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Abstract: The driving and resistance torques of some rotating machinery for industrial applications
are nonstationary and affect system dynamics. Under such operating conditions, coupling between
torsional and lateral vibrations may become significant for drive lines supported by hydrodynamic
bearings in particular design configurations. Indeed, the occurrence of fluid–structure interactions
causes a reduction in the stability threshold of the journal bearings. A hypothesis based on Hopf
bifurcation theory (HBT), which justifies how the coupling phenomenon develops, is validated by
means of overall experimental observations and a suitable numerical model. When the pulsating driv-
ing torque induces significant angular speed oscillation, the rotor-bearing system lateral operating
response becomes more complex, and bearing instability onset is detected. Such observation proves
the influence of bearings in converting torsional oscillations to lateral vibrations. Particularly, during
run-up and run-down tests, localized hysteresis is observed in trends of fundamental order contents.
The numerical model of the hydrodynamic bearings solves the Reynolds equation in unsteady condi-
tions to quantify the lateral vibrations amplitude in the presence of both angular speed oscillation
and dynamic perturbation. The proposed approach proves the onset of torsional–lateral vibration
coupling due to hydrodynamic bearings, to a certain extent. The detected hysteresis phenomena can
also be explained by the onset of journal bearing instability.

Keywords: flexible rotor-bearings systems; hydrodynamic journal bearings; experimental
non-smooth dynamics; lateral-torsional coupling; hysteresis; jump-up; fluid–structure interaction;
FEA; lubrication analysis

1. Introduction

The distinct behavior of rotordynamic components may strongly affect the perfor-
mance of a mechanical system and, more specifically, of a rotor-bearing assembly. As a
consequence, the dynamic response of the machine may become more complex and less
predictable by means of theoretical and numerical classical models, as in the case of rotors
supported by aerodynamic bearings [1,2].

The study of the dynamics of rotor-bearing systems with reference to their stability
and torsional–lateral vibration coupling has been the subject of extensive research [3] and
still requires work.

1.1. Nature of the Issue

Hydrodynamic journal bearings play a significant role in determining the stability
threshold of real-size rotors when they are forced to work far from their on-design con-
ditions [4]. Indeed, in specific industrial application cases, some irregular external or
internal loads, capable of influencing the rotational speed and not properly considered in
journal bearing preliminary design, may modify the dynamic stability threshold of such
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hydrodynamic supports. For instance, an unsteady component in the driving torque or
variable reduced inertia that causes a significant torsional response may modify journal
bearing vibrational behavior and might even lead to a coupling between shaft line torsional
and lateral vibrations. In such cases, the detected system response may become anomalous,
with experimental evidence of hysteresis and jump-up between run-up and run-down
curves. The subsequent investigation becomes very complex, as it is not trivial to identify
and isolate the causes of such unexpected behavior. Similar instability phenomena are
deeply investigated in the present work by analyzing the numerical response of a sample
drive line in comparison with overall experimental results. Indeed, their practical implica-
tion may become very influential. For example, when vibration amplitudes’ overall values
must be optimized, the above-mentioned behavior makes it very challenging to improve
system dynamics.

When investigating the dynamical behavior of complex mechanical systems involving
several degrees of freedom, under given external conditions, the operational response can
also be ascribable to coupling phenomena. Their entity may vary in a significant way, caus-
ing more or less marked cross-coupled behavior. In some cases, such operating response
might even be related to hysteresis phenomena, which cannot be simulated by means of
classic linear models. A typical example is represented by specific rotating machinery
applications, whose response is not easily interpretable by means of standard aprioristic
knowledge, as shaft torsional and lateral dynamics are not completely independent. In the
most recurring case, as reported in [5,6], the rotor torsional response is influenced by lateral
vibrations. Indeed, the technical literature concerning this topic can be divided into two
main classes, where the first category includes works investigating the influence of lateral
vibrations on the torsional response. Particularly, some papers ([7,8]) present examples
where such coupling is due to the presence of gearboxes or complex devices like multi-disk
mechanical systems. Furthermore, in the case of weakly damped rotor systems, a related
instability onset may influence the machine functioning [9]. Lateral vibrations also affect
the torsional response in other cases [10–12], where the cause is identified in the mechanical
unbalance, which makes up the main external force acting on the system. In [11], such
experimental evidence is also confirmed by resorting to finite element (FE) models.

In the literature of the second category, more related to the present work, the coupling
mechanism direction is different in that the energy is transferred from torsional to lateral vi-
brations. The first example is reported in [13], where the torsional–lateral vibration coupling
is due to the presence of an interposed gearbox. Differently, in [14,15], it is due to rubbing
between the rotor and frame caused by a cracked shaft and rotor anisotropy, respectively.

If strong non-linearities occur, the onset of a hysteresis loop due to the coupled lateral
and torsional response leads to a different relationship between run-up and run-down
curves [16]. The coupled torsional–lateral dynamics have also been studied both analytically
and experimentally in [17], where the case of a motor pump assembly is considered.

Reference [18] investigates both numerically and experimentally (by means of a
custom-designed prototype) the interaction between lateral and torsional vibrations caused
by mass unbalance. It may be due to system intrinsic coupling between lateral and tor-
sional structural dynamics or discontinuous friction torque. Furthermore, the paper proves
that an increase in the mechanical imbalance can lead to a stabilization of the torsional
response, thus making the friction-induced limit cycle disappear. The authors of [19] have
performed a numerical investigation about the vibrational response in a gear-rotor-bearings
system, where the influence of gear eccentricity fluctuations on coupled torsional–lateral
behavior is considered by varying the gear mesh stiffness in the assessment of the dynamic
system response.

The work [20] deals with the effects of geometrical non-linearity due to large rotor
overhang, which modifies the operating mode shapes causing the onset of a hysteresis cycle
between run-up and run-down curves. Paper [21] deals with the numerical identification of
the instability threshold speed in two different hydrodynamic journal bearings test bench
arrangements. In the former, the onset of instability occurs at the characteristic oil-whip
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frequency, while in the latter, unstable conditions arise at a lower speed. Such an example
proves that, since the oil-whip phenomenon is the only fluid-induced instability usually
considered in the design phase, there is experimental evidence that stability thresholds are
not correctly predicted by design calculations. In this regard, a deeper understanding of
the instability mechanisms affecting hydrodynamic journal bearings is required.

Reference [22] investigates both analytically and numerically coupling phenomena
due to hydrodynamic and gyroscopic effects in rotors supported by plain (cylindrical)
and tilting-pad bearings. Indeed, although hydrodynamic journal bearings introduce
high damping in the rotor-bearing system, they also involve the cross coupling of rotor
translational motions, which is one of the main sources of oil-induced instability. The
inherent nonlinearity of hydrodynamic journal bearings turns out to be significant for
relative eccentricities larger than 0.6. Indeed, in such working conditions, most existing
linear models cannot reliably predict the journal trajectory. Such strong nonlinearities
involving cross coupling behavior are the main sources of the complex dynamic phenomena
encountered in rotor-bearing systems.

Other studies are specifically aimed at determining the rotordynamic stability range
and, particularly, the threshold values of the speed or external perturbation amplitude. For
instance, the authors of [23,24] have assessed the stability threshold of rotor-bearing systems.
In addition, they have experimentally observed a hysteresis cycle, which has been accurately
simulated by a numerical method based on Hopf bifurcation theory (HBT). The authors
of [25] have numerically studied the effect of damping on the hydrodynamic bearings of
an actual industrial rotor-bearing system (i.e., steam turbine). In [26], the effect of rotor
flexibility is added to the same numerical model proposed in [23,24] to assess how it affects
the rotordynamic system stability. Again, in [27], such numerical approach is applied to the
particular case of floating ring bearings, which allow, in equivalent operating conditions, a
wider rotordynamic stability range in comparison with conventional journal bearings.

Finally, reference [28] presents an insight into the influence of radial clearance on
journal bearing stability. It shows that increasing the clearance enlarges the rotordynamic
system stability threshold, all other conditions being equal.

1.2. Aim of the Work

The goal of the study is to understand if torsional oscillations can affect lateral vibra-
tions in a drive line and, if so, which phenomena are involved in such behavior. Particularly,
the focus is a phenomenon that may explain the influence of lubricant film in the clearance
of hydrodynamic journal bearings on the dynamic coupling between the torsion and lateral
motions of the shaft.

For this goal, a specific simulation model is developed to interpret results obtained by
means of experimental tests on drive lines of different machines. In any case, the related
measurements, all covered by confidentiality constraints, will not be reported, and only
their interpretation in the form of unspecific and non-dimensional trends will be discussed.
The relevant information is sufficient to depict the physical phenomenon and to devise
numerical simulations aimed at interpreting the behavior of the machines that operate in
the conditions explained in the following.

