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Abstract: Journal bearings are used to support rotors in a wide range of applications. In order
to ensure reliable operation, accurate analyses of these rotor-bearing systems are crucial.
Coupled analysis of the rotor and the journal bearing is essential in the case that the rotor is flexible.
The accuracy of prediction of the model at hand depends on its comprehensiveness. In this study, we
construct three bearing models of increasing modeling comprehensiveness and use these to predict
the response of two different rotor-bearing systems. The main goal is to evaluate the correlation with
measurement data as a function of modeling comprehensiveness: 1D versus 2D pressure prediction,
distributed versus lumped thermal model, Newtonian versus non-Newtonian fluid description and
non-mass-conservative versus mass-conservative cavitation description. We conclude that all three
models predict the existence of critical speeds and whirl for both rotor-bearing systems. However, the
two more comprehensive models in general show better correlation with measurement data in terms
of frequency and amplitude. Furthermore, we conclude that a thermal network model comprising
temperature predictions of the bearing surroundings is essential to obtain accurate predictions. The
results of this study aid in developing accurate and computationally-efficient models of flexible rotors
supported by plain journal bearings.

Keywords: fluid film bearing; plain journal bearing; Laval rotor; whirl; whip; short bearing;
cavitation; critical speed; modeling comprehensiveness

1. Introduction

Hydrodynamic journal bearings are extensively used in turbomachinery due to their low wear
rate and high load-carrying capacity [1]. However, the interaction between the rotating system and the
oil film of the journal bearing can cause unstable dynamic behavior characterized by sub-synchronous
precessional motion called oil whirl [2]. The whirl frequency of this self-excited motion often increases
with rotation speed. For plain journal bearings, the whirl frequency is typically close to half the
rotation speed and is superimposed on the synchronous motion originating from residual unbalance.
In case the sub-synchronous whirl frequency approaches the natural frequency of an elastic rotor
mode, typically at approximately double the first critical speed, oil whip occurs [3]. At rotation speeds
beyond the onset speed of oil whip, the whirling frequency no longer increases with rotation speed,
but instead locks into the first flexural rotor-bearing mode. As the rotor whirls at a frequency close
to the flexural rotor-bearing mode, oil whip is typically characterized by high vibration amplitudes
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and, therefore, requires careful analysis to prevent excessive wear or even failure of the rotor-bearing
system [4,5].

Owing to its interesting and potentially dangerous non-linear behavior, numerous studies focusing
on the dynamics of rotors on hydrodynamic bearings have been published [2,6–11]. Newkirk and
Taylor [12] are regarded to be the first to note that the rotor vibration they observed at approximately
double the rotor critical speed was induced by the fluid bearings. Subsequent research on mathematic
descriptions of oil whirl showed that the physical fields of the bearing and the rotor have to be analyzed
simultaneously [13]. Lund [14] then pioneered the mathematical description of a flexible rotor on fluid
film bearings, where he used bearing coefficients based on local linearization of the bearing forces
predicted by the Reynolds equation around its static equilibrium condition. This method has mostly
been used for stability calculations. Later, when more computation power became available, numerical
methods based on time integration became more popular [4].

Subsequent efforts on improving the accuracy of predicting rotor-bearing dynamics have mostly
been focused on the bearing models. Features that have been studied are [13–15]: cavitation effects,
thermal effects, shaft tilting effects, fluid inertia effects, hot oil mixing at the inlet, elastic deformation
of the bearing surfaces and non-Newtonian fluid descriptions. Including all of these effects in a
model results in computationally-expensive models [16], and hence, simplifying assumptions are
adopted, commonly leading to isothermal, fully-aligned short bearing models. However, the accuracy
of prediction of the rotodynamic response strongly depends on the validity of the assumptions that are
made to create a bearing model. Many of the currently existing experimentally-validated models of
rotors on fluid film bearings show significant discrepancies between prediction and measurement in
terms of amplitude and onset speeds of oil whirl and oil whip [6,9,10,17].

In this study, we focus on investigating the multiphysical comprehensiveness of a bearing model
required to make accurate predictions of the dynamic behavior of a rotor running on fluid film bearings.
Therefore, we developed three models with an increasing level of comprehensiveness to study the
trade-off between computational accuracy and computation cost. Note that the amount of modeling
assumptions decreases with increasing model comprehensiveness. We apply the bearing models
to predict the behavior of two different rotor-bearing systems that both encounter oil whirl and oil
whip conditions. We also demonstrate the added value of an eigenvalue analysis of the linearized
rotor-bearing system to get an indication of the critical speed and the onset of instability. We will
show that excessively comprehensive models are computationally heavy, while not necessarily more
accurate than more simple models, which make use of well-chosen assumptions.

