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Abstract: As a core component for efficient variable speed transmission and energy saving, wet
clutches are widely used in the transmission systems of energy-saving and new energy vehicles.
However, with an increase in the service mileage of the wet clutch, the friction coefficient undergoes
alterations. This leads to a deterioration of the control accuracy of the clutch transmission torque,
which ultimately has a negative impact on the dynamic characteristics and driving safety of the entire
vehicle. In order to understand the service behavior of the friction coefficient in a wet clutch, wet
clutches with different service mileages were investigated experimentally and theoretically. The
results show that as the service mileage increased, the hydrodynamic lubrication phase was extended.
Analyses of the three-dimensional profile of the friction plate and the theoretical simulation of the
friction revealed that the edge ridges of the friction pads were flattened. This increased the clutch
engagement force when the asperities on the separator and friction plates came into contact.
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1. Introduction

As the kernel component of vehicle transmissions and limited slip differentials, the
wet clutch is crucial in vehicle transmission systems as it allows the power of the entire
vehicle to be cut off [1]. Therefore, the accuracy with which the wet clutch transmission
torque is controlled determines the dynamic characteristics and driving safety of the
vehicle [2]. However, the torque transmission process in wet clutches is influenced by many
factors [3–5], especially the variability in clutch temperature [6,7], which makes precise
torque control difficult. In practical applications, the precise control of the transmission
torque of the wet clutch is based on the test calibration of the friction coefficient in the new
clutch. However, the friction coefficient in the wet clutch changes as the service process
proceeds [8,9]. This leads to a decrease in the accuracy at which the vehicle’s transmission
torque can be controlled, affecting the comfort and safety of the vehicle.

The micro process by which torque is transferred in a wet clutch while it is being
engaged is shown in Figure 1. The engagement process mainly consists of two parts:
the asperities contact and the lubricant dynamic pressure lubrication. For this reason, Li
et al. [10] developed a dynamic torque model for the wet clutch engagement process based
on the asperities contact theory and the lubricant dynamic pressure lubrication theory. Bao
et al. [11] developed a dynamic torque model for the engagement process of a multi-plate
wet clutch based on a single pair of the friction pair. From the dynamic torque model, it can
be seen that the internal factors affecting the friction coefficient of wet clutches are mainly
the morphological distribution characteristics of the friction pair, the quality of the lubricant,
and the properties of the friction material. First, in terms of the morphological distribution
characteristics of the friction pair, Chen et al. [12] explored the influence of the different
surface asperity shapes of the friction pairs on the friction coefficient of wet clutches. Zhang
et al. [13] used the established theoretical model of the wet clutch engagement process to
reveal the influence of the surface morphology of the friction pair on the friction coefficient.

Lubricants 2024, 12, 147. https://doi.org/10.3390/lubricants12050147 https://www.mdpi.com/journal/lubricants

https://doi.org/10.3390/lubricants12050147
https://doi.org/10.3390/lubricants12050147
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/lubricants
https://www.mdpi.com
https://orcid.org/0000-0002-6874-8053
https://doi.org/10.3390/lubricants12050147
https://www.mdpi.com/journal/lubricants
https://www.mdpi.com/article/10.3390/lubricants12050147?type=check_update&version=1


Lubricants 2024, 12, 147 2 of 14

Based on the fractal theory modeling of real morphology, Chen et al. [14] proposed a
dynamic torque theory model for the wet clutch engagement process. Second, in terms
of lubricant quality, Li et al. [15] investigated the mechanism of the effect of lubricant on
the friction characteristics of wet clutches and found that the lubricant mainly affected the
friction coefficient through the formation of calcium carbonate on the friction surface. In
addition, Wirkner et al. [16] and Fatima et al. [17] studied the influence of water content and
iron filing content in the lubricant on the friction coefficient of wet clutches. Farfán-Cabrera
et al. [18] also investigated the influence of bio-lubricants on the friction coefficient of wet
clutches. Finally, in terms of the friction material properties, Fei et al. [19] and Zhang
et al. [20] respectively studied the influence of phenolic resin content and glass fiber content
in friction materials on the friction characteristics of wet clutches.
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Figure 1. Wet clutch engagement process.