The phenomenon is not specific to a particular machine and, for given design con-
ditions (identified in the following), can be observed in drive lines for various field of
applications (marine, turbomachinery, automotive), where a rotor is supported by hydrody-
namic journal bearings and is driven by a motor characterized by a non-stationary torque
profile. In such cases, by analyzing the system response to pulsating torque in run-up and
run-down tests, where the shaft line angular speed was varied in a well-defined angular
speed range, a non-deterministic trend in the synchronous lateral response, typical of non-
linear systems, has been experimentally observed. The presented investigation must be
developed from scratch, since in the literature, there is not much evidence of energy transfer
from torsional to lateral vibrations, except in the presence of an interposed gearbox [13].
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The numerical validation of the presented theory is performed by means of suitable
in-house-developed FE codes in order to assess if the experimentally observed angular
speed perturbation can actually affect the shaft line response. Particularly, a hydrodynamic
bearing model is developed to investigate the journal instability onset within cylindrical,
polylobate, and tilting pad radial hydrodynamic bearings. From a theoretical point of
view, two mechanisms are likely to occur, which can cause sub-synchronous instability
inception within hydrodynamic bearings, that is, an angular speed fluctuation or an external
rotating load applied to the journal. Both are complementary to the traditional coupled
fluid–structure instability occurrence, which consists in an oil-whip onset starting from
classical oil-whirl inception due to a high Sommerfeld number (e.g., low external loads
can cause classical oil-whirl onset). First, a benchmark cylindrical hydrodynamic bearing
whose journal is affected by an angular speed perturbation is investigated to assess if such
coupling phenomena can be effective in destabilizing journal behavior. In the performed
simulations, the entity of such coupling between torsional and lateral vibrations is assessed
with respect to angular speed perturbation by varying its dynamic characteristics within
the whole sub-synchronous frequency range. Afterwards, the same numerical procedure is
performed considering solely the effect of a dynamic perturbation due to a sub-synchronous
rotating force by assessing the journal orbit response with respect to its input frequency.

After the coupling existence has been proven, different types of radial bearings are
perturbed with reasonable angular speed fluctuations computed for the critical design
conditions of the rotor-bearing system.

According to the results of the study, the above-described coupling mechanisms
explain the localized hysteresis cycles observed between run-up and run-down tests in the
synchronous lateral vibration component diagram. Indeed, such hysteresis phenomena are
the consequence of a jump-up between the detected vibration amplitude run-up and run-
down curves, which are not directly caused by the angular speed perturbation in journal
motion; indeed, the most efficient destabilizing mechanism is the dynamic perturbation,
which is mainly related to the driving torque ripple and whose effect is amplified at
half of the shaft line rotating frequency (0.5X); moreover, such finding agrees with the
basic numerical investigation previously conducted on the cylindrical hydrodynamic
bearing, which exhibits a maximum journal orbit amplification at a 0.5X order. Thus, the
subsequent variation in the rotordynamic stability threshold of the radial bearings justifies
the detected system anomalous response. Finally, the design conditions that cause the
described phenomena are identified.

2. System Layout and Model

Coupling phenomena have been observed in drive lines connected to engines char-
acterized by strongly pulsating torque (e.g., asynchronous motors). In the following, the
involved rotor-bearing systems are suitably schematized by means of a lumped parameter
model that identifies the most influential physical parameters or their relationship.

2.1. Layout of the Drive Lines

Although complexity can increase the occurrence of non-linear phenomena, related
experimental findings are considered independent of the specific machine, since experi-
mental observations belong to different types of machines. Therefore, if complex non-linear
behaviors are excluded, the corresponding layouts can always be summarized by a motor
matched with a shaft (with no interposed gearboxes) and its connected inertial load.

The studied elementary layout of the drive line shown in Figure 1 includes two drive
shafts. The former, the motor shaft, is directly or rigidly connected to the motor, while
the latter is integral with the inertial load and is referred to as the driven shaft, as it is
moved by the former. Generally, in a drivetrain, driving and driven components cannot be
connected directly to allow for variations in their alignment and distance. Consequently,
the connection between motor and driven shafts cannot be carried out by means of rigid
couplings (e.g., bolted and sleeve joints), and proper joints must be adopted (e.g., universal
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joints, jaw couplings, or elastic joints and splined or prismatic joints). The simple layout of
Figure 1 assumes the use of elastic or universal joints to permit at least axial misalignment.
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Figure 1. Overall layout of a rotor-bearing system when the motor and load are connected by means
of a joint.

All the experimentally analyzed drivetrains can somehow be reduced to the layout
scheme in Figure 1. They are driven by induction motors piloted by an inverter, which
allows by means of adequate settings for the introduction of low-frequency components in
the exerted mechanical torque so that it is fitted to excite the system first torsional vibration
mode. Consequently, it can create working conditions characterized by the pulsating
angular speed.

2.2. Lumped Parameter Model

The analysis of the drive lines characterized by the overall layout in Figure 1 requires
suitable lumped parameters for each component.

From the point of view of dynamics, both drive shafts are simulated by means of their
moment of inertia and mass, notated as Jm and mm for the motor shaft and as Jd and md
for the driven shaft. Since the mass of the motor is partially carried out by suitable inner
supports, mm includes only the remaining part which loads the motor shaft bearing. In the
tested driven rotors, as in many applications, the motor inertia Jm is much lower than Jd.

The values of the above-mentioned simulation parameters relevant to the real ma-
chines tested are covered by confidentiality and cannot be reported. Differently, the data
relevant to a small rotor-bearing system are reported (Tables 1 and 2) to carry out the sample
calculations proposed in Sections 4.5 and 5.4 according to a method that has provided
results in acceptable agreement with the experimental observations.

Table 1. Parameters of a rotor-bearing system dynamic model for the calculation example.

Parameter Description Symbol [unit] Value

Joint stiffness Kj [Nm/rad] 7.41
Moment of inertia of motor (or motor shaft) Jm [kg m2] 0.001125
Moment of inertia of load (or driven shaft) Jd [kg m2] 0.1125

Assumed motor torque ripple amplitude (peak to
peak) at the simulation speed ∆Mm [N m] 1

Computed motor shaft angular speed oscillation
amplitude (peak to peak) at the simulation speed ∆ωm [rpm] 515.46

Computed critical (natural) torsional frequency
(equal to bending frequency) ωt [Hz] ([rpm]) 12.98 (779.13)

Simulation speed equal to whip speed ω [rpm] 1558.3
Shaft overhang (distance between motor bearing

and motor shaft end) d [mm] 35

As far as torsion is concerned, the resulting lumped parameter model is a double
degree of freedom (2-DOF) system referred to as a “double torsion pendulum”. The
parameters of such torsional model equivalent to the rotor layout in Figure 1 are the two
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moments of inertia Jm and Jd and the unknown torsional stiffness Kt of the joint connecting
the two inertias. Particularly, only the stiffness of the joint Kj is considered, as it is assumed
to be much lower than the stiffness of each shaft. This essential assumption will be discussed
again in Section 5.5.

Table 2. Geometrical parameters of the example motor bearings and operating conditions at the onset
of oil-whip (1558 rpm).

Parameter Description Symbol [unit] Value

Bearing diameter D [mm] 25
Bearing length L [mm] 35

Aspect ratio L/D 1.4
Nominal (assembled) radial clearance cb [mm] 0.1

Relative clearance 2 cb/D 0.008
Pad preload (four-lobe bearing) mp 0.9

Pad preload (cylindrical bearing) mp 0.0
Supply axial groove circumferential span θg [deg] 10

Supply pressure ps [Pa] 10,000
Oil viscosity µL [Pa s] 0.0251

Rotation speed ω [rpm] 1558.3
Rotor weight supported by the bearing W [N] 10.6

Rotating load amplitude ∆Fr [N] 16.49
Speed variation amplitude ∆ω [rpm] 515.46

Rotating load and speed variation frequency ωt [Hz] ([rpm]) 13.0 (779.15)

The dynamics of such torsional system can be analyzed by solving the following
system of equations:

Jm
d2θm
dt2 + Kt(θm − θd) = Mm

Jd
d2θd
dt2 + Kt(θd − θm) = Md

, (1)

where the angles θm and θd measure the rotation of the motor and driven shaft, respectively,
while Mm and Md are the corresponding applied torques. Usually, the driven shaft torque
is much lower than the motor torque, so Md = 0 is assumed.

Accordingly, the fundamental torsional vibration mode of the model is characterized
by an opposing motion of the two inertias, whose natural torsional frequency is

ωt =
1

2π

√
Kt(Jm + Jd)

Jm Jd
. (2)

2.3. Critical Design for the Coupling of Torsional and Lateral Vibrations

It is known that a crucial condition for the stability of a rotor supported by hydrody-
namic bearings occurs when its angular speed ω is twice the critical flexural speed ωf, as the
onset of oil-whip may be triggered and persist at all higher speeds [29]. Such condition will
be denoted as the “whip speed” in the following, while the theoretical speed of the journal
precession due to oil whirl, equal to ω/2, will be referred to as the “whirl frequency”.

A torsional oscillation or “kinematic perturbation” at frequency ωt can be excited
by a pulsating torque with a corresponding frequency content. If the critical torsional
speed ωt is very close to the bending one ωf, at the whip speed, the frequency of such
kinematic perturbation becomes ωt = ω/2. In this regard, Section 5.2 numerically proves
that a kinematic perturbation has the maximum influence on bearing stability when it
occurs at the whirl frequency.

Therefore, a rotor design that fulfills the condition ωt = ωf can become very critical
when a source of pulsating torque with large energy acts on the rotor, as for rotation speeds
higher than the whip speed torsional vibration can be effectively turned in lateral vibrations
by hydrodynamic bearings.
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Figure 2 shows the stability map in a scheme of a cascade plot for such critical design
of the rotor-bearing system. The instable working region (in light red) exists for operational
speeds higher than the critical (bending or torsional) speed up to the nominal speed ωn
and can involve subsynchronous or synchronous responses, as studied in the next sections.
The whip speed coincides with the second critical speed in rotors of complex machines.
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In actual machines as well as in all the drive lines from which the observations are
retrieved, the coupling between torsional and lateral vibrations has been spotted when the
above-explained critical design condition (ωf = ωt) is met.