2. Bearing Models

In this section, three bearing models will be introduced, starting off with a simple bearing model
and ending with a comprehensive multiphysical bearing model. The bearing housing and the shaft
surface at the bearing location are assumed to be rigid for all three models, as the fluid film pressures
are moderate in the evaluated cases. Opposed to the bearing walls being rigid, elastic bending of the
shaft is taken into account. Oil is supplied at pressure pi and temperature Ti on top of the bearing;
see Figure 1. At the axial ends of the bearing, the oil flows out at ambient pressure. All three bearing
models are based on the Reynolds equation, which assumes laminar flow, neglects fluid inertia effects
and assumes constant pressure throughout the height of the oil film due to the small oil film thickness.
The pressure distribution in a thin lubricating film with film thickness h, which supports a shaft with
radius R at rotation speed Ω, is described by:
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where µ and ρ denote the lubricant viscosity and density, respectively. x represents the circumferential
coordinate x = θR, and z indicates the axial coordinate. When perfect shaft alignment is assumed, the
expression for the film thickness h as a function of the angle θ may be written as:

h = C− eX cos(θ)− eY sin(θ) (2)

where C is the nominal radial clearance and eX and eY are the displacements from the center position
in the global, non-rotating reference frame, as depicted in Figure 1.
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Figure 1. Layout of the plain journal bearing. The oil film thickness is exaggerated for visualization.

2.1. Bearing Model 1: Isoviscous Short Bearings with Half-Sommerfeld Cavitation Conditions.

For the first bearing model, we apply the following assumptions:

• the flow is dominated by the pressure gradients in the axial direction, and thus, the pressure
gradient in circumferential direction can be ignored: ∂p

∂x �
∂p
∂z .

• the fluid viscosity does not vary with time or location.
• the shaft is always aligned with the bearing bore, i.e., shaft tilting is not included in the fluid film

thickness function.
• the pressure distribution is dominated by the hydrodynamic pressure buildup; therefore, the

hydrostatic pressure contribution of the supply is neglected.

Based on these assumptions, an analytical expression for the pressure distribution can be obtained.
Integrating this expression over the bearing circumference and discarding negative pressures in the
cavitated areas (half-Sommerfeld boundary conditions), a closed form expression of bearing reaction
forces in radial and tangential directions is [18]:

Fr = − µRLb
3

2C2

[
2ε2(Ω−2Θ̇)
(1−ε2)

2 +
πε̇(1+2ε2)
(1−ε2)

5/2

]
Ft =

µRLb
3

2C2

[
πε(Ω−2Θ̇)
2(1−ε2)

3/2 + 4εε̇

(1−ε2)
2

] (3)

where Lb is the bearing length, Θ̇ is the whirl velocity of the bearing and ε is the dimensionless

eccentricity ratio ε =

√
eX2+eY

2

h0
. The radial force Fr acts along the instantaneous attitude angle Θ,

whereas the tangential force Fr acts along Θ, where:

Θ = tan−1
(

eY
eX

)
(4)

These bearing forces can be transformed to the stationary inertial coordinate system XY:

Fb =
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FX
FY

]
=

[
sin(Θ) cos(Θ)
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] [
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]
(5)
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This bearing model, which gives a reaction force as a function of the bearing design and operating
conditions, will be used to evaluate two different rotor-bearing systems in Sections 3 and 4.

2.2. Bearing Model 2: Finite Length Journal Bearing with Gümbel Cavitation Conditions Including a Lumped
Thermal Model

In Model 1, a short bearing model is used, which assumes that the circumferential flow is much
smaller than the axial flow and can thus be omitted from the Reynolds equation in order to derive
the explicit expression of Equation (3). This assumption can be made when the bearing is narrow,
i.e., Lb/2R < 1/2 [2]. In case the bearing is not particularly narrow nor long, the Reynolds equation
needs to be solved in two directions, which is done in Model 2. In this model, we use a finite element
discretization scheme [19] to solve Equation (1) over the fluid domain depicted in Figure 2.

Fluid domain pi qcont qcont 

x 

z 

-πR πR 

-Lb/2

0 

0 

p=0 

p=0 

Lb /2 

Figure 2. Fluid domain and boundary conditions for the unwrapped 2D bearing model: ambient
pressure p = 0 is set at the axial ends of the fluid domain, and inlet pressure p = pi is set on the
inlet channel. A periodic boundary condition connects sides x = −πR and x = πR.

Gümbel cavitation conditions are imposed by setting negative pressures from the solution of
Equation (1) to zero using a Boolean function:

p∗ = (p ≥ 0)p (6)

where the term (p ≥ 0) is equal to one for non-negative pressures and zero for negative pressures.
The influence of Gümbel cavitation conditions on the rotodynamic response of a Laval rotor have been
investigated by Nitzschke [20] who obtained fairly similar results using either Elrod-like or Gümbel
cavitation conditions.