In addition to the internal factors above-mentioned, the actual external operating
conditions will also have an influence on the friction coefficient of the wet clutch. Therefore,
Ingram et al. [21] used experiments to investigate the influence of clutch speed difference on
the friction coefficient of wet clutches. Ma et al. [22] focused on exploring the influence of
lubricant temperature on the friction coefficient of wet clutches. Li et al. [23] experimentally
investigated the influence of different operating conditions on the friction coefficient of wet
clutches. In addition, based on the experimental data of friction coefficients under different
operating conditions, Cui et al. [24] and Wu et al. [25] established a more accurate dynamic
model of friction torque. However, the friction coefficient of wet clutches will change as
their mileage increases. For this purpose, Ost et al. [26] and Fei et al. [27] experimentally
studied the variation in the friction coefficient of wet clutches with the number of repeated
engagement cycles. The results showed that the friction coefficient first increased and
then decreased, and the engagement stability of wet clutches was reduced. For the drastic
change in the friction coefficient of a wet clutch during the running-in process, Voelkel
et al. [28] proposed a corresponding test method and investigated the change rule of
the friction coefficient. Wang et al. [29] studied the variation in friction coefficient with
repeated engagement times of wet clutches under different operating conditions. However,
in practical applications, the working conditions of wet clutches are intermittent, rather than
a continuous repeated engagement [30]. In addition, when studying the friction coefficient
in a wet clutch that was subject to continuous repeated engagement, Ost et al. [26] found
that the intermittence in the continuously repeated test changed the friction coefficient in
the wet clutch. Therefore, the results derived from the continuous repeated engagement of
the wet clutch can be regarded as the fatigue characteristics of the wet clutch. As a result, it
cannot accurately reflect the service characteristics of the friction coefficient in wet clutches.

In this study, experimental research on wet clutches with different service mileages
was conducted in order to determine the variation in the friction coefficient in a wet clutch
throughout its service life. Based on an analysis of the three-dimensional profile of a friction
plate and the theoretical analysis of the contact process of a wet clutch, the mechanism
responsible for the variation in the friction coefficient in wet clutches as a function of service
mileage was revealed.
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2. Experiment
2.1. Apparatus

Clutch engagement force (CEF), clutch driven end speed (CDES), clutch active end
speed (CAES), lubricant oil temperature (LOT), and friction surface temperature (FST)
are some of the important variables that affect the coefficient of friction in wet clutches.
In order to thoroughly explore the impact of various factors on the friction coefficient in
wet clutches, an experimental wet clutch transmission system was designed, as shown in
Figure 2. The experimental system employed the drive motor and dynamometer to imitate
the drive source and vehicle load, so that tests on the wet clutch friction characteristics
were as close to the real operating conditions. The flywheel of the experimental system
was used to simulate the rotational inertia of the vehicle and maintain a stable speed on the
load side. The real-time measurement of the FST of the wet clutch was carried out using
a thermocouple and slip ring in the test facility. To ensure precise measurement of the
friction torque in the wet clutch, a high-precision torque sensor with an accuracy level of
0.05% was employed. The control signals and data acquisition in the experimental system
were handled by the dSPACE control system. The main characteristic parameters of the
components of the experimental system are shown in Table 1.

