches are com-
pared, and their accuracy and reliability are evaluated. The reconstructed film thickness
results were compared to Moes’ EHL film thickness equation. The investigations also
consider a parametric analysis of the effect of axial load, speed, and supply oil temperature
on the measured impedance.

To investigate the reason behind the discrepancies between the film thickness recon-
struction and the theoretical values at higher speeds, shear heating effects were included.
Shear heating effects are inferred from direct frictional force measurement, oil, and bearing
temperatures in combination with the SKF model for frictional torque. Finally, the transition
from mixed to full-film lubrication is studied by examining the shift in behaviour from
ohmic to capacitive.

In the subsequent sections, we explore the essence of our study. Section 2, ‘Materials
and Methods,’ outlines the application of the equivalent electrical circuit for a single
EHL contact, the utilisation of the Maruyama and Jablonka methods, and details the
specifications of our experimental setup. Section 3 focuses on the ‘Design of Experiments,’
providing insights into the structured experiment employed in our research. Finally,
Section 4 unravels the ‘Results’ obtained through our comprehensive study.

2. Materials and Methods
2.1. Equivalent Electrical Circuit of a Single EHL Contact

In full-film lubrication, the lubricating film in between the metallic roller and raceway
surfaces behaves like an electrical insulator and hence acts as a capacitance [44,45]. How-
ever, under mixed (and boundary) lubrication, the metallic contact of surface asperities
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allows the conduction of electric currents. Hence, the contact behaves increasingly like an
ohmic resistor with an increasing number of asperity contacts.

As depicted in Figure 3, the equivalent electric circuit of a generic EHL line contact,
formed by a cylindrical roller with radius r and a plate, consists of a capacitive contribution
C and a resistive contribution R that are connected in parallel. The overall capacitance
C involves the capacitance CH in the loaded zone (assuming Hertzian conjunction with
apparent area AH and b half the contact width), supplemented with a contribution CO of its
direct environment outside the loaded area, i.e., the in- and outlet regions with a total area
AO. hc represents the central film thickness within the loaded contact area. The resistive
part R, in parallel with the capacitance, represents mainly the occurrence of metal-to-metal
asperity contacts and is inversely proportional to the apparent area AH . Breakdown of
the lubricant film inside the loaded zone will trigger asperity contact and, hence, mixed
lubrication [45]. The total impedance of the contact, as depicted in Figure 3, is thus given
by definition as

1
Z

=
1
R
+ jωC =

1
R
+ jω(CH + Co) (3)
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For the specific case of the axially loaded cylindrical roller thrust bearing studied in
this work, all rolling elements are subject to identical conditions, and hence identical EHL
contacts. It is important to note that skidding is not considered in this case, as the bearing
operates under pure rolling conditions during steady-state operation.

The equivalent electric circuit of the entire bearing (N rollers with 2 contacts per
roller), as shown in Figure 4, can be considered as N parallel circuits, each one consisting of
2 equivalent contact circuits, as provided in Figure 3, in series [42–44]. Hence, with Zk,u,
the impedance of the contact between the k-th roller and the upper raceway, and Zk,l , the
impedance of the contact between the k-th roller and the lower raceway, the total bearing
impedance is determined as

1
Zbearing

=
N

∑
k=1

1
Zk,u + Zk,l

=
N

2·Z (4)

in which Z represents the impedance of all identical contacts. Note that the cage is made
of an electrically insulating material. Therefore, the impedance of the cage is not taken
into consideration.

To determine the film thickness hc, Maruyama et al. [42–44] relied on the total impedance,
i.e., the resistance and capacitance together, whereas Jablonka et al. considered only the
capacitive contribution.
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2.2. Electrical Impedance-Based Film Thickness Reconstruction: Maruyama’s Method

Maruyama et al. [42–44] analytically derived Equations (5)–(8) for line contact EHL.
The oil film breakdown parameter α represents the resistive contribution to the entire
impedance (Equation (5)). hc denotes the film thickness within the loaded zone of the EHL
contact (Equation (6)), whereas h′ denotes the average film thickness, which is calculated
using Equation (7). If α = 0 (EHL) than average film thickness (h′) is equal to hc. However,
in mixed lubrication (α 6= 0), the average film thickness is less than hc.