3. Experimental Observations

The overall interpretation of the experimental results observed in rotor-bearing sys-
tems for different applications is presented by sketching the typical trends of non-dimensional
parameters. Due to confidentiality issues, the measurements carried out on actual machines
and test devices cannot be presented.

3.1. Identification of the Vibrating System

The experimental identification of the most significant lateral and torsional vibration
modes (i.e., the ones more likely to affect the system operational response to a large extent)
is required to ensure the complete equivalence from the point of view of the dynamic
behavior between the real system and an equivalent model.

As far as torsional vibrations are concerned, the first torsional mode should be the
only significant one in the system operational response. Combining this information with a
survey of the shaft line actual distribution of inertia and stiffness allows for the assumption
that in the first approximation, the tested systems are equivalent from the torsional point of
view to the lumped parameter model of a double torsion pendulum described in Section 2.2.

In order to find the system torsional natural frequency ωt, two different experimental
procedures have been used, i.e., an impact test [30] and an operational one. The impact test
has been performed on the tested shaft lines at zero speed in free–free conditions by acting
on the rotational degree of freedom [31]; the experimental modal analysis has allowed us
to identify the first torsional vibration mode of each shaft line and to check out that the
relevant shape is compatible with the equivalent torsional model. Such prior identification
of the torsional vibration mode has been validated later by means of the operational test,
which consists in an instantaneous shutdown of the motor during a run-up test. The
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shutdown causes a sudden active torque variation from a run-up average value to zero
and thus introduces broadband energy into the system. Consequently, the system relevant
torsional response includes a significant contribution of the structural torsional vibration
mode. For some rotors, such response in a transient regime may show spectral contents
with a time-dependent frequency characteristic due to the influence of the induction motor
magnetic field on the overall shaft line stiffness. Particularly, such phenomenon can occur
when the joint is considered (as assumed in Section 2.1), as systems with not enough stiff
mechanical couplings can be extremely sensitive to the electromagnetic effect, due to the
considerable interaction between the additional torsional mode and the purely structural
one [32]. Furthermore, in the equivalent torsional model, the system damping from both
mechanical coupling and magnetic contributions can be neglected. Indeed, the damping of
mechanical coupling is negligible due to the internal damping properties of joint materials,
while the magnetic one is not relevant for system natural frequencies identification, as also
suggested in [32].

Once ωt has been identified and the equivalent torsional model is validated, the tor-
sional stiffness Kt can be computed by means of Equation (2). As mentioned above, in
some of the tested rotors, the magnetic field exerted by the electric motor considerably
influences Kt so that the shaft structural and magnetic stiffness are comparable and per-
ceivable coupling between structural and magnetic phenomena exists. In such cases, the
magnetic stiffness and additional damping must be estimated by analyzing operational
electric parameters, in agreement with [32]. By considering such an issue, the double
torsion pendulum has turned out to be a valid model for all the experimental tests yielding
the observations in this study.

The validity of the relevant two-degrees-of-freedom equivalent system allows for
the following simplifying quantitative considerations. The torsion angles of motor and
driven shafts can be different, and their angular speeds are inversely proportional to
the corresponding inertia moments due to the angular moment conservation principle.
Therefore, the angular speed of the motor shaft is scaled with respect to the driven shaft
one of a large factor, since for the tested applications, Jm is always much lower than Jd.
This allows for assuming that the driven shaft side is characterized by a negligible angular
speed oscillation such that only the motor bearing is responsible for coupling torsional and
lateral vibrations, as experimentally verified.

3.2. Hysteresis

Run-up and run-down tests are conducted in the whole operational field of the angular
speed with constant average acceleration or deceleration intensities by driving each shaft
line with a dynamic torque sufficient to significantly excite a system torsional response.

As an example, Figure 3 reports a sample of a Bode diagram of the frequency response
(magnitude and phase) of the fundamental component (synchronous response) of journal
vibrations. Although the relevant plots, roughly sketched to display the phenomenon
effectively, are not extracted from real measurements due to confidentiality issues, their
overall trend agrees with real test cases. The Bode diagram evidences the presence of
localized hysteresis phenomena that make their onset in the second part of the run-up test,
beyond the system first torsional critical speed. Differences between the amplitude and
phase are found between run-up and run-down tests in a well-defined rotational speed
range [3]. The strong amplification evidenced in Figure 3 during run-up at a rotational
speed equal to 2 ωf, which considerably increases the loss of energy in the hysteresis loop,
is not due to the second critical bending speed. Indeed, the relevant mode does not affect
the fundamental vibration but only the vibration component at 2X frequency. Differently,
the high peak in the amplitude at speed 2 ωf (whip speed) is ascribable to the jump-up
phenomenon explained in Section 4.1.

Such an operational system response cannot be simulated by means of classical linear
models; therefore, it is necessary to employ more advanced theories which involve fluid–
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structure interactions (coupling phenomena between hydrodynamic journal bearings and
shaft line rotordynamic behavior), as reported in Section 4.
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The difference between the run-up and run-down test curves in Figure 3, which
enclose the hysteresis area highlighted by the green hatching, is an indicator of a typically
non-linear response. The technical literature reports many cases of shaft-lines with no
interposed gearbox where a similar behavior is described, but none of these is comparable to
the presented case study. For instance, in [20], a rotor system is considered where hysteresis
appears in the synchronous lateral response due to significant shaft line overhang. Indeed,
it can cause large dynamic deformations.

In a rotor-bearing system, non-linearity sources can be generally reconducted to
shaft line misalignments [33], tribological problems (friction in boundary, mixed or hy-
drodynamic lubrication regime), and material non-linearities (inhomogeneous stiffness
distributions causing mechanical imbalance and coupling). In the present case, hysteresis
is due to different causes. While material non-linearities are not responsible, since all the
components are correctly designed and the deformations are not significant, misalignments,
imbalance, and hydrodynamic bearings can be influential. Indeed, the potential unstable
behavior of hydrodynamic journal bearings can cause local hysteresis, as reported in the
literature [21,22], and, in turn, misalignments can influence the bearing behavior.

3.3. Vibration Analysis

For all the observation cases, time-frequency analyses of various measured signals have
been performed by means of short-time Fourier transform (STFT) in the operational field of
interest and in a large frequency range in order to capture all relevant spectral contents.

Figures 4 and 5 sketch typical cascade plots of journal lateral vibrations in run-up and
run-down tests, respectively. The STFT of the journal lateral response detected in run-up
tests have evidenced that the synchronous response due to shaft imbalance represents in
all the test cases the main component from an energetic point of view. For the test cases
relevant to complex machines, spectral contents with lower energy appear, including 1X
higher multiples (e.g., 2X, as reported in the schemes). In addition, the same cascade
plots show spectral contents with significant energy in the sub-synchronous range, which
exhibit lower and comparable energy levels with respect to the 1X component and its
integer multiples, respectively. At speeds higher than 2 ωf, the response frequency of the
detected sub-synchronous spectral content remains locked to a frequency value close to ωf.
Therefore, the corresponding phenomenon can be interpreted as oil-whip. Usually, below
the whip frequency, oil-whirl is visible on a 0.5X order. Differently, as shown in the sketch



Lubricants 2024, 12, 82 10 of 31

of Figure 4, in the analyzed cases, whip appears abruptly, so the perturbation that triggers
the whip phenomenon is different from a whirl instability. Accordingly, the bearings are
correctly designed so that they are sufficiently loaded to avoid conventional oil whirl
instability. Moreover, such sub-synchronous spectral content modulates the synchronous
response (1X), as confirmed by sidebands visible in the STFT plots and depicted in Figure 4
as dark green lines, whose energy is still perceivable. Such modulation sidebands are
located symmetrically at ±ωf frequency with respect to the synchronous component (1X).
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Cascade plots relevant to the STFT of the journal lateral response detected in run-
down tests show a sub-synchronous spectral content analogous to the one described for
run-up tests. Differently, it persists for rotational speeds under 2 ωf, as schematized in
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Figure 5, confirming that the oil-whip phenomenon can yield the hysteresis observed in
Figure 3. Particularly, in comparison with forced run-down results, a faster decay of the
whip lateral vibration is visible in free run-down tests [3], where the motor does not excite
the torsional natural frequency anymore. In any case, the sub-synchronous spectral content
with locked frequency persists even in the free run-down, so hysteresis may also occur in
such operating condition. The persistence of sub-synchronous vibrations under the whip
speed in run-down tests can also be identified by the energy levels of the sidebands (the
components modulated by 1X order), which in comparison with run-up tests are higher,
even at lower angular speeds.

Particularly, Figure 5 identifies the dimensionless speed boundaries RUTS* and RDTS*,
where nondimensionalization is achieved by dividing the corresponding rotational speeds
by the critical frequency. Such parameters allow for the localization of the hysteresis
phenomenon in the Bode diagram according to Figure 3. In order to spot such hysteresis
boundaries in real SFTF cascade plots (different compared to the scheme of Figure 5), the
color maps must be significantly saturated in terms of the full-scale value so that the energy
levels of the sub-synchronous, synchronous component (1X) and its integer multiples
become less identifiable among themselves.