Lubricants 2024, 12, x FOR PEER REVIEW 3 of 15 
 

 

2. Experiment 
2.1. Apparatus 

Clutch engagement force (CEF), clutch driven end speed (CDES), clutch active end 
speed (CAES), lubricant oil temperature (LOT), and friction surface temperature (FST) are 
some of the important variables that affect the coefficient of friction in wet clutches. In 
order to thoroughly explore the impact of various factors on the friction coefficient in wet 
clutches, an experimental wet clutch transmission system was designed, as shown in Fig-
ure 2. The experimental system employed the drive motor and dynamometer to imitate 
the drive source and vehicle load, so that tests on the wet clutch friction characteristics 
were as close to the real operating conditions. The flywheel of the experimental system 
was used to simulate the rotational inertia of the vehicle and maintain a stable speed on 
the load side. The real-time measurement of the FST of the wet clutch was carried out 
using a thermocouple and slip ring in the test facility. To ensure precise measurement of 
the friction torque in the wet clutch, a high-precision torque sensor with an accuracy level 
of 0.05% was employed. The control signals and data acquisition in the experimental sys-
tem were handled by the dSPACE control system. The main characteristic parameters of 
the components of the experimental system are shown in Table 1. 

 
Figure 2. Wet clutch transmission experimental system. 

Table 1. The main characteristic parameters of the experimental system. 

Component Characteristic Parameter 
Drive motor Power 132 kW, Rated speed 3000 rpm 

Thermocouple Model TT-K-36-SLE, Temperature range −267–260 °C 
Dynamometer Power 250 kW, Rated speed 3000 rpm 

Inertia flywheel Inertia 120 kg·m2 
Control system MicroAutoBox II 1401 

Torque and speed sensor Model HBM T40B, Rated torque 500 Nm and 3000 Nm 
Oil temperature control system Temperature range 10–90 °C 

2.2. Experimental Subjects 
Wet clutches with different service miles were chosen as the experimental study items 

in order to examine how the friction coefficient of wet clutches varied over service mile-
age. The service mileages of the clutches were 10,000 km, 40,000 km, and 100,000 km, as 
shown in Figure 3. The separator plate of the friction pair was composed of cold-rolled 

Driving 
motor

Oil temperature 
control system

Inertia flywheel

Dynamometer

Control 
system

Collector ring and Thermocouple Wet clutch Torque and speed  sensor

Figure 2. Wet clutch transmission experimental system.

Table 1. The main characteristic parameters of the experimental system.

Component Characteristic Parameter

Drive motor Power 132 kW, Rated speed 3000 rpm
Thermocouple Model TT-K-36-SLE, Temperature range −267–260 ◦C
Dynamometer Power 250 kW, Rated speed 3000 rpm

Inertia flywheel Inertia 120 kg·m2

Control system MicroAutoBox II 1401
Torque and speed sensor Model HBM T40B, Rated torque 500 Nm and 3000 Nm

Oil temperature control system Temperature range 10–90 ◦C

2.2. Experimental Subjects

Wet clutches with different service miles were chosen as the experimental study items
in order to examine how the friction coefficient of wet clutches varied over service mileage.
The service mileages of the clutches were 10,000 km, 40,000 km, and 100,000 km, as shown
in Figure 3. The separator plate of the friction pair was composed of cold-rolled carbon
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steel sheets. The friction plate material was not only made of cold-rolled carbon steel
in the middle, but also paper-based friction material on the surface [5]. The primary
components of paper-based friction materials include fibers (such as aramid fibers), resins,
filler materials (like diatomaceous earth), and friction modifiers (such as carbon particles).
In addition, the wet clutch was cooled and lubricated with a commercially available
universal transmission lubricant [31]. The three-dimensional structural dimensions of the
separator plate and the friction plate are shown in Figure 3, and the nominal torque capacity
of the wet clutch is 300 Nm.
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2.3. Experimental Methods

To systematically explore the impact of CEF, LOT, CAES, FST, and CDES on the friction
coefficient, five sets of experiments were implemented. The aim of this method was to
minimize the potential interaction between various factors.