The shear losses in the oil film cause an increase in oil temperature Tfilm and consequently
a decrease in viscosity µ [4]. Therefore, a lumped thermal model is taken into account in Model 2.
The thermal model is based on an energy balance of the rotor-bearing system, including the
bearing housings, as shown in Figure 3. The friction heat Qψ, which is generated in the fluid film,
partly exits the bearing by heating the lubricant, which flows through the bearing ṁoil, and partly
by heat conduction and convection from the lubricant to the rotor and the bearing housing. Figure 4
shows the thermal network in which only steady state components are included, as quasistatic run-up
or run-down conditions are assumed: the time constant for the shaft motion is considerably smaller
than the time constant involved in the thermal behavior of the rotor-bearing system.
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Figure 3. Cross-sectional schematic of the rotor-bearing system indicating the thermal nodes of
the thermal network model. For each bearing, an individual thermal network model is created.
Thermal interaction between bearings is neglected here for simplicity, but can be included by simply
coupling thermal networks at node Ts_out .
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Figure 4. Thermal network model. Friction heat Qψ is generated in the bearing and is subsequently
transported to ambient air by means of convection and conduction paths. Each block represents
a thermal resistance. Due to the relatively low oil flow rate, there is considerable heat transfer between
the oil and the bearing housing in the inlet channel. Therefore, the oil temperature at the inlet of the
bearing is close to Tbh_in instead of its externally-imposed temperature Ti. The heat to warm up the oil
flow ṁoil at the inlet channel is mostly supplied by the bearing housing, hence its branch from Tbh_in

instead of a more intuitive branch from Tfilm.

In the thermal network model, the friction in the fluid film Qψ originates from pressure extrusion
losses and from shear flow losses and is calculated by:

Qψ =

L/2∫
−L/2

πR∫
−πR

{
(p ≥ 0)

h3

12µ

{(
∂p
∂x

)2
+

(
∂p
∂z

)2
}
+ (p ≥ 0)

µ(ΩR)2

h

}
dxdz (7)

Heat flow from the fluid film to its surroundings can be modeled by solving the energy equation
in three directions, as done by Mahner et al. [21], or alternatively by assuming an average temperature
at the center of the height of the fluid film [22]. For this model, we assume the latter in order to keep
the computational effort at a minimum during time-transient simulations of the rotor-bearing system.
The heat transfer from the fluid film to the shaft and the bearing housing is therefore represented as
conduction from halfway of the film height h

/
2, as depicted in Figure 4.

The heat going into the bearing housing is partly transferred to ambient air and is partly
transferred to the oil in the inlet channel upstream the film. It is observed that most of the temperature
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increase of the oil actually occurs here and not in the oil film itself. The amount of heat leaving the
bearing via the oil flow thus depends on Tbh_in − Ti and the instantaneous mass flow of oil:

ṁoil =

πR∫
−πR

nz(p ≥ 0)
ρh3

12µ

∂p
∂z

∣∣∣∣∣∣
z=−Lb/2∪Lb/2

dx (8)

where nz is the vector normal to the edges of the bearing.
Conduction through the shaft is assumed to occur on two sides of the bearing up to a point 1/3 of

the shaft half-length Ls/2 at each side of the bearing, where the temperature is halfway of its decay
from Ts_in. Subsequently, convection takes place from the rotating shaft, estimated by [23]:

Hshaft =
kair

15R
Reair

2/3Prair
1/3 (9)

where the Reynolds number Reair depends on the rotation speed and the kinematic viscosity of air νair:

Reair =
4ΩR2

νair
(10)

Convection from the bearing housing outer surface Abh_o occurs by natural convection:
Hbh = Hfree.

The lumped film temperature Tfilm is determined by balancing the friction losses in the bearing
with the amount of heat carried away by the oil and transferred to the bearing housing and the shaft:

Qψ(µ(Tfilm))−Qvia_oil −Qvia_bh −Qvia_shaft = 0 (11)

This balance is iteratively found by finding the temperature Tfilm using the relation between oil
viscosity and temperature described by the Vogel equation [4]:

µ(Tfilm) = ae
b

Tfilm+c (12)

using the constants a, b and c corresponding to the specific type of oil; see Tables 1 and 2. The thermal
network model was compared with the results of a conjugate heat transfer model, where the predictions
of both models were in good correspondence, with maximum deviations of 3 K.

Table 1. Rotor and bearing parameters of rotor-bearing System A.

Rotor Parameters Bearing Parameters

Symbol Description Value Unit Symbol Description Value Unit
Ls Bearing span 0.12 m C Bearing clearance 11e−6 m
Ds Shaft diameter 6e−3 m Lb Bearing length 3.6e−3 m
Ld Central disk length 9e−3 m Di Oil inlet diameter 2e−3 m
Dd Central disk diameter 35e−3 m a Viscosity-temperature parameter 4.4e−4 Pa·s
Lm Measurement disk length 4e−3 m b Viscosity-temperature parameter 633 ◦C
Dm Measurement disk diameter 12e−3 m c Viscosity-temperature parameter 88.6 ◦C
Es Modulus of elasticity of shaft 215 GPa m Viscosity-shear rate parameter 0.8 -
ρs Density of shaft material 7850 kg

m3 r Viscosity-shear rate parameter 0.5 -
mrunb Unbalance at center disk 250 mg·mm K Viscosity-shear rate parameter 7.2e−7 s

ρ Oil density 855 kg
m3



Lubricants 2016, 4, 33 7 of 18

Table 2. Rotor and bearing parameters of rotor-bearing System B.

