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Abstract: The articulation performance of silicon nitride against conventional and highly cross-linked
polyethylene, as well as for self-mated silicon nitride bearings, was examined in a series of standard
hip simulation studies. Wear rates for polyethylene liners against silicon nitride femoral heads were
consistent with reported literature, although higher than cobalt chromium controls. Excessive protein
precipitation was a confounding factor in interpretation of the wear data. Post wear-test Raman
spectroscopy of the cross-linked polyethylene liners showed no oxidative degradation. Wear of
self-mated silicon nitride was found to be essentially zero and indistinguishable from alumina controls
using continuously orbital hip simulation for up to three million cycles. However, introduction of
an alternative loading profile from three to five million cycles, including a stop-dwell-start sequence,
significantly increased wear for two of six silicon nitride couples. This behavior is associated
with formation and disruption of a gelatinous silicic acid tribochemical film, and is consistent
with a recurrent transition from fluid-film to boundary lubrication. Overall, these results suggest
that silicon nitride articulation against dissimilar counterface surfaces (e.g., highly cross-linked
polyethylene) is preferred.
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1. Introduction

Since 2008 silicon nitride (Si3N4) has been used as arthrodesis devices in the cervical and
thoracolumbar spine [1], and has been proposed as a new bearing material for total joint arthroplasty [2–5].
Si3N4 has a favorable combination of properties, such as high strength and fracture toughness [4],
inherent phase stability [4], biocompatibility [6], hydrophilicity [7], and bacterial resistance [7,8], all of
which make it ideal for these applications. However, its performance as an arthroplastic bearing
has yet to be fully evaluated. Laboratory studies have shown that its friction and wear are critically
dependent on applied load, sliding speed, environment, and counterface material [9–26]. In articulation
against polyethylene (PE), low friction is typically observed for all ceramics, including various Si3N4

compositions (i.e., <0.12) [27–31]; and even lower friction (i.e., <0.01) has been reported for Si3N4

sliding against carbon-fiber reinforced polyetheretherketone (CRF-PEEK) [23]. For self-mated Si3N4,
extremely low friction (≤0.002) and wear have been seen under well controlled, low-load, high-speed,
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and continuous motion devices; whereas high friction (>0.7) and accelerated wear are apparent for
slow-speed, high-loads, and interrupted (stop-start) conditions [10]. This varied behavior is due to
Si3N4’s surface chemistry. It is a non-oxide ceramic in its bulk; but it possesses a protective Si-N-O
transitional layer at its surface. Tribochemical wear of this layer leads to the release of ammonia (NH3)
and formation of a lubricating fluid film consisting of hydroxylated silicic acid (Si(OH)4·xH2O) which
flattens asperities, and can lower friction under low-load, continuous motion conditions. The resultant
wear products are soluble and resorbable, potentially leading to a reduction in wear-debris induced
osteolysis [32–34]. However, inadequate formation of the tribochemical film during high loads or
under stop-start cycling results in boundary layer lubrication and high friction. Marked changes
in load or slight perturbations of the wear track cause dramatic frictional fluctuations leading to
stick-slip behavior.

In this paper the in vitro performance of Si3N4 total hip arthroplasty (THA) bearings from
three separate hip simulator studies are reported. Hip simulator testing is an accepted practice and
a regulatory prerequisite for new or novel materials to ascertain whether proposed wear couples
increase patient risks or present new worst case conditions prior to their clinical use [35,36]. Two of the
hip simulator studies were conducted using Si3N4 femoral heads articulating against both conventional
ultra-high molecular weight polyethylene (UHMWPE) and highly cross-linked polyethylene (XLPE)
liners. These tests were performed by separate laboratories using different simulators with cobalt
chromium (CoCr) femoral heads as controls. Additionally, a ceramic-on-ceramic (CoC) hip simulator
study compared Si3N4 head and liner pairs to similar components made from Al2O3. Collectively,
these studies provide both qualitative and quantitative understanding of the potential in vivo capability
of this biomaterial.