α =
2R10cosθ

n|Z| (5)

hc =
8(1− α)2b2

π2r

(
1 +

√
1 + ϕ

ϕ

)2

(6)

h′ = (1− α)hc (7)

where ϕ represents the dimensionless number (Equation (8)).

ϕ = −8(1− α)b sinθ

π2εNLrω|Z| (8)

The electrical impedance Z = |Z|ejθ , with magnitude |Z| = |V|
|I| and phase angle θ,

given in the formula’s above, is obtained by measuring the electrical current as a response
to an imposed alternating voltage. The electrical base resistance R10 in Equation (9) is
defined as

R10 =
n|Z0|
2cosθo

(9)

in which |Z0| and θo in Equation (9) are, respectively, the magnitude and phase of the
initial impedance Z0 for a stationary lubricated contact where the oil film breakdown
factor α is unity. Once these parameters are determined at standstill, monitoring the
impedance during operation provides directly an estimation for the central and averaged
oil film thickness during EHL and/or mixed lubrication (Equation (7)) as well as for the
breakdown ratio (Equation (5)) [44].
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2.3. Capacitance-Based Film Thickness Reconstruction: Jablonka Method

The method of Jablonka et al. [29,30], initially developed via a ball-on-glass test
setup, has been applied to ball bearings (point contacts), as discussed in [35]. Since
Jablonka et al. [29,30] considered only the capacitive contribution of the contacts, Equation (4)
can be rewritten as

Cbearing = lim
R→∞

[
1

Zbearing

]
=

N

∑
k=1

Ck,u·Ck,l

Ck,u + Ck,l
=

N·(CH + C0)

2
(10)

Using Equation (1), the total bearing capacitance Cbearing for a bearing with equal
contact conditions for each roller/ball is defined as

Cbearing =
N
2

(
εr,OilεO

AH
hC

+ C0

)
(11)

from which the central film thickness hc can be obtained. Note that implicitly, the assump-
tion is made that the film thickness in the loaded area of the contact is uniform for both the
upper and lower raceways, such that in this region, the surfaces are nearly parallel.

The capacitance C0 = Cinlet + Ccav in the region outside of the loaded zone of the
contact (see Figure 2) is given by [29,30].

CO =
∫

AFlooded

εOεr,Oil

hC + hgap(x, y)
dxdy +

∫
ACav

εO
hC

εr,Oil
+

hgap(x,y)
εr,Air

dxdy (12)

Equations (11) and (12) are adjusted to accommodate the line contact model [46], incor-
porating the Hertzian area AH for a line contact and capacitance outside of the loaded
zone CO.

2.4. Measurement of Electrical Impedance of Roller Bearings

As mentioned previously, the test bearing in this work concerns a purely axially
loaded cylindrical roller thrust bearing, in which all contacts are assumed to be identical
and representable by the same electrical model of Equation (4), as illustrated in Figure 4.
The lubrication state for the EHL contacts in this bearing is typically defined by means of
the following three non-dimensional parameters, denoting the dimensionless speed, the
dimensionless load, and the lubricant parameter, respectively [47,48] (Figure 1).

U = ηour
E′R′

W = F
E′LR′

G = αEHLE′
(13)

in which E′ and R′ are the equivalent Young’s modulus and equivalent radii in the rolling
direction, respectively.