Rotor Parameters Bearing Parameters

Symbol Description Value Unit Symbol Description Value Unit
L1 Length of shaft section 0.12 m C Bearing clearance 17.5e−6 m
L2 Length of shaft section 0.40 m Lb Bearing length 15e−3 m
L3 Length of shaft section 0.143 m Di Oil inlet diameter 3e−3 m
L4 Length of shaft section 0.05 m a Viscosity-temperature parameter 1.08e−3 Pa·s
Ld Disk length 15e−3 m b Viscosity-temperature parameter 324.3 ◦C
Ds Shaft diameter 25.4e−3 m c Viscosity-temperature parameter 52.51 ◦C
Dd Disk diameter 170e−3 m m Viscosity-shear rate parameter 0.8 -
Es Modulus of elasticity of shaft 210 GPa r Viscosity-shear rate parameter 0.5 -
ρs Density of shaft material 7800 kg

m3 K Viscosity-shear rate parameter 7.2e−7 s
mrunb Unbalance on central disk 189 g·mm ρ Oil density 879 kg

m3

The thermal balance of Equation (11) is solved together with the Reynolds equation (Equation (1))
over the fluid domain depicted in Figure 2. The bearing reaction forces can then be calculated by
integrating the pressure over the bearing domain:

FX = −
Lb/2∫
−Lb/2

πR∫
−πR

p∗ cos (θ)dxdz FY = −
Lb/2∫
−Lb/2

πR∫
−πR

p∗ sin (θ)dxdz (13)

Contrary to Model 1, Model 2 does not assume that the viscosity is independent of time, as the
lumped oil viscosity changes with the operating conditions. Furthermore, the Reynolds equation is
solved in two dimensions instead of one, so that we no longer have to neglect the pressure gradient
in the circumferential direction. In addition, the hydrostatic pressure from the supply is taken into
account in Model 2. The most important remaining assumptions in Model 2 are that the viscosity does
not vary with location and that the shaft is always aligned in the bearing housing.

2.3. Bearing Model 3: Finite Length Journal Bearing Including a Mass-Conservative Cavitation Algorithm,
Non-Newtonian Fluid Description, Shaft Tilting Kinematics and a Distributed Thermal Model

Model 3 can be seen as an extension to Model 2 as the Reynolds equations are again solved on
the fluid domain depicted in Figure 2. This time, however, the modeling is more comprehensive, and
therefore, the number of assumptions is further reduced, as will be explained in this section.

Model 1 and Model 2 truncate negative pressures to zero to prevent the pressure distribution from
containing negative pressures. This approach, however, is not mass conservative and can therefore lead
to inaccurate results, especially for thermal models where conservation of mass can be important [24].
Hence, in the third model, a mass conservative cavitation algorithm is used. The cavitation algorithm
is incorporated in the Reynolds equation by including the mass fraction f and by substituting p by ξP0:

∂qx

∂x
+

∂qz

∂z
+

∂h f ρ

t
= 0 (14)

where:
qx = − ρ f h3

12µ
∂ξ
∂x P0 +

ΩR f hρ
2

qz = − ρ f h3

12µ
∂ξ
∂z P0

P0 = µ0ΩR2

C

(15)

The mass fraction f is defined such that it equals one in the full film area and represents the mass
fraction {0 ≤ f ≤ 1} when the film is cavitated:

f (x, z) = 1 + ξ(ξ < 0)c f (16)
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in which c f is a transformation coefficient that arises from a flow balance in the circumferential
direction under the assumption of streamer cavitation; see Alakhramsing [24] for details. The physical
pressure p can be calculated by:

p = ξ(ξ ≥ 0)P0 (17)

The expressions (ξ < 0) and (ξ ≥ 0) are Boolean functions, which are one when true and zero
otherwise. The cavitation algorithm of Alakhramsing was proven to be computationally efficient
and robust for THDsimulations [24] and was therefore selected over alternative mass conservative
cavitation algorithms.

In Model 2, the viscosity of oil was assumed to be only dependent on temperature. The viscosity
of multi-grade oils, as often used for plain journal bearings, also depends on the local film shear rate γ̇:

γ̇ =
ΩR

h
. (18)

At high shear rates, the viscosity decreases. This non-Newtonian effect is often referred to as
shear thinning [4]. In Model 3, the viscosity formulation of Model 2 is therefore extended by including
shear rate dependency according to the Cross equation [25]:

µ(Tfilm, γ̇) = ae
b

(Tfilm+c)