Moreover, in the case of forced run-down tests, the real cascade plots of lateral journal
vibrations show a broadband response between the frequencies 0 and ωf at a rotational
speed roughly equal to the whip speed (2 ωf). As it is also detectable in the corresponding
run-up cascade plots, the broadband content is added to the schemes of both Figures 4 and 5
and is probably related to a state change in bearing stability which occurs in correspondence
with the onset of oil-whip conditions.

The cascade plots of torsional strain show a spectral content that exhibits an energy
increase at the system first resonant frequency ωt during the run-up test for rotational
speeds higher than the whip speed (defined as 2 ωf and equal to 2 ωt for the critical design
at hand) and persists during run-down tests, as highlighted in the scheme of Figure 6. Such
energy rise is due to a further contribution in the torsional system response that can be
easily identified in the above-mentioned oil-whip phenomenon occurring at the expense of
the energy dissipated by the induction motor in driving torque oscillations.
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In a nutshell, the experimental observations presented in the current paragraph con-
firm that the oil-whip phenomenon can yield the hysteresis exhibited in Figure 3.
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4. Bearing Instability and System Dynamics
4.1. Instability according HBT

Hysteresis can affect a rotor-bearing system where oil-whip occurs, since such phe-
nomenon can develop differently in run-up and run-down phases. Accordingly, it can be
characterized by distinct values of the run-up threshold speed (RUTS) and run-down thresh-
old speed (RDTS) [23,24]. Such difference between the run-up and run-down threshold
speed or energy yields the hysteresis phenomenon occurring in the presented experimental
activity. Indeed, three different decays of the whip energy are detected in run-up, forced
run-down, and free coast-down, as discussed in Section 3.3.

Hopf bifurcation theory (HBT) applied to rotors supported by radial hydrodynamic
bearings [23,24] allows for distinguishing two different types of instabilities referred to
as subcritical and supercritical bifurcation. If the conditions of supercritical bifurcation
exist, when the rotor reaches a critical speed (considered as the threshold speed for the
instability), the journal gradually begins to lose its stability and the amplitude of its
precession motion (oil-whirl) increases continuously and progressively (ramp-up). On the
contrary, in subcritical bifurcation conditions, the crossing of the critical speed (always
defined as above) involves a sudden and total loss of journal stability similar to a whip
(oil-whip), whose precession amplitude suddenly assumes high values, i.e., the amplitude
of the oil-whip jumps up to such a large orbit that the journal tends to asymptotically
approach the clearance circle (jump-up). The existence of these two important phenomena
is supported by specific experimental investigation [24]. The hysteresis phenomenon can
only exist in cases of subcritical bifurcation since it formally admits unstable periodic
solutions from a rigorous mathematical point of view. In such case, a subcritical bifurcation
profile can be determined within the hysteresis cycle. According to such profile, the stability
of the rotor-bearing system between the rotational speeds (RDTS and RUTS) that delimit the
cycle is determined by the magnitude of a perturbation affecting the system. Particularly, if
the amplitude of the perturbation is comprised within the subcritical bifurcation profile,
the journal remains stable; otherwise, the perturbation is able to activate oil-whip and a
jump-up occurs in the orbit of the journal.

The jump-up occurrence can be identified in Figure 4 (run-up) and Figure 5 (forced
run-down) just above the whip speed, where the already-mentioned broadband response
may also be found. A sub-synchronous spectral content at a fixed frequency characterized
by remarkable energy is found after such broadband excitation, at higher angular speeds,
thus confirming oil-whip onset, even from the experimental data [3].

4.2. Perturbation Mechanisms

The last missing element in a consistent explanation of the phenomena experimentally
highlighted in the shaft lines during run up/down tests is the nature of the perturbation
cited in the previous paragraph. In the present case, the whip phenomenon appears
without the previous occurrence of oil-whirl (Section 3.3). Therefore, the ramp-up cannot
be the required perturbation, as in the case of lightly loaded bearings. For sufficiently
loaded bearings, the perturbation may be a synchronous whirl due to the imbalance [24],
and this rule holds generally. Nevertheless, since imbalance has been minimized in some
tests without significant differences in the dynamic response, the instability and thus the
perturbation seem to be mainly related to the torque effect and its amplification at the
natural frequency. From a metrological point of view, the above-mentioned balancing has
been carried out by means of a multi-plane balancing procedure in such a way that an
improvement of more than one class has been obtained with reference to ISO vibration
severity charts [34]. Hence, the perturbation should be linked to a dynamic or a kinematic
effect of the shaft line torsion [3]. Both effects can couple torsional and lateral vibrations of
the shaft line, where bending occurs at the expense of the torsional energy introduced by
the electric motor.
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4.3. Dynamic Perturbation

The dynamic effect is due to a rotating load caused by the driving torque and a
precession motion of the two parts of the shaft. Since a kinematic perturbation causes a
whirling motion with the same frequency of the perturbation (as proved in Section 5.2),
such precession must occur at the torsional critical speed ωt, and the related hydrodynamic
reaction must rotate at the same angular speed. In addition, the magnitude of such rotating
load can be calculated by means of the following expression:

Fr =
∆Fr

2
cos(ωtt + φr), (3)

where ∆Fr is the peak-to-peak amplitude of the rotating load acting on the bearings and φr
its phase.

Since for the studied critical design of the shaft line, the torsional critical frequency is
roughly half the shaft rotation speed (ωt ∼= ω/2) at the onset of oil-whip, the load Fr can
yield the effective perturbation of the bearing and affect its stability. Indeed, as well known
by designers of hydrodynamic bearings for reciprocating engines and widely reported in
the relevant literature, e.g., [35], such dangerous working condition, usually referred to
as the “half-speed load vector” effect, causes the load capacity due to the wedge effect to
vanish, so only the squeeze effect can temporarily avoid the occurrence of zero oil film
thickness. Therefore, the half-speed load vector condition is acceptable in connecting rod
bearing design only for limited periods of time, i.e., for short fractions of the load-cycle.
Anyway, the bearings of the tested rotors are not permanently loaded by a full half-speed
load; otherwise, their operation would be impossible. Indeed, they are primarily loaded by
the weight of the shaft, which is the main load considered in their design phase, and by
secondary dynamic loads (or perturbations) due to various causes, which include possible
magnetic effects due to the electric motor, shaft imbalance, and, exactly, the rotating load
due to the engine torque ripple expressed by Equation (3). Hence, the studied bearings are
only partially loaded by a half-speed force. Since the oil film cannot steadily react to this
load component, for sufficient entities of the torque ripple, it can lead to large perturbations
of the journal position exceeding the subcritical bifurcation profile and causing bearing
instability (oil-whip), as discussed in Section 4.1.

4.4. Kinematic Perturbation

The kinematic effect is the variation in the shaft rotating speed due to the external
torque, which can be measured by means of a phonic wheel or computed by the torsional
equivalent models (Section 2.2). Since in the forced response of the rotor-bearing system
such variation occurs at a prevailing frequency, i.e., the critical torsional frequency ωt,
the following expression is assumed for the journal speed or, equivalently, twice the
entrainment speed of the bearings:

U = ωR +
∆U
2

cos(ωtt + φU) = ωR +
∆ω

2
Rcos(ωtt + φU), (4)

where ∆U is the (peak-to-peak) amplitude of the oil entrainment velocity variation, ∆ω is
the corresponding angular speed rotation, and φU is a possible phase.

In agreement with the Reynolds equation, a variation in the shaft rotation speed at
a given frequency yields a corresponding variation in the hydrodynamic reaction magni-
tude at the same frequency as expressed by Equation (3). At the same time, due to the
whirling motion of the journal, which should occur at the same frequency of the kinematic
perturbation, the hydrodynamic reaction direction is variable. Consequently, since such
reaction is assumed to rotate at the speed ωt, which is half the rotation speed ω at the onset
of oil-whip for the test rig, it can also behave as a half-speed load vector. Since the study of
the effect of half-speed kinematic perturbation has not been retrieved in the literature, it is
numerically studied in the following.
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Since negligible angular speed oscillation involves the driven shaft (Section 3.1),
the kinematic perturbation involves only the bearings supporting the motor shaft side
(Figure 1). Indeed, the analysis of SFTF cascade plots of the journal vibrations in the tested
cases has shown that the hysteresis phenomenon (RDTS < RUTS) is often limited to the
bearings directly driven by the electric motor.

4.5. Dynamic Model of the System

The onset of instability in a rotor-bearing system corresponding to the layout of
Figure 1 can be studied by means of a simple dynamic model [3], which incorporates the
effects of both kinematic and dynamic perturbations. The model is simplified in that the
flexural behavior is neglected and all the torsional energy is converted in a corresponding
bending contribution. Such hypotheses are adopted to formulate a simplified model
yielding conservative predictions convenient for verification purposes, as the involved
energy conversion is ruled by the (nonlinear) behavior of the rotor structure, which is not
simulated. While the driven shaft simply rotates around a fixed axis (in actual rotating
machines, the motor inertia Jm is usually much lower than the load one Jd), the bearings
of the motor shaft are subjected to kinematic perturbation. Section 5.2 proves by means
of numerical lubrication analysis that a kinematic perturbation can induce a whirling
precession occurring at the same frequency of the perturbation. Consequently, for the
kinematic perturbation in Equation (4), the precession frequency of the motor axis around
the fixed driven axis is ωt. Since the kinematic perturbation is usually small (as found
in the tested rotors), the relevant effects are equally small despite the amplification at
the oil-whip onset speed. Nevertheless, the small whirl motion, sufficient to begin the
precession between the two axes, is soon amplified by the system dynamics according to
the model explained below.