To determine the complex impedance Zbearing, a small AC voltage V(t) = |V|ej(ωt+θV)

is imposed over the bearing, and the resulting AC current I(t) = |I|ej(ωt+θI) through the
bearing is then measured by means of an oscilloscope, as illustrated in Figure 1. The
impedance Zbearing is then obtained as

Zbearing =
∣∣∣Zbearing

∣∣∣ej·arg(Zbearing) =
|V|
|I| ejθ (14)

with θ = θV − θI , the phase difference between V(t) and I(t).
Since 1

Z = 1
R + jωC, it becomes clear that the measured impedance is a function of the

alternating current frequency ω. For high frequencies, the contribution of the capacitance
is dominant, whereas for low frequencies, the contribution of the resistive part is dominant,
with the limiting case of a DC current (ω = 0), where Z = R.
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As in the initial step to identify the different lubrication regimes when going from
boundary to full-film lubrication, it is crucial to understand how the transition from ohmic
to capacitive behaviour varies under different combinations of U, W, and G. Therefore,
impedance Zbearing and phase angle θ measurements were recorded in a large frequency
range of 100 Hz to 1 MHz. The contact resistance R and the contact capacitance C are
identified by fitting the equivalent electrical RC model to the impedance spectrum ob-
tained via a frequency sweep [45,49,50]. The identified values for R and C were used
to discern the transition between the different lubrication regimes. For the same op-
erating conditions, Moes film thickness correlation was employed to have a quantita-
tive estimate of the lubrication regimes by comparing the film thickness to the average
surface roughness.

For film thickness reconstruction, overall bearing impedance Zbearing and phase angle
θ are measured at a constant frequency of 1 MHz for different operating conditions U, W,
and G. The central and average values of the oil film thickness were reconstructed using
both Maruyama’s and Jablonka’s method. Given that Maruyama’s method considered
impedance Z and phase angle θ for film thickness reconstruction, the measured raw data
Zbearing and θ were substituted in Equations (5)–(9). In the case of Jablonka’s method,
only the measured capacitance, i.e., C = 1

2π f Im(Z) , is considered, in accordance with the
literature [38,51]. This value is further used in the film thickness Equations (10)–(12). In
line with common practice in the literature, the bearing impedance Zbearing was measured
at a constant frequency of 1 MHz in order to obtain a dominant capacitive contribution to
the impedance, as seen in Equation (3).

To verify the central oil film thickness hc obtained by means of both methods under
investigation, it is compared with the theoretical value of hC by the correlations of Moes [52]
for a lubricant viscosity at the measured bearing temperature [35]. It is, however, well
known that some correction is required in order to account for the inlet shear heating in
fully flooded contacts [53]. Such correction is given in the form

hC = ϕT × hc,M (15)

hc,M is Moes central film thickness, and hC is central film thickness (Equation (15)) with
thermal shear ϕT correction factor. For ϕT = 1 isothermal conditions prevail, whereas for
ϕT < 1, thermal effects become increasingly important. For pure rolling conditions [54],
Equation (16) is used to calculate ϕT .

ϕT =
1

1 + 1.84× 10−9(Ndm)
1.28ηo0.64

(16)

However, in most rolling bearings, micro-slip inherently occurs in the finite-line EHL
contacts, making proper evaluation of the correction factor difficult [55]. In the recent work
of the authors, a detailed friction-based experimental procedure for thermal shear factor
was applied [4]. The same method has been used throughout this work.

To evaluate the lubrication regime in an EHL contact, the ratio of the calculated film
thickness and the surface roughness is considered (Equation (17)), and EHL generally
occurs for λ > 3, although this is not a universal value.

λ =
hC√

Rq,roller
2 + Rq,race

2
(17)

2.5. Experimental Setup

In this study, an electrical impedance measurement device from flucon fluid control
GmbH [49] was integrated into an in-house-developed vertical-shaft roller bearing test
rig, for which the details can be found [4]. The test bearing was a purely axially loaded
cylindrical roller thrust bearing (details in Table 1), such that all contacts could be assumed
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to be equal and representable by the same electrical model. At the bottom, the test chamber
is electrically insulated from the test rig by means of a ceramic thrust ball bearing. At
the top, the driving shaft is electrically insulated from the test chamber by integrating a
ceramic spacer in between the coupling flange and applying insulating bushings around
the flange bolts (Figure 5). The AC voltage (RMS amplitude: Vi = 0.6 V) is imposed on the
test chamber and the test bearing via a carbon brush in contact with the rotating shaft on
top and a fixed cable connected to the (stationary) test chamber.