(
r +

1− r
1 + (Kγ̇)m

)
(19)

with the parameters r, m and K corresponding to the specific type of oil; see Tables 1 and 2.
Models 1 and 2 assume that the shaft is always aligned with the bearing housing. When shaft

misalignment occurs due to shaft bending or shaft tilting, the film height varies over the axial direction,
so Equation (2) is no longer sufficient. In Model 3, a shaft tilting description is included by adding
tilting terms to the original film height description of Equation (2) [26]:

h = C (1− (z sin (ϕY) + eX) cos(θ)− (z sin ϕX + eY) sin(θ)) (20)

where ϕX and ϕY represent the tilting angles of the beam in the X and Y direction, respectively, at the
center of each bearing. This description allows the peak film pressures to occur off the centerline of
the bearing. In addition to the forces, which are calculated by Equation (13), a resulting torque acts on
the shaft at the bearing locations:

MX = FX

Lb/2∫
−Lb/2

−πR∫
−πR

p∗zdxdz

Lb/2∫
−Lb/2

−πR∫
−πR

p∗dxdz

MY = FY

Lb/2∫
−Lb/2

−πR∫
−πR

p∗zdxdz

Lb/2∫
−Lb/2

−πR∫
−πR

p∗dxdz

(21)

The friction loss φ over the bearing surface per unit area arises from both pressure work and
shear losses:

φ =
(ξ > 0) h3

12µ

((
∂ξP0

∂x

)2
+

(
∂ξP0

∂z

)2
)
+

f µ

h
(22)

where the shear losses are assumed to occur in the full film area, as well as in the ratio f of the cavitated
area under the assumption of finger-type cavitation.

The thermal model of Model 3 connects to the same thermal network as Model 2, depicted in
Figure 4, but instead of having a lumped film temperature Tf ilm, the temperature within the fluid film
varies over the x-z-domain. The thermal distribution over the film domain is described by conduction
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and convection in the x and z direction, thermal storage, friction heat generation φ and heat transfer to
the surroundings as follows:

∂
∂x

(
− f koilh ∂T

∂x + cpqxT
)
+ ∂

∂z

(
−(ξ > 0)koilh ∂T

∂z + cpqzT
)
+ ρcp_oilh ∂T

∂t = ...

...φ− 2 f koil
h (2T − Tshaft_in − Tbh_in)

(23)

As finger-type cavitation is assumed, the fluid in the cavitated region forms streamers so that the
conduction of heat in the z direction can only occur in the full film region, hence the term (ξ > 0) in
Equation (23). Moreover, conduction in the x direction will only occur at the fraction of fluid f .

At the axial ends of the film domain, the constant pressure boundary condition of Model 2 is
replaced by a non-submerged boundary condition, which allows the flow to exit the domain, but
prevents it from re-entering [24]:

(ξ ≥ 0) (qznz > 0)|L/2
−L/2 (24)

In this model, the fluid and thermal equations, Equations (14) and (23), are simultaneously solved
using a modified Newton–Raphson iteration scheme.

2.4. Summary of Bearing Models

Table 3 summarizes this section by giving an overview of the details of the three bearing models.

Table 3. Overview of the comprehensiveness of the three bearing models.

Model 1 Model 2 Model 3

Pressure distribution 1D 2D 2D
Fluid supply hole neglected p = pi ∈ inlet p = pi ∈ inlet

Thermal distribution Isoviscous Lumped thermal Distributed thermal
Fluid type Newtonian Newtonian Non-Newtonian

Cavitation model Half-Sommerfeld Gümbel Alakhramsing
Shaft alignment (tilting) Fully aligned Fully aligned Misalignment included

Having developed three increasingly comprehensive bearing models, we will now evaluate their
performance using two case studies in the subsequent sections.

3. Rotor-Bearing System A: A High Speed Laval Rotor on Plain Journal Bearings

3.1. Rotor and Bearing Layout

The first rotor-bearing system (rotor-bearing System A) consists of a simple symmetric rotor
supported by plain journal bearings; see Figure 5. This rotor is essentially a Laval rotor, with two small
disks adjacent to the main disk, which were added to facilitate the use of two eddy current sensors
in orthogonal radial directions [16]. The rotor-bearing system is based on an example provided by
Schweizer [8] and is described by the parameters given in Table 1. The rotor is driven by an electric
motor via a lightweight compliant coupling. A more detailed description of the rotor-bearing system
and the experimental setup can be found in [16].
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Figure 5. Layout of Rotor A: a Laval rotor with a central disk and two small measurement disks near
the bearings.

3.2. Rotor Model and Linear Rotodynamic Response

In order to get a global understanding of the rotor-bearing behavior, a linear rotodynamic analysis
is a quick and insightful first step. The rotor itself is modeled using a finite element model using
Rayleigh beam elements and disk elements, including the gyroscopic terms for both element types.
Small displacements on a slender rotor are studied; therefore, the Rayleigh beam was considered
to be adequate. Furthermore, material damping of the rotor is modeled by Rayleigh damping.
The non-rotating rotor model was validated by hammer impact tests: the eigenfrequencies in the
synchronous operating range were correctly predicted within 3% of the measured values.