Test (1): Evaluating the influence of CEF and its rate of change on the friction coefficient.
The CAES is maintained at 800 rpm through control of the drive motor, while the CDES is
regulated to 760 rpm through control of the load motor. The lubricant flow rate between
the friction surfaces of the clutch is kept constant at 10 L/min, and the LOT is fixed at 35 ◦C.
By controlling a hydraulic actuator, the CEF increases in various ramps from 0 N to 2800 N.
The experimental data collected by dSPACE were plotted by MATLAB 2022b software, and
the results are shown in Section 4.1.

Test (2): Evaluating the influence of LOT on the friction coefficient. The CAES is
maintained at 800 rpm through control of the drive motor, while the CDES is regulated
to 760 rpm through control of the load motor. The hydraulic actuator is controlled with
a gradient of 235 N/s to increase the CEF from 0 N to 2800 N. The test is repeated with
changes in lubricant temperature determined by adjustments to the temperature control
system. The experimental data collected by dSPACE were plotted by MATLAB software,
and the results are shown in Section 4.1.

Test (3): Evaluating the influence of CAES on the friction coefficient. The CDES is
regulated to 760 rpm through control of the load motor. The lubricant flow rate between
the friction surfaces of the clutch is kept constant at 0 L/min, and the LOT is fixed at
35 ◦C. By controlling a hydraulic actuator, the CEF increases in various ramps from 0 N
to 2800 N. The test is repeated by adjusting the drive motor to establish different CAES.
The experimental data collected by dSPACE were plotted by MATLAB software, and the
results are shown in Section 4.1.

Test (4): Evaluating the influence of FST on the friction coefficient. The CAES is
maintained at 800 rpm through control of the drive motor. Meanwhile, the clutch output
side is kept stationary throughout the test. The lubricant flow rate between the friction
surfaces of the clutch is kept constant at 0 L/min. The hydraulic actuator is employed
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to maintain the CEF at 1200 N, and the test duration is configured to last for 2 min. The
experimental data collected by dSPACE were plotted by MATLAB software, and the results
are shown in Section 4.1.

Test (5): Evaluating the influence of CDES on the friction coefficient. The CAES
is maintained at 800 rpm through control of the drive motor. The lubricant flow rate
between the friction surfaces of the clutch is kept constant at 0 L/min. By controlling the
hydraulic actuator, the clutch force is increased from 0 N to 2800 N. The test is repeated by
manipulating the load motor to achieve different CDES. The experimental data collected
by dSPACE were plotted by MATLAB software, and the results are shown in Section 4.1.

Replace the wet clutch with a different service mileage, and repeat the above test.

3. Theoretical Analysis

In order to further reveal the change mechanism of the friction coefficient with service
mileage, a theoretical model was established to analyze the process through which the
friction plate and the separator plate become engaged. Because the viscous torque exerted
by the lubricant oil film and the friction torque exerted by the asperities are both present in
the engagement process, the theoretical model should include a hydrodynamic lubrication
model for the lubricant, and an elastic contact model for the asperities.

The contact of the asperities can be transformed into the contact of a smooth plane with
an equivalent rough plane, as illustrated in Figure 4. As per the G–W model introduced by
Greenwood et al. [32], the real contact area (A) of the asperities on the surface of the friction
pair is given by: 

A = ηAnπR
∫ ∞

d (za − d)g(za)dza

g(za) =
1√

2π(σ∗)2
exp

(
− za

2

2(σ∗)2

)
σ∗ =

√
σ2

1 + σ2
2

, (1)

where η is the density of the roughness peak distribution, An is the nominal contact area of
the friction pair, R is the curvature radius of the asperities, za is the height of the asperities
on the rough surface, d is the distance between the reference plane of the rough surface
and the ideal rigid plane, σ1 is the root-mean-square (RMS) of the friction plate surface
roughness, and σ2 is the RMS of the surface roughness of the separator plate.
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According to the Hertz contact theory, the normal bearing capacity (Fa) and friction
torque (Ta) of the asperities are given by:

Fa =
4
3 ηAnE∗R1/2

∫ ∞
d (za − d)3/2g(za)dza

Ta =
∫ 2π

0

∫ b
a n A

An
fcFar2drdθ

1
E∗ =

(
1 − ν2

1
)

E1
+

(
1 − ν2

2
)

E2

, (2)

where a is the inner diameter of the friction pair, n is the number of friction surfaces, b is
the outer diameter of the friction pair, fc is the friction coefficient of the asperities, r is the
radial distance of the clutch friction pair, E1 and ν1 are the elastic modulus and Poisson’s
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ratio of the asperities on the surface of the friction plate, respectively, and E2 and ν2 are the
elastic modulus and Poisson’s ratio of the asperities on the surface of the separator plate,
respectively.

The hydrodynamic lubrication model for the lubricant can be derived from the Navier–
Stokes equation and the fluid continuity equation. It was assumed that the lubricant was
laminar and incompressible, and the speed changes of the lubricant in the radial direction
and rotation direction of the clutch were ignored. It was assumed that the oil film pressure
remained constant in the thickness direction, and the velocity component of the lubricant
in the thickness direction of the oil film was disregarded. The momentum equation and
continuity equation of the lubricant in the cylindrical coordinate system can be simplified
as follows: 

∂P
∂r

= µ
∂2ur

∂z2

1
r

∂P
∂θ

= µ
∂2uθ

∂z2
∂ρ

∂t
+

∂(ρrur)

r∂r
+

∂(ρruθ)

r∂θ
= 0

, (3)

where P is the lubricant oil film bearing pressure, µ is the lubricant dynamic viscosity, ur is
the lubricant flow rate in the radius direction of the clutch, uθ is the lubricant flow rate in
the rotation direction of the clutch, and ρ is the lubricant density.

The boundary conditions for the lubricant in the thickness direction of the clutch are
defined as follows: {

ur = 0, uθ = rω1 z = 0
ur = 0, uθ = rω2 z = h

, (4)

where ω1 is the angular velocity of the friction plate, ω2 is the angular velocity of the
separator plate, and h is the oil film thickness.

By applying the boundary condition Equation (4) to the momentum equation in
Equation (3) and subsequently integrating in the oil film thickness direction, the following
results are obtained: 

ur =
z2 − zh

2µ
∂P
∂r

uθ =
z2

2µ
∂P
∂θ +

[
r(ω2−ω1)

h − h
2µ

∂P
∂θ

]
z + ω1r

. (5)

After substituting Equation (5) into the lubricant continuity equation and integrating
along the thickness direction of the oil film, the following expression is obtained:

∂

∂r

(
rh3

µ

∂P
∂r

)
= 12r

∂h
∂t

. (6)

Considering the influence of friction materials on the load bearing characteristics of
the lubricant oil film [33], Equation (6) can be modified to obtain:

∂

∂r

(
r
µ

φr
(
h3 + 12doΦ

)∂P
∂r

)
= 12r

∂h
∂t

φr = 1 − exp(−0.5h/σ∗)
, (7)

where do is the thickness of the friction material on the surface of the friction plate and Φ is
the permeability of the friction material.
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Based on the conditions governing the lubricant distribution along the radial direction
of the friction surface, the oil film pressure distribution function (P(r)) and oil film bearing
capacity (Fo) can be obtained by integrating Equation (7): P(r) =

∂h
∂t

[
r2 − b2 +

a2 − b2

ln(b)− ln(a)
ln

r
b

]
3µ

φr(h3 + 12dΦ)

Fo =
∫ 2π

0

∫ b
a P(r)rdθdr

. (8)

According to the equilibrium condition of the friction surface bearing capacity, the
following expression can be derived: Ft = (1 − A

An
)Fo +

A
An

Fa

Ft = Ptπ(b2 − a2)
, (9)

where Pt is the engagement pressure of the friction pair, and Ft is the engagement force of
the friction pair.