Table 1. Test bearing properties.

Bearing SKF 81208TN: Cylindrical Roller Thrust Bearing

Dimension 40 × 68 × 19 mm

Length of Roller 9 mm
Roller end face curvature 0.50 mm

Roller Diameter 9 mm
Cage material Polyamide 6.6
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Bearing SKF 81208TN: Cylindrical Roller Thrust Bearing  
Dimension  40 × 68 × 19 mm 

Length of Roller 9 mm 

Figure 5. Overview of RBT and sectional view of the test bearing unit.

A separate lubrication unit supplies lubricant at a controlled temperature and mass
flow rate to the test bearing chamber. As a lubricant, FVA 3A (ISO VG100) oil is used, for
which the experimentally characterised properties are given in Table 2 and Figure 6.

Besides the electrical current measurements, the temperature of the bearing Tbearing
(PT100), the temperature of the supply oil at the inlet TOil,in, and the temperature of
the oil at the outlet TOil,out are also recorded. The frictional torque Mt is measured
via a lever arm attached to the bearing housing. A load cell is mounted on the elec-
trically insulated frictional arm between the test-bearing housing and the bottom sup-
port bearing to measure the tangential frictional force while excluding the shaft support-
bearing influence.
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Table 2. Properties of FVA 3A oil [56,57].

FVA 3A Units

Oil type Paraffin-based solvent raffinate

Density 884.1 kg/m3

Kinematic Viscosity at 40 ◦C 90.02 mm2/s

Kinematic Viscosity at 100 ◦C 10.41 mm2/s

Viscosity-pressure Coefficient
(at 200 MPa)

2.16 × 103 bar−1 @ 25 ◦C
1.58 × 103 bar−1 @ 80 ◦C

Relativity permittivity

εr ≈ −0.0012 T(°C) + 2.2061@ 0.2 GPa
εr ≈ −0.001 T(°C) + 2.2393 @1 GPa.

The measurements were carried out at
oscillating circuit frequencies of 40 kHz.

--

Dielectric constant of vacuum 8.85 × 10−12 F/m
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3. Design of Experiments and Methodology

The measurement Protocol 1 provides an overview of the experimental workflow. Prior
to the experiments, a continuous run-in procedure (see Section 4.1) was performed [58],
monitoring the evolution of the ohmic resistance and capacitance to identify the end of
run-in. All experimental tests reported in this work were conducted after this run-in period.
The methodology for studying average oil film thickness and friction in CRTB contacts is
explained in Algorithm 1.

For each set of operating conditions (U, W, G), the system is allowed to reach mechani-
cal and thermal steady-state conditions, implying a constant bearing and oil outlet temper-
ature, and steady-state frictional torques. Once in equilibrium, the electrical impedance Z,
the frictional torque Mt, the temperatures Tbearing, TOil,in and TOil,out are recorded for
about 30 min. The mean deviation of these variables is less than 1%. These experi-
ments are performed for two bearing loads (6.4 kN and 16 kN) resulting in corresponding
Hertzian contact pressures of 0.63 GPa and 1 GPa, respectively, two supply oil temperatures
TOil_in = 30 ◦C and TOil_in = 50 ◦C and rotational velocities ranging from 50 rpm to
2000 rpm.
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Algorithm 1 Measurement protocol

do run-in procedure
do determine the resistance of oil film breakdown area at standstill (U = 0, α = 1 in Equation (9))
for all U, G, W:

if Mechanical and thermal equilibrium/steady-state
do 1. Measure:

• Bearing impedance spectrum Z( f ) @ f ∈ [100 Hz, 1 MHz]
• Average bearing impedance 〈 Z(t)〉 @ f = 1 MHz
• Total frictional torque Mt
• Temperatures Tbearing, TOil,in and TOil,out