For the linear rotodynamic analysis, we make use of a bearing formulation similar to that of Model
1; however, we further simplify Equation (3) by assuming steady operating conditions. This leads to
the elimination of the whirl and squeeze-dependent terms:

Fr =
µRL3Ωε2

C2(1−ε2)
2 Ft = − µRL3πεΩ

4C2(1−ε2)
3/2 (25)

Based on these expressions, the 2× 2 linearized stiffness and damping matrices of each bearing
can be derived; see Hamrock [27] for details. An eigenvalue analysis of the linear rotor-bearing system
is performed, resulting in the Campbell plot of Figure 6a and the associated mode shapes in Figure 6b.

A typical response of a flexible Laval rotor on plain journal bearings is predicted:

• traversal of a critical speed caused by the first shaft bending mode at Ωcritical = 366 Hz.
• above this critical speed, the first rigid body mode (a cylindrical mode, see Figure 6b) becomes

linearly unstable at Ωwhirl = Ωcritical
/

2 = 183 Hz.
• at rotation speeds above 40.000rpm, the whirl locks into the first shaft bending mode, resulting in

a whip mode, which combines rigid body motion and bending motion.

Furthermore, a second whirling mode is predicted to become unstable around 52.000 rpm. This is
the conical mode of the shaft, a pure rigid body whirl.
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Campbell plot of a high speed Laval rotor on plain journal bearings.
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Ω=22.000rpm, f = 366[Hz]

Ω=30.000rpm, f = 247[Hz]
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(b)

Figure 6. Results of the eigenvalue analysis of the linearized rotor-bearing system. (a) Campbell
plot predicting the critical speed traversal at 22.000 rpm, the onset of whirl at 21.800 rpm and the
transition to whip above 40.000 rpm; (b) mode shapes. Top: near the critical speed; middle: in the oil
whirl condition; bottom: in oil whip condition.

3.3. Non-Linear Time-Transient Analysis

After having performed the linear rotodynamic analyses, the next step is to perform non-linear
time-transient analysis. To that end, we coupled the rotor model, as described and analyzed in
Section 3.2, to the bearing models described in Section 2 and performed a run-up from 1000 rpm to
60.000 rpm in 120 s. The bearings are supplied with oil at a pressure of 2.8 bar and a temperature of
25 ◦C, which is also the ambient temperature. An unbalance amount of 250 mg·mm was applied on
the central disk. For Model 1, a constant fluid temperature of 320 K was assumed, which is the average
lumped film temperature predicted by Model 2. The resulting equations of motion can be written as:

Mq̈ + (C + G(Ω))q̇ + Kq = F (26)

where the matrix M represents the mass matrix, C represents the damping matrix, G represents
the gyroscopic matrix and K represents the stiffness matrix. F contains the bearing forces
and the unbalance forces. Lastly, the vector q contains the global generalized displacements.
A Newton–Raphson algorithm solves the fully-coupled system of equations describing the
rotor-bearing system. The model contains 8800 degrees of freedom, and convergence is accepted
at a relative error of 10−4.

The resulting runup data are displayed in Figure 7: waterfall plots of the response on the
measurement disk adjacent to the bearing of the experimental results compared with the predictions
of the three different rotor-bearing models. The measurement shows the occurrence of a critical speed
traversal around Ωcritical = 380 Hz. A sub-synchronous whirl starts at a rotation speed of 44.000 rpm
at a frequency of approximately Ωwhirl = 360 Hz. At rotation speeds over 50.000 rpm, the whirl locks
into the first shaft bending mode to form a whip at Ωwhirl = 380 Hz.

The three numerical models correctly predict the occurrence of the critical speed traversal and the
occurrence of a whirl, which locks into the first bending mode. Looking closer, we see that the main
difference between the results of the three models is that the onset of the whirl is underpredicted by the
numerical models. Especially Model 1, which does not take the hydrostatic feed pressure into account,
predicts a whirl to start already around 20.000 rpm. Model 2 shows better resemblance by predicting
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the whirl to start around 37.000 rpm and shows a clear transition from whirl to whip conditions.
Model 3, which is the only model that captures the effects of shaft tilting and shear thinning of the
lubricant, shows even better resemblance with the measurement results, as the whirl is predicted to
start beyond 40.000 rpm, as observed during measurements.
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Figure 7. Waterfall plots of the rotor response: displacement of the measurement disk adjacent
to the bearing. Oil feed pressure: 2.8 bar; oil feed temperature: 25 ◦C; unbalance on central disk:
250 mg·mm.

Figure 8 gives the measured RMS-values of synchronous and sub-synchronous displacement for
both the locations near the bearing, as well as on the center disk compared with the model predictions.
All data were filtered using bandpass filters for the synchronous component 0.9 fsynch < f < 1.1 fsynch
and the sub-synchronous component 0.1 fsynch < f < 0.9 fsynch.

Considering the synchronous response, we see that the frequency of the critical speed is generally
well predicted by the three models. At low rotation speeds, the experiment shows some unpredicted
response, most likely coming from residual out-of-plane unbalance. At the critical speed, Model 2 and
Model 3 give accurate predictions within 5% of the measured values. The peak amplitude of Model 1
is clearly smaller than those of the other two models, most likely due to the short bearing formulation
of Model 1, which overpredicts the pressures so that the eccentricities are underpredicted.