Therefore, it assumes that the discussed precession motion is already developed and, in
addition, that angular misalignments between axes of the shaft and bearings are neglected.
The corresponding dynamic rigid-body model is depicted in Figure 7, where es is the
misalignment between the parallel axes, i.e., Shaft 1 and 2, which must be allowed by the
joint according to the assumption in Section 2.1. The blue joint allows for their synchronous
rotation θ with angular acceleration α. In turn, due to the dynamic equilibrium of the
driven shaft mass md, the relative rotation θs of such two axes must occur with relative
angular acceleration αs such that the dynamic perturbation load is:

Fs = F1 = −F2 = mdesαs. (5)

The perturbation load Fs is a tangential load acting on the joint, which results in
bending stress, lateral vibrations of the shaft, and a corresponding rotating load Fr for
the bearings. Such load rotates at the relative rotation speed ωs of the two shafts, whose
variation can be found using the equation of dynamics for the whole shaft line, as follows:

αs =
Mm − (Jm + Jd)α

md es2 . (6)

In the forced response of the system, the value of ωs depends on the excited mode.
Particularly, when the external torque of the electric motor excites the torsional mode,

the perturbation load rotates at the torsional natural frequency. In such condition, the engine
torque is determined near the torsional speed solely by the corresponding modal contribution:

Mm =
∆Mm

2
cos(ωtt), (7)

where ∆Mm is the (peak-to-peak) amplitude of the engine torque ripple.
Let ∆ω be the (peak-to-peak) amplitude of the rotational speed according to Equation (4),

where φU is assumed to vanish in resonance conditions. By substituting for the time deriva-
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tives finite differences with a time increment equal to the period T of the critical torsional
vibration (T = 2 π/ωt) and taking advantage of Equations (4) and (7), Equation (6) becomes

αs ∼=
∆ωs

T
=

1
2

∆Mm − (Jm + Jd)∆ω/T
md es2 cos(ωtt). (8)
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A more detailed model considers the rotor torsional flexibility (lumped in the joint)
and allows for different rotational speeds (ωm and ωd) for the motor and the driven shafts,
respectively. If the conservation of the angular momentum of the double torsion pendulum
is also considered, Equation (8) is turned into the following expression:

αs ∼=
1
2

∆Mm − 2 Jm∆ωm/T
md es2 cos(ωtt). (9)

Substituting Equation (9) in Equation (5) yields the rotating load acting on the motor
shaft end:

Fs =
1
2

∆Mm − 2 Jm∆ωm/T
es

cos(ωtt). (10)

Since the torque must be constant along the shaft axis, if a bearing is located at a
distance d from the motor shaft end, the dynamic perturbation Fr, defined according to
Equation (3), acting on the same bearing can be found using Equation (10) by assuming
that all the torque energy is turned by the structure in an equivalent bending contribution:

Fr =
Fses

d
=

1
2

Jm∆ωmωt/π − ∆Mm

d
cos(ωtt + π). (11)

Or, equivalently, its intensity and phase defined by Equation (3) are, respectively,

∆Fr =
Jm∆ωmωt/π − ∆Mm

d
, (12)
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φr = π. (13)

Equations (11) and (13) evidence that the rotating load does not depend on the parallel
misalignment es allowed by the joint, so in the first analysis (assumptions of the simplified
dynamic model and angular misalignments neglected), modifications on this component
are ineffective in reducing or suppressing the hysteresis phenomenon.

The influence of other dynamic contributions due to the presence of a joint is excluded.
In example, for the tested drive-lines whose layouts include double Cardan joints, negligible
secondary moments have been computed.

In order to provide a computational example and to fulfil confidentiality agreements,
the calculations developed in Section 5.4 concern a fictitious rotor-bearing assembly (a po-
tential small test rig). The relevant parameters, required for the above-described dynamic
simulation, are provided in Table 1.

The joint stiffness Kj is determined using Equation (2) by assuming that the critical
torsional frequency ωt is equal to the critical bending frequency ωf. In turn, based on
motor shaft data (length 700 mm, diameter 10 mm, total mass 2.167 kg) and material (steel)
assumptions, ωf is already known from the natural frequency formula of a mass-spring
system, where the spring stiffness is assessed for a single-span simply supported beam.

The shaft rotation speed (1558 rpm) chosen for the analysis is the whip speed, which
is double the critical torsional speed. At the chosen shaft speed, the motor shaft angular
speed oscillation amplitude ∆ωm is computed by resorting to the equivalent torsional
model (Section 2.2). For this goal, the system of Equation (1) is integrated by means of a
fourth-order Runge–Kutta integration scheme by assuming Md = 0, Mm is in agreement
with Equation (7), and the torsional damping factor is equal to 0.1 due to possible friction
in the joint as well as material hysteresis. ∆ωm is retrieved from the system response in
stationary conditions. The chosen motor torque ripple ∆Mm substituted in Equation (7)
and listed in Table 1 is sufficient to trigger instability for some bearing types.

The rotating load amplitude at the chosen shaft rotation speed, assessed by substituting
the parameters of Table 1 in Equation (12), is equal to 16.5 N and is reported among the
bearing calculation data in Table 2.

5. Numerical Analysis of Bearings

The dynamic and kinematic perturbations defined in Sections 4.3 and 4.4, respectively,
are turned into corresponding perturbations of the journal position by the lubricant film of
the hydrodynamic bearings. Therefore, lubrication analysis is required in order to assess if
a perturbation can affect journal stability [3], i.e., if the resulting journal displacement is
comparable with the subcritical bifurcation profile. In order to simplify such assessment,
the stability is analyzed with reference to the perturbation conditions solely at the onset of
instability (at the whip speed, i.e., 1558.3 rpm for the calculation example). In other words,
if the perturbation load yields large modifications of the journal displacement or causes
small film thickness by itself according to the non-linear simulation method explained in
the following, we assume that it can also cause the oil-whip. Such assumption has allowed
us to check if the unstable behavior detected by the experimental studies is confirmed by
the non-linear dynamic analysis of the lubrication problem.

5.1. Lubrication Analysis Method

In order to evaluate the effect of the perturbations, the Reynolds equation is coupled
with the dynamic equation of motion of the journal, considered as a material point. Ther-
mal effects are ignored, so the lubricant model is iso-viscous. All the classical Reynolds
hypotheses, including the assumption of laminar flow, are considered valid. In such case,
the thin film mechanics equation for journal bearings is:

ρL

R2
∂

∂ϑ

(
H3

12µL

∂p
∂ϑ

)
+ ρL

∂

∂z

(
H3

12µL

∂p
∂z

)
− ω

2
∂

∂ϑ
(ρH)− ∂

∂t
(ρH) = 0, (14)
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where p is the hydrodynamic pressure, R is the journal radius, ρ is the fluid film density, ρL
is the liquid phase density, H is the film thickness, ϑ is the circumferential coordinate, z is
the axial coordinate, t is the time, and µL is the liquid dynamic viscosity.

The adopted solution method of Equation (14) incorporates the Jakobsson-Floberg-
Olsson (JFO) boundary conditions to ensure a full dynamic simulation of cavitation or the
conventional Swift–Stieber (Reynolds) conditions for quasi-static cavitation. Particularly,
the results reported in Sections 5.2 and 5.3 for the general case of a cylindrical bearing
are obtained by means of the quasi-static cavitation model, while the oil film history is
considered in the final results of the calculation examples in Section 5.4 for realistic bearing
geometries. Details of the mathematical model, boundary conditions, as well as their FE
implementation are provided in [36], with the difference being that in the present work,
the dynamic equations [37] are used instead of the equilibrium equations to simulate the
motion of the journal. For this goal, the journal is considered as a material point with
lumped mass m, so the relevant dynamic equation system is:

−Frsinθs −
s

Ω psinϑ dΩ = m d2ex
dt2

Frcosθs − W +
s

Ω pcosϑ dΩ = m d2ey
dt2

, (15)

where Ω is the developed bearing surface, (θs, Fr) are the components in polar coordinates
of the dynamic perturbation acting on the bearing (Equation (11)), W is the static load (shaft
weight), and ex and ey are the journal center eccentricity components in the Cartesian x, y
reference frame.

The relevant journal acceleration components in Equation (15) are computed by means
of standard finite differences, i.e., the second-order backward difference of journal center
displacements ex and ey, respectively. Equations (14) and (15) are coupled non-linear
equations solved together by means of the Newton–Raphson method at each time step. The
boundaries of the journal mobility region are calculated according to the method explained
in [38], which becomes essential for journal bearings designed to support actual shaft-lines.

5.2. Effect of Kinematic Perturbation

As far as we know, the influence of kinematic perturbations on bearing stability has not
been studied. Therefore, a non-linear stability analysis of a benchmark cylindrical bearing
(for the sake of simplicity) is briefly presented in order to show the numerical evidence of
such phenomenon. To this aim, Equation (4) is added to the mathematical model explained
in Section 5.1 in order to simulate the entrainment speed variation with time.