2. Calculate oil film breakdown α using (Equation (5))
3. Calculate central film thickness hC via Maruyama’s method (Equation (6))
4. Calculate central film thickness hC via Jablonka’s method (Equation (11))

4. Results
4.1. Run-in Procedure: Reaching Electrical Equilibrium

Before starting the measurement campaign, the fresh cylindrical roller thrust bearings
were run in, in order to allow the initial machining roughness to smooth out to a steady-state
condition [59]. This ensures stable impedance and film thicknesses during the experiments.
The surface roughness of the new rollers and raceways was measured as Rq,roller = 0.16 µm
and Rq,race = 0.22 µm, respectively, by means of 3D white light interferometry. The run-in
procedure was carried out at a constant rotational speed of 1000 rpm at a rather limited
axial load of 6.2 kN [58]. The impedance Z (Figure 7) was measured every 6 min in a
frequency range of 100 Hz to 1 MHz, and the mean value was calculated every 60 min,
i.e., after 10 measurements.
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Figure 8 shows the time evolution of the bearing capacitance Cbearing (Figure 8a)
and the bearing resistance Rbearing (Figure 8b), in the measured bearing impedance. It was
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observed that the capacitance slightly decreased over time, whereas the resistance increased
R ∝ 1

Aasperity
. This reflects the wear during run-in, which makes the metal-to-metal asperity

contact decrease over time. Approximately after 30 h of run-in time, the impedance reached
a steady state. The variance of the capacitance was about 2–3 pF, whereas the variance of
the resistance was 6–8 kΩ. This indicates the consistency and stability of the readings, with
minimal variation observed between tests conducted over a period of 28 to 32 h.
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It can be concluded that a stable lubrication condition had been established at the
contacts by the end of the run-in phase. The surface roughness of the roller and raceways
was measured after 32 h, providing Rq,roller = 0.15 µm and Rq,race = 0.18 µm, respectively.
Note the substantial decrease in the raceways’ roughness of about 18%.

4.2. Transition from Ohmic to Capacitive Behaviour over Lubrication Regimes

In order to ascertain the transition from mixed to full-film lubrication, it is imperative
to understand the variation in the ohmic to capacitive transition across different operating
conditions. Therefore, impedance measurements were recorded in a large frequency
range of 100 Hz to 1 MHz at different rotational speeds, as depicted in Figure 9. As the
film thickness increases, the impedance magnitude |Z| increases (Figure 9a), while the
impedance phase angle θ decreases (Figure 9b).

The raw data of the amplitude responses are adjusted to the curve of an ideal
RC element using least squares regression [49]. The resistive and capacitive contribu-
tions are obtained from the measured impedance and plotted in Figure 10. Using the
same experimental conditions, we have estimated the ratio of film thickness to surface
roughness (λ). This ratio serves as the basis for the placement of the dotted lines in
Figure 10.

The transition from boundary (ohmic) to full-film lubrication (capacitive) in bearings,
analogous to an RC parallel circuit, takes place as the bearings begin functioning, and
the lubricating film gradually forms between the contacting surfaces (capacitor starts
to charge).
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When the bearing operates under boundary lubrication (Figure 10 bottom; higher ca-
pacitance), individual asperity contacts act as short circuits, conducting electricity without
much resistance, and hence no voltage difference is witnessed between both metallic sur-
faces. Thus, in this initial state, the circuit behaves ohmic (Figure 10 top; lower resistance).
When increasing the rotational speed and, hence, migrating towards mixed lubrication, the
capacitance gradually decreases as the contact surface distance increases.