Considering the sub-synchronous response, the models underpredict the whirl onset speed, where
Model 1 is clearly most off, followed by Model 3 and then Model 2. The amplitude of the whirl is
relatively well predicted by the three models. Overall, Model 2 seems to correlate at least as well with
the measurement data as Model 3 in terms of whirl amplitude.

Comparing these results with our previous study [16], a much better correlation between
measured response and predicted response is found. This may be attributed to two major model
improvements:

• the extension of the thermal model to include the heating of the shaft, the bearing housing and
the oil in the inlet channel, as depicted in Figure 4. Especially the effect of heating the oil in the
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inlet channel inside the bearing housing just upstream the bearing was found to be having a major
impact on the effective film temperature.

• it was found by experiments on a viscometer that the oil viscosity-temperature parameters used
in our previous study [16] were incorrect. The newly-found oil viscosity-temperature parameters
can be found in Table 1.

The computation times for the three models are respectively 1 h, 6 h and 30 h on a 3.6-GHz Xeon
computer: the increase of model comprehensiveness clearly comes at a cost. The mesh of the models
was checked to be mesh-converged, based on the peak pressure in the fluid film.
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Figure 8. Synchronous and sub-synchronous rotodynamic response.

4. Rotor-Bearing System B: An Asymmetric Rotor with Multiple Disks on Plain Journal Bearings

4.1. Rotor and Bearing Layout

The second test case for our study is the rotor-bearing system used by El-Shafei [28], who
experimented with a rotor-bearing system consisting of a central disk and three overhung disks on
a shaft, which is supported by plain journal bearings; see Figure 9. This system has a completely
different geometry and operating speed from rotor-bearing System A and is particularly interesting
because more than one critical speed is traversed. In addition, due to the overhung disk configuration,
shaft tilting is expected to be more pronounced compared to rotor-bearing System A. Details of the
rotor-bearing system can be found in Table 2.

Bearing Bearing 

Figure 9. Layout of Rotor B. The rotor is driven by a motor, which is coupled to the rotor at the left-hand
side. There is an unbalance load on the disk between the bearings.
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4.2. Linear Analysis: Campbell Plot

Analogous to Section 3.2, an eigenvalue analysis of the linearized rotor-bearing system
is performed. The results in Figure 10a show that this rotor traverses two critical speeds and that
several sub-synchronous modes exist.
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Campbell plot of an asymmetric rotor with multiple disks on plain journal bearings.

 

Synchronous response
Stable
Unstable

(a)

Ω=1720rpm, f = 28.8419[Hz]

Ω=4560rpm, f = 78.0614[Hz]

Ω=4000rpm, f = 26.9729[Hz]

(b)

Figure 10. Results of the eigenvalue analysis of the linearized rotor-bearing system. (a) Campbell plot
predicting critical speed traversals of forward modes at 1720 rpm and 4560 rpm. The onset of whirl
is predicted at 2400 rpm followed by a gradual transition to whip above 3000 rpm. Above 4500 rpm,
another whirl mode becomes unstable; (b) Mode shape. Top: near the first critical speed; middle:
second critical speed; bottom: in oil whip conditions.

4.3. Non-Linear Time-Transient Analysis

Analogous to Section 3.3, non-linear time-transient analyses have been performed with bearing
Models 1 to 3 for rotor-bearing System B. The test conditions are: pi = 4 bar, Ti = 25 ◦C. An unbalance of
189 g·mm is added to the central disk. These conditions correspond to Case 3 described by El-Shafei [28].
Figure 11 shows the comparison between the measurement results, kindly provided by Prof. El-Shafei,
and the results of our models, both on the basis of the synchronous and sub-synchronous response
data. The measurement, as well as the simulations were performed in run-down conditions from
5500 rpm to 250 rpm. As a side note, it can be mentioned that the whirl showed hysteresis: the onset
speed of whirl was considerably higher during run-up simulations than during run-down simulations.
In this study, only run-down conditions are considered.

Figure 11 presents the synchronous and sub-synchronous displacement near the left-hand bearing.
The synchronous responses of all three models are similar. The first critical speed prediction is close to
the measurement result; however, the second critical speed traversal is 400 rpm higher than measured.
It is believed that the mass of the rotor-motor coupling element in the test setup had a considerable
influence on this mode, causing a decreased critical speed on the test setup. The mass and stiffness of
this coupling are, however, not included in the models.

As for the sub-synchronous response, the models underpredict the onset speed of whip by
500 rpm typically. This could be caused by the influence of the coupling on the rotor-bearing dynamics.
Furthermore, it was checked that the change of clearance due to different thermal expansion of the
shaft and the bearing was less than 0.5 micrometers, so it may be neglected. The thermal interaction
between the bearings have not been included in our models; this could be a reason for the discrepancy
between the simulation results and the measurement results.
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Figure 11. Synchronous and sub-synchronous response of rotor-bearing System B. Oil feed pressure:
4 bar; oil feed temperature: 25 ◦C; unbalance on central disk: 250 mg·mm.