The independent dimensionless parameters of the analysis are the Sommerfeld num-
ber (S), the bearing aspect ratio (L/D), the mass of the shaft (M), the ratio between the
perturbation frequency and synchronous speed (ωt/ω), and the relative perturbation
(peak-to-peak) amplitude (∆U/(ωR)).

The Sommerfeld number is defined according to the following expression (typical in
the lubrication analysis)

S =
30µω

πpm

(
R
c

)2
, (16)

where µ is the (constant) viscosity of the lubricant, c is the bearing radial clearance, and pm
is the static load (shaft weight W) per unit of the projected bearing area (pm = W/(LD)).

The shaft mass m is non-dimensionalized as follows:

M = m
cω2

W
(17)

All the simulations in the present section are carried out for the same bearing geometry
with a constant aspect ratio L/D equal to 0.3 and no imbalance.

Initially, the kinematic perturbation is excluded, and an unstable operating condition
(oil-whirl) is simulated at a high Sommerfeld number (S = 1.3 × 104) for M = 110.5. In such
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conditions, the bearing is sufficiently unloaded to develop oil-whirl with the assigned shaft
mass, as shown in Figure 8. Particularly, a spiral orbit (Figure 8a) starts from an arbitrary
initial journal location until a stable periodic solution with frequency ω/2 associated with
supercritical bifurcation [24] (Figure 8b) is reached.
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Oil-whirl instability can be suppressed by properly increasing the bearing load W for
the same shaft mass m, e.g., for corresponding non-dimensional parameters S = 661 and
M = 5.5, respectively. Indeed, Figure 9 shows that in such conditions (with no kinematic
perturbation), the journal center path reaches the static equilibrium position near the
bearing center regardless of the initial location, which is chosen at a high eccentricity (0.9)
in the presented plot. The simulation in the same working conditions (S = 661 and M = 5.5) is
repeated, adding a kinematic perturbation of considerable amplitude (∆U/(ωR) = 0.5) and
a perturbation frequency ratio (ωt/ω = 0.4) near the “half-speed load vector” condition. As
shown in Figure 10, a stable periodic solution is found, and oil-whirl reappears. Therefore,
a kinematic perturbation of the proper amplitude and frequency can modify the bearing
stability threshold. Finally, a perturbation frequency ratio (ωt/ω = 0.5) that meets the
“half-speed load vector” condition is chosen, keeping unchanged the remaining simulation
parameters (S = 661, M = 5.5, ∆U/(ωR) = 0.5). Figure 11 shows a large amplification of
the whirling amplitude. Hence, a half-speed kinematic perturbation is very effective in
changing the stability threshold.

The oil-whirl phenomenon induced by a perturbation numerically evidenced in the
last two simulations (Figures 10 and 11) is very different from the classic “half-frequency oil-
whirl” [39] in that the whirling precession occurs at the same frequency of the perturbation
as for the forced vibration of a linear system. Therefore, such phenomenon will be referred
to as “forced oil-whirl” in the following.

A campaign of simulations on the chosen cylindrical bearing (L/D = 0.3) is per-
formed for the same working conditions (S = 661 and M = 5.5) and perturbation amplitude
(∆U/(ωR) = 0.5) but with different values of the frequency relevant to the harmonic per-
turbation speed in order to assess the forced response of the bearing and its sensitivity
with respect to the perturbation frequency. The whirling amplitude Amax is measured by
the major diameter of the nearly elliptical orbit shapes. The main result of the simulation
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campaign is illustrated by Figure 12, which plots the dimensionless whirl-amplitude Amax/c
against the perturbation frequency ratio ωt/ω.
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Figure 10. Journal center path in a cylindrical bearing (L/D = 0.3) for S = 661 and M = 5.5 under
kinematic perturbation with ωt/ω = 0.4, ∆U/(ωR) = 0.5: (a) Transient motion; (b) Stable periodic
solution. An orbit magnification is shown in the upper right corner, where the phase (blue values) is
measured in degrees.
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Figure 12. Frequency response to the harmonic kinematic perturbation (∆U/(ωR) = 0.5) of a stable
cylindrical bearing (L/D = 0.3, S = 661, M = 5.5).

As clearly suggested by Figure 12, the maximum amplification of the forced oil-whirl
phenomenon is at the “half-speed load vector” condition corresponding to a perturba-
tion frequency ωt/ω = 0.5, while the periodic orbit amplitude coherently decays when
progressively moving away from such critical frequency.

In a further simulation campaign, “half-speed load vector” conditions are maintained,
i.e., the half-speed perturbation frequency is kept constant (ωt/ω = 0.5), while the angular
speed perturbation amplitude ∆U/(ωR) is varied from 0 to 0.5. Figure 13 depicts the
corresponding results by plotting the output amplitude Amax/c as a function of the input
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one ∆U/(ωR). It shows how the trend is roughly linear below a threshold amplitude
∆U/(ωR) = 1/4. Indeed, the bearing behaves like a spring-mass linear system for small
perturbations [39,40]. However, angular speed fluctuations larger than ∆U/(ωR) = 1/6
(peak-to-peak amplitude) are not likely to happen in real machines, thus suggesting that in
practice, the amplitude response is always linear with the perturbation amplitude, while it
is strongly non-linear with the perturbation frequency in a narrow frequency range around
the oil-whirl characteristic frequency (“half-speed load vector” conditions).
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cylindrical bearing (L/D = 0.3, S = 661, M = 5.5).

In the computational example of actual bearings, the oscillation (peak-to-peak) of the
driven shaft speed predicted by the equivalent torsional model is in the order of 515 rpm
(see Table 1), corresponding to a dimensionless kinematic perturbation amplitude in the
order of 0.33. In addition, the enhanced journal bearing design (e.g., multi-lobe or tilting-
pad configurations) adopted in actual machines allows for higher stability in comparison
with plain cylindrical bearings. Therefore, the influence of kinematic amplification in real-
world applications is expected to also be small at the frequency of maximum amplification
(ωt/ω = 0.5).

5.3. Effect of Dynamic Perturbation

In the present section, the effect of a sub-synchronous dynamic perturbation is gener-
ally evaluated for a cylindrical hydrodynamic journal bearing (with a constant aspect ratio
L/D = 0.3), as carried out in Section 5.2 for the kinematic perturbation.

For this aim, further numerical simulations have been performed in order to assess if a
sub-synchronous rotating force can actually affect the shaft line operational lateral response
by replacing the angular speed perturbation with the dynamic one according to Equation
(3). Indeed, in the technical literature, it is well known that half frequency loads cannot be
supported by the wedge effect [35], but their influence on bearing stability is still unknown.
Moreover, the literature about half-speed load vectors refers to the whole bearing load
rotating at a half shaft revolution frequency (0.5X), while in this context, the purpose is to
investigate the effect of a rotating dynamic perturbation, which is a fraction of the nominal
load applied to the hydrodynamic bearing. As done for kinematic perturbation, modifica-
tions of the whirl stability threshold and the existence of half-frequency amplification under
dynamic perturbation are both investigated. For this goal, a response analysis with respect
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to the perturbation input parameters, i.e., the frequency and amplitude of the rotating force,
is carried out in the nearly stable operating conditions determined in Section 5.2, i.e., for
S = 661 and M = 5.5. Then, the dynamic perturbation is applied by varying its characteristic
frequency, while the amplitude is kept constant at a value two orders of magnitudes lower
than the static load (i.e., Fr/W = 0.01).

Figure 14 plots the resulting trend of the dimensionless whirl-amplitude Amax/c against
the perturbation frequency ratio ωt/ω, clearly showing how for frequency ratios far from
0.5, the journal displacements are not significantly affected, while in the frequency range
centered at ωt/ω = 0.5, an amplified response is obtained due to torsional-whirl occurrence.
This expected finding is consistent with the literature dealing with half-speed load vectors
and applies such concept to hydrodynamic bearing stability analysis. In the case of the
present study, it makes up a preliminary step in the lubrication analysis of the example
bearings for actual machines.
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5.4. Bearing Lubrication Analysis

The lubrication analysis under dynamic loading conditions is finally applied to the
motor bearing of the fictitious rotor-bearing system reported as an example. Particularly,
two possible realistic geometries of the support referred to as “motor bearing” in the rotor-
bearing system layout (Figure 1) are analyzed: a four-lobe journal bearing and an axially
grooved cylindrical bearing.

Figure 15a defines the angular coordinate ϑ and the Cartesian reference system x, y, z
used in Equations (14) and (15). As shown in this figure, the four-lobe bearing operates
in a load-between-pad (LBP) configuration, and oil is supplied by means of axial grooves,
which span the θg angle and the whole bearing length L in the circumferential and axial
directions, respectively. The grooves are located at ϑ = 0, 90, 180, and 270 degs in the
chosen polar coordinate system. This bearing is regularly designed for medium loads, as
the relative eccentricity (with respect to the assembled clearance cb) is 0.67 when only the
static load W is applied. The relative clearance (0.008) is perceivably higher than the usual
one (0.001) due to the small dimension but still sufficient to ensure thin film lubrication [4].