Combining Equations (2), (8), and (9), the oil film viscosity torque [32] can be derived
as:

To =
∫ b

a

∫ 2π

0

(
ϕ f − ϕ f s

)(
1 − A

An

)
nηr3∆w

h
dθdr, (10)

where ∆w is the angular velocity difference between the separator plate and friction plate,
and ϕf and ϕfs are the Patir–Cheng flow coefficients [33].

The wet clutch friction coefficient (f ) is calculated as follows [31]: f =
3Tt

(
b2 − a2)

2nFt(b3 − a3)
Tt = Ta + To

, (11)

where Tt is the wet clutch transfer torque.

4. Results and Discussion
4.1. Service Characteristics of Wet Clutch Friction Coefficient

Based on the above tests, the influence of different factors on the friction coefficients
of the wet clutches for different service mileages was determined. Figure 5 presents the
influence of the CEF on the friction coefficients of the wet clutches for different service
mileages. As the clutch engagement force increased, the influence of the CEF on the friction
coefficient could be categorized into three stages. The first stage is the hydrodynamic
lubrication stage, the second stage involves the asperities on the surfaces of the separator
plate and the friction plate moving from initial contact to full contact, and the third stage
involves the slow increase in the contact area between the asperities, as shown in Figure 5.
When the wet clutch started to engage, the separator plate and the friction plate were
filled with lubricant, and the oil film transmitted a viscous torque. At this stage, the value
of the friction coefficient was small, and it decreased as the CEF increased. As the CEF
further increased, the asperities on the surfaces of the separator plate and the friction plate
came into contact and transmitted a friction torque. At this time, both a viscous torque
due to the oil film and a friction torque due to the asperities between the separator plate
and the friction plate were present. As the CEF increased, the contact area between the
asperities on the surfaces of the separator plate and the friction plate increased rapidly
until the asperities were in full contact with each other. At this point, the friction coefficient
increased significantly. As the CEF continued to increase, the peaks of the asperities on
the surfaces of the separator plate and the friction plate deformed. The rate of change of
the contact area between the asperities slowed down, and the friction coefficient changed
minimally as the CEF increased further. Figure 5 indicates that for the same rate of change
in the CEF, as the clutch service mileage increased, the duration of the hydrodynamic
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lubrication stage between the separator plate and the friction plate increased. Moreover, as
the service mileage increased, the CEF increased after the asperities on the surfaces of the
separator plate and the friction plate came into contact.
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Figure 5. Influence of the CEF on the friction coefficient (Section 2.3, Test (1)).

For a range of clutch engagement forces and lubricant temperatures, the variation
in the friction coefficients of the wet clutches for different service mileages is shown in
Figure 6. For different lubricant temperatures, the trends in the friction coefficients for
different service mileages remained basically the same as the CEF increased. The service
mileage only affected the variation in the friction coefficient from initial contact to full
contact between the asperities on the surfaces of the separator plate and the friction plate.
In addition, an increased service mileage caused an increase in the CEF when the asperities
came into contact.

Lubricants 2024, 12, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 6. Influence of the service mileage on the friction coefficient (Section 2.3, Test (2)). 

Figure 7 shows the influence of the service mileage on the friction coefficient for dif-
ferent CEFs and different CAESs. For a given CAES, as the service mileage increased, the 
duration of the hydrodynamic lubrication stage between the separator plate and the fric-
tion plate increased. However, an increased service mileage had a relatively small effect 
on the variation in the friction coefficient when the contact area between the asperities on 
the surfaces of the separator plate and the friction plate increased slowly. As the CEF in-
creased, the influence of the service mileage on the friction coefficient was basically con-
stant for a given CAES. 

 
Figure 7. Influence of the CAES on the friction coefficient (Section 2.3, Test (3)). 

The influence of the FET on the friction coefficient for different service mileages is 
shown in Figure 8. The friction coefficient gradually decreased as the temperature of the 
friction surface increased. For different service mileages, the trends in the friction coeffi-
cient as a function of the FST were basically the same; the main difference was that the 
absolute values of the friction coefficient were smaller for higher service mileages. 