At the same time, the number of asperity contacts decreases, causing a decrease in
current passing through the bearing and an increase in resistance. Reaching full lubrication,
the circuit primarily exhibits capacitive behaviour.
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4.3. Impedance-Based Film Thickness Reconstruction: Maruyama’s Approach

First, we use the method of Maruyama et al. [42–44], to calculate the central film
thickness, taking into account the full impedance Zbearing, including the capacitive and
resistive contributions. Besides the film thickness, the breakdown of the lubricant film was
also assessed. Figure 11 presents the measured impedance and phase angle for varying
rotational speeds. Additionally, the bearing frictional torque Mt and bearing temperature
were measured (Figure 12) simultaneously.
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Figure 12a shows the increase in bearing temperature and behaviour of frictional
torque in two zones, whereas Figure 12b shows the frictional torque compositions (details
in Appendix A) as well as the shear inlet effect as a function of speed. A detailed explanation
can be found in [4].

The measured global bearing impedance (Zbearing) and phase angle were used to
calculate the average oil film thickness and breakdown ratio using Equations (5)–(9) of
Maruyama et al. [42–44]. The values for the oil film breakdown factor α are shown in
Figure 13a as a function of speed and load, whereas the reconstructed central film thickness,
as well as the values obtained with the correlations of Moes, are shown in Figure 13b.
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At high rotational velocities, an adequate lubricant film is established, separating the
roller and raceway surfaces. Hence, the oil film breakdown factor α is very low, with values
in the order of 10−4, indicating full-film EHL. At low rotational velocities, however, the
lubricant film is too thin to fully separate the surfaces. Thus, direct metallic contact of
opposite asperities occurs, resulting in a fast increase in the value of the oil film breakdown
factor α with several orders of magnitude up to 0.2 for the lowest rotational speed. It
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is worth noting that there is no clear-cut distinction between boundary lubrication and
mixed lubrication, as evident in Figure 10. This suggests that the α parameter may not be
particularly sensitive to this transition.

For mixed lubrication conditions (Figure 13b, Zone 1), the central film thickness,
obtained by Maruyama’s method, was found to be 6–8% higher in comparison to the
values obtained by the correlations of Moes. We emphasise, however, that the Moes
correlation is no longer valid, and hence reliable, in mixed lubrication for which corrections
would be needed. However, for full-film EHL (Figure 13b, Zone 2), the measured film
thickness in the speed range of 600 rpm to 800 rpm was observed to be only 2% higher
than the analytically calculated film thickness. Meanwhile, from higher speeds of 1500 rpm
onwards, Maruyama’s film thickness was 4–5% lower than the calculated one (Moes). This
is attributed to the viscous shear heating in the EHL inlet region, requiring a correction
factor ϕt for Moes’ correlation. Indeed, by correcting Moes’ central film thickness estimate
with the correction factor ϕt for shear heating effects, which was obtained from frictional
torque measurements (as explained in Appendix A), the deviation between both film
thickness estimates decreases to about 1.2 to 1.6% for higher rotational velocities, as shown
in Figure 14. Note that the measurement accuracy of the device is below ±1%.
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4.4. Capacitance-Based Film Thickness Reconstruction: Jablonka’s Approach

As explained in Section 2.3, the Jablonka method only considers the capacitance to
reconstruct the film thickness. Experiments were conducted under full-film lubrication,
where the oil film completely separates the bearing surfaces. Therefore, the imaginary part
Im(Z) of the measured Zbearing can be used to determine the contact capacitance [38,51]. As
argued by Bartz [28], the capacitance outside the loaded zone CO substantially contributes
to single-contact capacitance CK . Indeed, especially for increasing film thickness, the
contribution of CO should increase since the ratio of the non-loaded zones, i.e., the inlet
and outlet of the EHL contact, to the loaded zone, i.e., where deformation occurs, also
increases. This is confirmed in Figure 15a, which displays the ratio kc of the total contact
capacitance CK to the contribution CH as function of the film thickness. The greater the
film thickness, the more significant the impact on capacitance from regions outside the
loaded area. With an increased film thickness, the portion outside CH in CK also increases.
This also corresponds to the observations made in the literature [28,29,60]. Indeed, the
estimated film thickness using Moes’ [52] and measured capacitance follow (Figure 15b)
the same trends as reported by Wilson [26] and Lugt [27].
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A direct comparison of the film thickness reconstruction by Jablonka et al. [29,30]),
using capacitance measurements, with the values obtained via the correlations by Moes,
is shown in Figure 16a. Similarly to the impedance-based results of Maruyama et al., we
observe a reasonably good correlation between the film thickness values based on the
capacitance measurements and those obtained via the Moes fit with inlet shear factor
(Figure 16b). In the EHL regime, deviations between both range from −1.5% at lower
rotational speeds to a maximum of 1.6% at high rotational speeds.
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The results of the comparison indicate that both methods, the electrical approach
and Moes’ correlation, exhibit strong performance in predicting EHL film thickness. This
suggests a high level of reliability and accuracy in the proposed electrical approach for EHL
film thickness measurements.