The cylindrical bearing, whose clearance c is chosen to be equal to the assembled
clearance cb of the four-pad bearing to carry out a reasonable comparison, is fed through a
single axial groove located at ϑ = 180 degs. The span and length of the axial groove in the
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cylindrical bearing are the same as in the four-lobe one. The bearing cylindrical surface has
a constant radius R + cb and, therefore, it is not preloaded (mp = 0, as reported in Table 2).
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Figure 15. Example four-lobe journal bearing supporting the motor shaft: (a) Scheme; (b) Polar load
diagram at the onset of oil-whip (1558 rpm).

Both bearings, whose journal mass fraction m is W/g (g denotes the acceleration of
gravity), are always statically loaded by a fraction (half) W of the total motor shaft weight,
while different types of dynamic perturbations are applied in three loading conditions:
in case A, only the kinematic perturbation ∆ω is applied according to Equation (4), with
phase φU = 0; case B only considers the dynamic perturbation Fr assessed by means of
Equation (11); in case C, both the kinematic and dynamic perturbations defined in the
previous load cases are included. The intensity of static and dynamic loads and the
rotational speed variation amplitude at the onset of oil-whip, i.e., at a shaft speed of
1558 rpm (double the torsional critical frequency), are reported in Table 2, together with
all the bearing data required by the analysis. The global Reynolds number [41] is almost
two orders of magnitude lower than the critical value, so the lubrication regime can be
considered laminar. The resulting dynamic load diagram (for cases B and C) in Figure 15b
plots the external load components in polar coordinates (θs, Fr) for different rotation angles θ
of the shaft. The simulations consider the different perturbations required to cause the
oil-whip, as the model focuses solely on the lubricant film and the journal center starting
location is assumed at the bearing center. The structural behavior of the shaft line should
be considered in the model in order to study the subsequent development of the oil-whip
phenomenon after the onset and at higher speeds.

Numerical computations show that for both bearings, all three load cases admit a
periodic solution, whose main features (frequency and amplitude) are reported in Table 3.
The listed amplitude components are expressed in the reference frame axes x and y defined
in Figure 15a and are non-dimensional values referring to bearing assembled clearance cb
so that, when such components are near two units, the journal and bearing surfaces are
very close to each other.

As expected in case A, the journal precession occurs at the same frequency of the
applied perturbation. In agreement with the finding reported in Section 4.4, this type
of response is typical of the kinematic mode of perturbation. Since the speed variation
amplitude is not very significant, the relative amplitude of the orbit computed in case A is
equally small despite the half frequency amplification, as also predicted in Section 4.4.
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Table 3. Periodicity parameters of the journal orbits computed for example motor bearings at the
onset of oil-whip (1558 rpm) in the three load cases A, B, and C.

Bearing Type Load Case Frequency
[Hz]

Relative x
Amplitude

Relative y
Amplitude

four-lobe A (kinematic perturbation) 13.0 0.14 0.016
four-lobe B (dynamic perturbation) 13.0 1.61 1.70
four-lobe C (both perturbations) 13.0 1.64 1.66

cylindrical A (kinematic perturbation) 13.0 0.16 0.16
cylindrical B (dynamic perturbation) 6.5 1.82 1.81
cylindrical C (both perturbations) 13.0 1.83 1.82

Therefore, in the next simulation including the dynamic load, i.e., case B, the kinematic
perturbation is disregarded, as its effect on the journal orbit seems to be secondary. For load
case B and both bearing types, Figures 16 and 17 show the calculated journal orbits (red
curves) inside the mobility region boundary (black curve, see Section 5.1) during the entire
dynamic simulation and in stationary (periodic) conditions, respectively. In such plot, the
horizontal and vertical coordinates, X and Y, respectively, are non-dimensional versions of
the spatial coordinates x and y shown in Figure 15a, where X = x/cp, Y = y/cp, cp= cb/(1 − mp)
(cp denotes the pad clearance, cb is the bearing clearance, and mp is the pad preload).
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For the cylindrical bearing in stationary conditions (Figure 17b), the two curves are
very close, and the relative amplitude components are near two units (Table 3). In addition,
the relevant journal path during the whole simulation (Figure 16b) shows a spiral path
typical of the instability onset. Consequently, for the cylindrical motor bearing, the resulting
working conditions are critical, and the perturbation can surely activate oil-whip. For the
more stable preloaded four-lobe bearing, which works at a lower Sommerfeld number, the
transient orbit shape seems less critical (Figure 16a). In any case, the instability threshold
is already overcome, and the perturbation causes a large orbit in stationary conditions
(Figure 17a).
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Unexpectedly, according to the algorithm used to analyze the journal location signals
periodicity, for the cylindrical bearing, the journal response at the dynamic perturbation
(case B) seems to occur at a frequency half the rotating load speed. In other words, as
reported in Table 3, the period of the orbit is 0.15 s, corresponding to a frequency of
6.5 Hz, which is half the rotating load frequency ωt (13 Hz, the critical torsional speed)
or, equivalently, a quarter of the shaft rotation speed ω. This behavior is consistent with
the hydrodynamic lubrication principles. Indeed, when the static load prevails over the
dynamic component, the resulting whirling precession is synchronous, i.e., its frequency is
the same as the rotating load one. Differently, if the dynamic load is exerted by a half speed
load vector, if its intensity overcomes the static load, and if instability conditions develop
as in the present simulation (Figure 15b), the precession speed can occur at half the rotating
load frequency (a quarter of the shaft rotation speed) so that mass conservation in the
lubricant film is ensured. In addition, for this case, a deeper analysis of the journal location
signals shows two repetitions of a similar pattern in the period of 0.15 s and, accordingly, the
Fast Fourier Transform (FFT) analyzer finds the main frequency at 13.0 Hz. Nevertheless,
the periodicity algorithm finds a journal motion component that repeats in 0.15 s, and such
result is reasonable from the lubrication analysis point of view. Nevertheless, this result is
not consistent with the dynamic model used for the assessment of the dynamic load, which
assumes a precession of the journal at a rotation speed equal to ωt. In a nutshell, when
case B loading conditions are simulated, the lubrication model may become incompatible
with the overall dynamic simulation, as it does not consider the kinematic perturbation
that allows for computing the rotating load in agreement with Section 4.5. Accordingly,
the kinematic perturbation is essential to triggering the precession, so it is included in the
last (more reasonable) load case C. In this way, lubrication analysis with consistent loading
yields practically the same journal displacements obtained in case B (Figures 16 and 17)
without any frequency inconsistency issues. Indeed, Table 3 reports for both bearings
numerically similar amplitude components in load cases B and C, while only the frequency
response of case C is consistent with the assumed precession at frequency ωt, at least for
the cylindrical bearing.

Since both dynamic and kinematic perturbations depend on the amplitude of the
engine torque ripple ∆Mm through Equations (12) and (1), respectively, threshold values of
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such parameter for “safe” working conditions can be determined. For this purpose, the
example analysis has been repeated for several values of ∆Mm until a stability condition
change has been identified (over the threshold, the orbits expand very quickly with the
increase in torque ripple). The relevant results show that the threshold torque ripple ampli-
tudes are about 0.1 Nm and 0.5 Nm for the cylindrical and four-lobe bearings, respectively.

Finally, when the data of tested rotor-bearing systems are used in the simulation
instead of the data of the example test rig, the proposed method, by means of the analysis
of the orbits computed in load case C, predicts the onset of whip in agreement with the
stability performance experimentally detected on the corresponding shaft line.

5.5. Causes of Instability and Hysteresis

As explained in detail in Section 4.5, the joint torsional stiffness Kj in Table 1 (7.41 N m/rad)
used for the dynamic model and the subsequent lubrication analysis (Section 5.4) is com-
puted according to the critical design condition (Section 2.3). In Section 2.2, in order to
consider only the joint stiffness in the lumped parameter torsional model, Kj is assumed
to be much lower than the torsional stiffness of the motor shaft Ktm. Since Ktm should
be about 226.6 N m/rad according to the beam theory and reasonable geometrical as
well as material data (second moment of mass equal to 0.001125 Kg m2 and the other
data specified in Section 4.5), the initial assumption of the lumped parameter model
(Kj << Ktm) is fulfilled, and the lumped parameter torsional model (double torsion pendu-
lum) used in the present work is consistent. Nevertheless, the choice of such a low value
of Kj yields an important design issue, as the joint itself determines the system dynamics.
Indeed, according to the advice of joint manufacturers [42], especially for closed loop or
velocity control systems, a coupling should be dimensioned to provide stiffness so that its
torsional resonance frequency according to Equation (2) exceeds 300–600 Hz, depending on
dynamic requirements. Such recommendation would result in a torsional stiffness much
higher than the critical flexural speed of the motor shaft (13.0 Hz). Indeed, for the optimal
design of the drive line at hand, the joint stiffness Kj should be at least 3957.6 Nm/rad or
higher. Nevertheless such choice is suited to drive lines for specific applications, while
lower design values of torsional stiffness may be chosen according to the recommendations
of Section 6.5 of reference [43] by avoiding flexural and torsional frequencies of the same
order of magnitude as well as by choosing operating speeds out of the regimes where the
instability regions may overlap.

Hence, a vibrational problem of the type reported in the example may be caused by
an inadequate design of the joint, and its potentially destructive effects can be limited by:
modifying the bearing location in the drive line layout and increasing the shaft overhang
to reduce the dynamic perturbation, according to Equation (12), or increasing the support
stability with the choice of more stable bearing types (e.g., tilting pad bearings), higher
clearances and preloads, higher supply temperatures (i.e., lower viscosities), optimal feed
pressures, higher journal/bush misalignment, and larger pedestal stiffnesses [44,45].