0
80

0.05

0.1

0.15

60

40

20 0211638106314891915

Fr
ic

tio
n 

co
ef

fic
ie

nt
 

100,000 km

10,000 km
40,000 km

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18
0.2

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18
0.2

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18
0.2

0 211 638 1063 1489 1915 2341 2767

100,000 km

10,000 km
40,000 km

0 211 638 1063 1489 1915 2341 2767

0 211 638 1063 1489 1915 2341 2767 0 211 638 1063 1489 1915 2341 2767
Clutch engagement force ( N )

Fr
ic

tio
n 

co
ef

fic
ie

nt
 

Fr
ic

tio
n 

co
ef

fic
ie

nt
 

Clutch engagement force ( N )

Fr
ic

tio
n 

co
ef

fic
ie

nt
 

Fr
ic

tio
n 

co
ef

fic
ie

nt
 

Clutch engagement force ( N )

Clutch engagement force ( N )

CAES: 1000 rpm 
CDES: 760 rpm

CAES: 1100 rpm 
CDES: 760 rpm

100,000 km

10,000 km
40,000 km

100,000 km

10,000 km
40,000 km100,000 km

10,000 km
40,000 km

CAES: 1200 rpm 
CDES: 760 rpm

CAES: 1300 rpm 
CDES: 760 rpm

Figure 6. Influence of the service mileage on the friction coefficient (Section 2.3, Test (2)).
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Figure 7 shows the influence of the service mileage on the friction coefficient for
different CEFs and different CAESs. For a given CAES, as the service mileage increased, the
duration of the hydrodynamic lubrication stage between the separator plate and the friction
plate increased. However, an increased service mileage had a relatively small effect on
the variation in the friction coefficient when the contact area between the asperities on the
surfaces of the separator plate and the friction plate increased slowly. As the CEF increased,
the influence of the service mileage on the friction coefficient was basically constant for a
given CAES.
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Figure 7. Influence of the CAES on the friction coefficient (Section 2.3, Test (3)).

The influence of the FET on the friction coefficient for different service mileages is
shown in Figure 8. The friction coefficient gradually decreased as the temperature of the
friction surface increased. For different service mileages, the trends in the friction coefficient
as a function of the FST were basically the same; the main difference was that the absolute
values of the friction coefficient were smaller for higher service mileages.
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Figure 9 shows the variation in the friction coefficient for different service mileages
and CDESs as a function of the clutch engagement force. The figure indicates that for
different CDESs, the influence of a given service mileage on the friction coefficient was
essentially the same, regardless of the magnitude of the CEF. However, different service
mileages did affect the variation in the friction coefficient in the asperities on the surfaces
of the separator plate and the friction plate from initial contact to full contact.
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4.2. Mechanistic Analysis of Service Characteristics of Wet Clutch Friction Coefficients

In order to determine the mechanism of change in the friction coefficient with ser-
vice mileage, the three-dimensional profile of the friction plate was analyzed using a
three-dimensional optical profiler (Bruker Contour GT-K 3D). Figure 10 shows the three-
dimensional profiles of a new friction plate and the friction plate with a service mileage of
40,000 km. A comparison of the surface of these two plates indicated that the friction pads
were generally flat. The specific differences in the friction pads are shown in Figure 11.
Compared to the new friction plate, the height differences between the edges and middle
areas of the friction pads on the older friction plate decreased as the ridges on the edges
were flattened, and the thickness of the areas in the middle increased. The surface morphol-
ogy of the friction pads on the older friction plate tended to be flatter, and the roughness
tended to be less pronounced than those of the new friction plate. The ridges on the edges
of the friction pads are primarily used to eliminate the effect of the lubricant film between
the separator plate and the friction plate. As the service mileage increased, the ridges on the
edges of the friction pads were gradually smoothed, which enhanced the hydrodynamic
lubrication between the separator plate and the friction plate.