5. Conclusions

In this article, we focussed on the use of electrical impedance spectroscopy to measure
the global and contact impedances in a cylindrical roller thrust bearing, with the aim of
determining a quantitative prediction of the lubricant film thickness and analysing the
transition from the ohmic to capacitive nature of the impedance when evolving from
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boundary lubrication to elasto-hydrodynamic lubrication (EHL). Besides the electrical
impedance, the bearing temperature and frictional torque are measured in a test bearing,
undergoing a pure axial loading for various rotational speeds and oil temperatures. The
measured impedance is translated into a quantitative measure of the lubricant film thickness
in the contacts, using both the methods of Maruyama et al. [42–44] and Jablonka et al. [29,30].
Moreover, the obtained film thicknesses are compared to the analytical film thickness
obtained from the correlation of Moes, taking into account shear heating effects at the
inlet. Additionally, we investigated the transition from boundary (ohmic) to full-film EHL
lubrication (capacitive) behaviour in bearings. The main conclusions in this work are
enlisted in the following:

• During the run-in phase of the bearing, the bearing resistance, reflecting the contact
resistance, was observed to increase with time to a stationary value, whereas the
capacitance was observed to decrease only slightly with time. This reflects the wear
during run-in, changing the initial surface roughness of both the raceway and the
roller, as proven by a priori and a posteriori measurements. Hence, monitoring the
electrical impedance appears to have the potential to perform the run-in of bearings in
a controlled way.

• An analogous trend was observed when migrating from boundary lubrication to mixed
lubrication and finally towards EHL lubrication. Indeed, inspection of the bearing
or contact impedance, and more specifically, the contact resistance and capacitance
for various bearing speeds, clearly shows the transition from boundary to mixed
lubrication as well as the transition from mixed to EHL lubrication. Although in
boundary lubrication the resistive component is quasi-zero, it is observed to increase
once mixed lubrication is established and film thickness increases. The capacitance, on
the other hand, displays the inverse behaviour. Once EHL is established, the resistive
contribution seems to increase at a much slower rate with increasing film thickness,
whereas the capacitive component only slightly decreases.

• Monitoring the film breakdown indicator α, proposed by Maruyama et al. [42–44], as
a function of increasing rotational speed, and hence film thickness, very small values
(< 10−4) were observed during EHL, whereas the value increases quickly with several
orders of magnitude during mixed lubrication up to an order of 10−1 in boundary
lubrication. The breakdown indicator α, however, did not show a very clear distinction
once transitioning from mixed to boundary lubrication.

• Comparison of the impedance-based and capacitance-based film thickness estimations
of, respectively, Maruyama et al. [42–44] and Jablonka et al. [29,30] to the analytically
estimated film thickness by Moes’ correlation, corrected for inlet shear heating effects,
revealed that both methods perform very well for EHL film thickness measurements.
Deviations of both methods to the values of Moes were in the order of 1–2%, which is
near the measurement uncertainty.

• As part of our ongoing research, our next step involves correlating measured resis-
tance and impedance with predictions of the true-contact area using the Greenwood–
Williamson/Tripp model. This correlation will bridge the gap between observed
electrical behaviour and surface roughness during the operation, enhancing our un-
derstanding of the tribological dynamics of rolling bearings.