It should be noted that the design situation described in Section 2.3 may not always be
considered as an error, and thus, it is defined above as “inadequate” rather than “wrong”.
Indeed, the concept of “design error” is relevant to the components used in the machinery.
In specific real cases, for example, the replacement of a synchronous electric motor with
an asynchronous one may completely change the dynamic requirements so that the joint
torsional stiffness Kj becomes largely insufficient.

Another problem is to assess if the whip instability detected by means of the method
proposed in Section 5.4 can cause the hysteresis reported in Section 3.2 or, in other words,
if the numerical results agree with experimental findings when hysteresis is concerned.
Indeed, such phenomenon is experimentally identified in the synchronous component of
journal lateral responses in run-up and run-down tests (Figure 3), while the lubrication
analysis predicts a half-frequency whirl of the shaft. This inconsistency is due to the
assumption in the numerical model of disregarding both the bending deformation of the
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shaft, where the whole torsional energy is converted in a corresponding bending action,
and the rotor imbalance.

By neglecting the flexural deformations, the lubrication model can only predict the
onset of the whip on the basis of perturbations computed by an approximate dynamic model
that is valid when bending does not interact with lubrication phenomena. Nevertheless,
such a model cannot simulate the subsequent development of the oil-whip, which is
defined by a mutual interaction between the shaft structure, primarily affected by bending
deformation, and oil film.

The rotor imbalance was always present to some extent in the drive lines where
journal displacement trends like the plots of Figure 3 have been measured. In an unstable
bearing (where the wedge effect is ineffective), the dynamic load due to imbalance, which
rotates at a synchronous speed, yields a corresponding (i.e., equally synchronous) motion
component of the journal required to balance such an additional external load. Such
synchronous motion must generate load-carrying capacity by means of the remaining
possible mechanism, i.e., the squeeze effect. Consequently, it should allow for the limited
radial motion of the journal and slightly smaller eccentricities, on average. In a nutshell,
an unstable bearing of an imbalanced rotor develops two types of journal motions: the
half-frequency precession typical of oil whirl, which allows for mass conservation in the
lubricant film without a wedge-effect, and a synchronous motion with two components,
i.e., a small radial component that balances the rotating load due to shaft imbalance by
means of the squeeze effect and a tangential component that provides the required rotation
of the related hydrodynamic reaction.

Such reasoning can be inferred by considering the physics of the problem, and it will be
proved numerically in the next work by means of a proper coupled simulation of lubrication
and structural dynamics including shaft flexural stiffness and an imbalanced load.

6. Conclusions

The conducted research activity deals with experimental observations and numerical
investigation regarding the coupling phenomena between torsional and lateral vibrations in
driven shaft lines with no interposed gearbox, mounted on hydrodynamic journal bearings,
operated by motors with a high degree of torque irregularity, and designed with a torsional
critical speed near the flexural one. In such peculiar configurations, the observed system op-
erational behaviors exhibit anomalous trends in terms of the synchronous lateral response,
which cannot be caused by the classical non-linearity sources described in the literature
(e.g., shaft line overhang mounting). Particularly, a localized hysteresis phenomenon is
found between run-up and run-down tests. It is due to oil-whip within the journal bearings,
in agreement with the current literature findings. The onset of such instability occurs at a
speed that is double the torsional frequency, so the amplification of the torsional vibration
yields high irregularity in the rotation of a part of the shaft. The instability starts devel-
oping in a bearing where journal angular speed oscillation is significantly present. Such
speed variation acts as a kinematic perturbation, which triggers a further perturbation of a
dynamic type. In specific operating conditions, the combination of these two perturbations
is turned into the perturbation of the journal motion by the lubricant film. As described in
the literature, the stability margin is affected by large journal displacement perturbations,
which can cause oil-whip as well as hysteresis during run up/down tests. In this way, it
can be explained how torsional vibrations can affect the shaft line lateral response. Both
experimental observations and numerical results support such an explanation [3]. The main
experimental results relevant to drive lines for naval, automotive, and turbomachinery
applications are the following:

• Oil-whip not preceded by oil-whirl can be detected in cascade plots of both lateral and
torsional vibrations of journal bearings roughly at the same frequency.

• A perceivable degree of irregularity is measured in the rotation speed of the driven
shaft, i.e., the part of the shaft directly driven by the electric motor, due to the large
driving torque variations.
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• Particularly, the threshold speeds RUTS and RDTS identified in cascade plots of the
lateral vibrations can be different in the bearings of the driven shaft due to their
rotation irregularity so that the cause of the hysteresis detected in the machine is
identified according to HBT.

By means of numerical simulations, the conclusions in the following list can be drawn.

• A kinematic perturbation can modify the stability margin of a journal bearing; such
phenomenon is identified as “torsional whirl”.

• The torsional whirl occurs at the same frequency as the excitation.
• The journal precession due to the dynamic perturbation usually develops at the same

frequency of the excitation, when the static load is higher than the rotating load, but
periodic motions at half the excitation frequency may occur, when the dynamic load
component prevails.

• The maximum amplification of the journal precession whirling due to both kine-
matic and dynamic perturbation is found when the excitation frequency is half the
rotation speed.

• Although its isolated contribution to the journal vibration is very small, torsional whirl
is required to trigger the dynamic perturbation in the dynamic model and must also
be simulated in lubrication analysis to achieve consistent results.

Torsional oil-whirl is required to cause the oil-whip inception detected in experi-
mental system responses and predicted by HBT. In the analyzed cases, the presented
experimental–numerical approach can explain the significant localized hysteresis detected
in the synchronous lateral shaft line response. It proves that the coupling phenomena of
torsional–lateral vibrations within real-size drive lines can be linked to unstable operating
conditions within hydrodynamic bearings. Therefore, the scientific content presented here,
and the related verification tool, may allow for the right interpretation of the measure-
ments and involved phenomena (e.g., the hysteresis) required to fix an “inadequate” (see
Section 5.5) machine design.

In any case, the novel information provided by the mathematical model used in this
work is still approximate. Indeed, since oil-whip is a cooperative phenomenon where
the oil-film and structure interact, the bending of the shaft should be considered if more
accurate results are required. In addition, as described in [43], mutual interactions between
torsional and flexural vibrations can be due to shaft imbalance, and they can introduce
structural instability if flexural and torsional natural frequencies are of the same order.
Therefore, to achieve more accurate results, in future developments of the study, the men-
tioned structural coupling will be included in the model to analyze its interaction with
bearing instability. Simulations of the shaft bending will allow for the assessment of the
torque energy converted in the flexural effect by the structure, removing limiting and
conservative assumptions in the model. Indeed, although more complex non-linear behav-
iors depending on system geometry can be neglected in this overall study, the non-linear
structural coupling between bending and torsion deserves consideration when significant
imbalance is present. Finally, considering shaft flexibility as well as imbalance will allow
us to study the development of oil-whip, not only its onset, in order to justify its influence
on the hysteresis phenomena evidenced by synchronous shaft displacement components.
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Nomenclature
The following nomenclature is used in this manuscript:
c, cb Nominal (assembled) radial clearance of the bearing
cp Pad clearance
d Shaft overhang
es Misalignment between the parallel drive shafts
ex Horizontal component of journal eccentricity
ey Vertical component (weight direction) of journal eccentricity
f Frequency
g Acceleration of gravity
m Journal lumped mass
md Mass of the driven shaft
mm Mass of the motor shaft
mp Pad preload
p Hydrodynamic pressure
ps Supply pressure
t Time
x Horizontal coordinate, bearing reference frame
y Vertical coordinate (weight direction), bearing reference frame
z Axial coordinate, bearing reference frame
Amax Whirling amplitude
D Nominal diameter of the bearing
Fr Dynamic (rotating) load of the bearing
H Film thickness
Kt Torsional stiffness
Ktm Torsional stiffness of the motor shaft
Kj Torsional stiffness of the joint
M Dimensionless shaft mass
Md Torque applied to the driven shaft
Mm Torque applied to the motor shaft
Jd Inertia of the driven shaft
Jm Inertia of the motor shaft
L Axial length of the bearing
R Journal radius
S Sommerfeld number
T Period of the critical torsional vibration
U Peripheral speed of the journal
W Rotor weight supported by the bearing
X Dimensionless horizontal coordinate, bearing reference frame
Y Dimensionless vertical coordinate (weight direction), bearing reference frame
α Shaft angular acceleration
αs Relative angular acceleration of the drive shafts
θ Shaft rotation angle
θd Rotation angle of the driven shaft
θg Circumferential span of the supply axial groove
θm Rotation angle of the motor shaft
θs Relative rotation angle of the drive shafts
ϑ Circumferential coordinate of the bearing
µL Lubricant dynamic viscosity
ρ Fluid film density of the lubricant
ρL Liquid phase density of the lubricant
φr Phase of bearing dynamic perturbation
φU Phase of bearing kinematic perturbation
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ω Shaft rotation speed
ωd Rotation speed of the driven shaft
ωm Rotation speed of the motor shaft
ωf Critical flexural speed
ωs Relative angular speed of the drive shafts
ωt Critical torsional speed
∆ Peak-to-peak amplitude
Ω Developed bearing surface
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