According to the analysis of the three-dimensional profile of the friction plate, the
surface roughness of the friction plate decreased as the service mileage increased. Therefore,
the standard deviation of the combined roughness (σ) of the friction surfaces in the above
theoretical model was changed to simulate the change in the service mileage. The results
for the theoretical simulation were obtained using MATLAB software and are shown in
Figure 12. The results only revealed the rate of change (not specific values) because a
large number of assumptions existed in the theoretical model, and the true values of the
model parameters were difficult to obtain. Figure 12a shows the simulation conditions of
the theoretical model: a constant clutch speed difference and a linearly increasing clutch
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engagement force. Figure 12b shows the theoretical simulation results for the influence
of the standard deviation of the combined roughness of the different friction surfaces on
the friction coefficient. According to the simulation results, the variation in the standard
deviation of the combined roughness of the different friction surfaces mainly affected
the variation law of the friction coefficient from initial contact to full contact between the
asperities on the surfaces of the separator plate and the friction plate. In order to verify
the validity of the theoretical simulation results, a comparison was made between the
theoretical simulation results and the experimental results, as shown in Figure 13. As can
be seen in Figure 13, the theoretical simulation results and experimental results of the
friction coefficient were completely consistent with the variation pattern of the asperities
on the surfaces of the separator plate and the friction plate from the initial contact to the
full contact stage. Thus, this proves the feasibility of simulating the variation in friction
coefficient with service mileage by changing the standard deviation of the combined
roughness of the different friction surfaces in the theoretical model. Furthermore, the
variation in the contact area ratio (A/An) shown in Figure 12c indicates that as the standard
deviation of the combined roughness of the friction surfaces decreased, the duration of the
dynamic pressure lubrication stage that occurred while the separator plate and the friction
plate were engaged was extended. This increased the clutch engagement force when the
asperities on the surfaces of the separator plate and the friction plate came into contact.
Figure 12d shows the variation in the torque characteristics of the wet clutch. As the clutch
engagement force increased, the friction torque transmitted by the asperities lagged behind
as the standard deviation of the combined roughness of the friction surfaces decreased.
However, the viscous torque transmitted by the lubricant film changed minimally as the
standard deviation of the combined roughness of the friction surfaces changed.
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Figure 12. Theoretical simulation of the service characteristics of the friction in the wet clutches.
(a) The simulation conditions for the clutch engagement process. (b) Theoretical simulation results of
friction coefficient variation. (c) The ratio of the contact area of asperities to the total area. (d) The
simulation results of torque transmission during the clutch engagement process.
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5. Conclusions

For wet clutches with different service mileages, the change rule of friction coefficient
with service mileage was experimentally investigated. Based on the three-dimensional
profile analysis of the friction plate surface, the mechanism of friction coefficient change
with service mileage was described by the established theoretical model of the dynamic
engagement process of a wet clutch. The following conclusions were obtained:

(1) The friction coefficient decreases as the service mileage of the wet clutch increases from
initial contact to full contact between the asperities on the surfaces of the separator
plate and the friction plate.

(2) The surface roughness of the friction plate becomes progressively smaller with the
increase in service mileage. This enhances the dynamic pressure lubrication effect
between the separator plate and the friction plate, and also increases the engagement
pressure when the asperities on the surfaces of the separator plate and the friction
plate come into contact. Ultimately, the friction coefficient decreases from initial
contact to full contact between the asperities on the surfaces of the separator plate and
the friction plate.

(3) The variation law of the friction coefficient of the wet clutch with service mileage
can be theoretically analyzed by changing the standard deviation of the combined
roughness of the different friction surfaces in the asperities elastic contact model and
the dynamic pressure lubrication model.

Funding: This work was supported by the National Natural Science Foundation of China (NO.
U1764259).
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