6. Patents

The proposed test setup is under IP protection and covered in European patent
EP4269827A1.
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Nomenclature
b Hertzian half-width contact (m)
f AC frequency (Hz)
hC Central film thickness of the oil (m)
hgap Indentation of the Hertzian contact (m)
h′ Average oil film thickness (m)
hc_M Moes central film thickness (m)
j Imaginary unit
kC Ratio of Ck/CH
r Roller radius (m)
ur Mean surface velocity (m/s)
t Time
w Load-per-unit length (Nm)
AH Area of the Hertzian contact (m2)
AFlooded Flooded area (m2)
ACav Cavitation area (m2)
AO Apparent contact area (m2)
CRTB Cylindrical roller thrust bearing
C Capacitance pF
Ck Single-contact capacitance (pF)
CH Hertzian contact capacitance (pF)
Cinlet Inlet zone capacitance (pF)
Cbearing Bearing capacitance
CFlooded Area filled with oil and its capacitance
CCav Cavitation area and its capacitance
CO Outside loaded area capacitance
E′ Equivalent Young’s modulus (Gpa)
EHL Elasto-hydrodynamic lubrication
F Applied load (N)
|I| Amplitude of alternating current (A)
L Length of the roller (m)
Mt Global frictional torque (Nm)
Vi RMS input voltage (V)
Mt Global frictional torque (Nm)
N Number of rolling elements
RBT Roller-bearing tribometer
R Resistance (Ohm)
Rq,roller Root mean square of roller surface roughness
R,race Root mean square of raceway surface roughness
R10 Resistance of the breakdown area under a stationary contact
R1 Resistance in breakdown area under a dynamic contact
SRR Slide-to-roll ratio
TEHL Thermo-elasto-hydrodynamic lubrication
Tin_c Temperature of oil at the entry of the Hertzian contact (◦C ).
Tbearing Bearing temperature (◦C)
TOil_in Oil inlet temperature (◦C)
TOil_out Oil outlet temperature (◦C)
Tbearing Bearing temperature (◦C)
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U Dimensionless speed parameter
|V| Amplitude of alternating voltage (V)
W Dimensionless load parameter
Xc Reactance of the capacitor (Ohms)
Z Bearing impedance (Ohms)∣∣∣Zbearing

∣∣∣ Modulus of complex impedance under dynamic contact conditions (Ohms)

Zk,u and l Single-contact impedance upper and lower raceway
ηo Operating viscosity of the oil at atmospheric pressure (Pas)
α Oil film breakdown
θ Phase angle under dynamic contact (degree)
θo Phase angle under stationary contact (degree)
θV Voltage component at 90 degrees
θI Current component at 90 degrees
ϕ Dimensionless number
αEHL Pressure viscosity coefficient of lubricant (Pa−1)
εO Dielectric constant of vacuum
εr,Oil Relative dielectric constant of oil
εair Dielectric constant of air
δ Probability of the contract for an asperity with height
βo Temperature− viscosity coefficient of the lubricant (◦C )
λ Film parameter
ω Angular frequency of AC voltage (rad/s)
ωc Cut-off frequency
ϕT Thermal reduction factor of raceway

Appendix A

Since the global friction (Mt) of the test CTRB is being measured, it primarily consists
of the significant contributions from rolling resistance torque (Mrr) and sliding torque (Msl)
while minimising drag losses.

Mt ≈ ϕtMrr + Msl (A1)

Using the SKF model (Equations (A3)–(A6)), the frictional torque of the sliding (Msl)
and rolling contact (Mrr) is computed at the same experimental operating conditions and
subtracted from the measured total frictional torque Mt (Equation (A6)).

Msl = Gslµsl (A2)

µsl = ϕblµbl + (1−ϕbl)µEHL (A3)

ϕbl =
1

ex2.6·10−8(Nηo)
1.4dm

(A4)

Mrr = ϕtGrr(vN)0.6 (A5)

ϕt =
Mt −Msl

Mrr
(A6)
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