Figure 12 gives a comparison of the model results in the frequency domain. Unfortunately,
insufficient measurement data were available to construct a similarly accurate waterfall plot of the
experimental results. Based on the available data, however, it can be concluded that a reasonable
correlation with the whirling frequencies is found: El-Shafei [28] measured whirling frequencies in the
range of 28 Hz–30 Hz, whereas the models predict whirling frequencies of 29 Hz–32 Hz.
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Figure 12. Waterfall plots of the response of Rotor B adjacent to the bearing.

The computation times for the three models are respectively 0.6 h, 4 h and 22 h on a 3.6-GHz
Xeon computer.

5. Conclusions

Coupled simulation of rotor dynamics, fluid film dynamics and rotor-bearing thermodynamics
results in accurate prediction of unbalance response, oil whirl and oil whip of flexible rotors supported
by hydrodynamic bearings, provided that all relevant physics are adequately included in the model.
A simple isothermal linearized rotor-bearing model can already provide a good indication of the
response to be expected and is a quick, yet insightful tool compared to more comprehensive
multiphysical time-transient simulations. As the behavior of these rotor-bearing systems is strongly
non-linear and multiphysical, non-linear rotor-bearing models should be used when more accurate
predictions of the rotor response are required.

Regarding the comprehensiveness of modeling fluid bearings: based on the two considered
rotor-bearing systems, we conclude that a thermal network model that includes temperature
predictions of the bearing housing surface, the shaft surface and the oil temperature at the inlet of the
bearing is required to obtain accurate predictions of the rotor-bearing response. The added value of
a distributed thermal model within the fluid film compared to a lumped thermal model is very limited.
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Likewise, the added value of a mass conservative cavitation algorithm over non-mass conservative
boundary conditions is also very limited. In the investigated cases, the change of shear rate over the
operating range is considerable; therefore, the non-Newtonian fluid description is regarded to be
important. The effect of shaft-misalignment was negligible in both cases. The hydrostatic pressure
of the oil feed channel increases the onset speed of whirl and is therefore an important effect to take
into account.

The increase of modeling comprehensiveness comes with an increase in computational cost.
It is therefore wise to simplify the rotor-bearing model as much as possible, as long as the required
assumptions necessary for simplification are valid. The development of sufficiently-comprehensive
rotor-bearing models results in accurate and fast predictions, leading to optimal rotor-bearing
performance and first-time-right designs.
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test setup and conducted the experiments of rotor-bearing system A. Rob Eling wrote the manuscript. Ron van
Ostayen and Daniel Rixen assisted in the model development and supervised this work.
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Appendix A. Numerical Values of Rotor-Bearing System A

Table A1. Thermal network parameters of rotor-bearing System A.

Symbol Description Value Unit Symbol Description Value Unit

Abh_cs Cross-sectional area bearing housing 3e−4 m2 koil Thermal conductivity of oil 0.145 W
mK

Abh_o Outer surface area bearing housing 6e−3 m2 ksha f t Thermal conductivity of shaft 44 W
mK

Hbh Convection coefficient from bearing
housing

5 W
m2K Lchar_bh Characteristic length of conductance

in bearing housing
1.14e−2 m

kair Thermal conductivity of air 2.8e−2 W
mK νair Kinematic viscosity of air 17e−6 m2

s
kbh Thermal conductivity bearing housing 201 W

mK cp_oil Specific heat of oil 2.1e3 J
kgK

Prair Prandtl number of air 0.69 −

Appendix B. Numerical Values of Rotor-Bearing System B

Ds Dd

L1 L2 L2 L3 L4 L4 L4 

Ld Ld(3x) 

Figure B1. Schematic of Rotor B.

Note: the disks in the rotor contain twelve 8 mm-diameter holes in the axial direction on a
140 mm-diameter circle. Furthermore, the bearing contains two inlet holes for oil supply instead of
one, these inlets are located at θ = π/3 and θ = 2π/3. Further details can be found in the paper of
El-Shafei [28].
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Table B1. Thermal network parameters of rotor-bearing System B.

Symbol Description Value Unit Symbol Description Value Unit

Abh_cs Cross-sectional area bearing housing 6e−4 m2 koil Thermal conductivity of oil 0.145 W
mK

Abh_o Outer surface area bearing housing 5e−2 m2 ksha f t Thermal conductivity of shaft 44 W
mK

Hbh Convection coefficient from bearing
housing

5 W
m2K Lchar_bh Characteristic length of conductance

in bearing housing
2.9e−2 m

kair Thermal conductivity of air 2.8e−2 W
mK νair Kinematic viscosity of air 17e−6 m2

s
kbh Thermal conductivity bearing housing 44 W

mK cp_oil Specific heat of oil 2.1e3 J
kgK

Prair Prandtl number of air 0.69 −
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