2. Materials and Methods

2.1. AMTI Ceramic-on-Polyethylene Hip Simulator Study

For this study, acetabular liners (Ø28 mm ID) were fabricated from conventional GUR 1050
UHMWPE, terminally sterilized using ethylene oxide (EO) and coupled with Si3N4 (MC®, Amedica,
Salt Lake City, UT, USA) [37] or CoCr (ASTM F75 and F2068) femoral heads for wear testing.
Two additional groups of acetabular liners (Ø28 mm and Ø40 mm) were fabricated from GUR 1050
UHMWPE, gamma irradiated at 78.5 kGy in inert gas, and subsequently annealed in nitrogen at
85–90 ◦C for 24 h. These XLPE liners were also terminally EO sterilized prior to coupling them with their
respective Si3N4 femoral heads. Prior to wear testing, all liners were subjected to accelerated ageing in
accordance with ASTM F2003. After ageing, liners were placed in bovine serum (Sigma-Aldrich,
St. Louis, MO, USA) at 37 ◦C to presoak. The serum was stabilized with 10.7 mmols of EDTA
(Fisher Scientific, Pittsburgh, PA USA) and 33 mL of penicillin-streptomycin solution (Sigma-Aldrich)
per 500 mL of serum, which was subsequently diluted with deionized water (Fisher Scientific) to
25% bovine serum per ISO 14242-1. Liners subjected to pre-soaking in bovine serum were weighed
every three days until the weight change between the last two measurements exhibited less than 1%.
At initiation and completion of wear testing, liners were measured for roundness using a scanning
coordinate measuring machine (CMM, Global A2, Brown & Sharpe, Inc., North Kingston, RI, USA).
Measurements were repeated three times for each component. Statistical differences in roundness were
calculated using Student’s t-tests with a significance threshold of p < 0.05. Mean surface roughness
values (Ra) for the femoral heads were measured before and after testing using a contact profilometer
(Taylor Hobson Form Talysurf, Leicester, UK).

A 12-station hip simulator (Advanced Mechanical Technology, Inc., Watertown, MA, USA,
or AMTI) was used to perform wear testing at 1 Hz for 5 × 106 cycles using triaxial motion in
an anatomical 30◦ cup angle position. A total of 18 femoral head and acetabular liner pairs were
tested, twelve of which were subjected to both motion and load. The remaining pairs (1 Ø28 mm PE
liner coupled with a CoCr femoral head, 3 Ø28 mm PE liners coupled with Si3N4 femoral heads, and
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2 Ø40 mm XLPE liners coupled with Si3N4 femoral heads) were subjected to load without motion.
These “load-soak components” were used to correct for fluid uptake into the PE and XLPE during
testing. Fluid uptake from the Ø28 mm load soak pairs were averaged, and this average used to correct
weight changes for all Ø28 mm PE liners, regardless of their coupled femoral head material. A standard
walking gait cycle as specified in ISO 14242-1 was used. All stations were temperature controlled at
37 ◦C with circulating bovine serum, stabilized, and diluted as described previously. The serum was
changed every half-million cycles, with interruptions for gravimetric wear measurements occurring
at 0.5, 1, 1.5, 2, 3, 4, and 5 million cycles (Mc). Prior to weighing, liners were cleaned by brushing
large debris off with a soft toothbrush, then sonicating them in a soap solution for 10 min, followed by
drying. Each liner was weighed three times using a precision balance (XP205DR, Mettler-Toledo, Inc.,
Columbus, OH, USA) and the three weights were averaged. Photographs were obtained for each
liner using stereo-optical microscopy (Zeiss AxioCam, ICc 1 digital camera and V8 microscope,
Carl Zeiss, Thornwood, NY, USA). The weight loss of each liner was corrected for fluid absorption by
subtracting the average weight gain of the load-soak components from the weight change of the motion
components of the same size, material, and design. Gravimetric loss was converted to volumetric
wear using a density of 0.938 g/cc for PE. Linear regression of the wear was correlated from 0.5 Mc to
5 Mc. Statistical differences between groups were calculated using Student’s t-tests, with a significance
of p < 0.05. Wear particles were isolated from the collected serum by first diluting it with DI water
to 50 vol %, adding proteinase K (Fisher Scientific), and stirring under heat (37 ◦C) for 45 min to
digest proteins. This solution was further diluted to 10 vol % with DI water and filtered through
an IsoporeTM 0.2 µm membrane (Millipore, Billerica, MA, USA). The collected particles, consisting
solely of PE, were gold-coated (108 Auto Sputter Coater, Cressington Scientific Instruments, Ltd.,
Watford, UK) and examined via SEM (FEI/Philips XL30 FEG ESEM, Hillsboro, OR, USA) at 20 kV.
More than 140 particles per sample were analyzed for their equivalent circular diameter and inverse
aspect ratio (i.e., width/length) to assess sphericity.

Upon completion of the wear test, four of the Ø28 mm XLPE liners were analyzed by Raman
spectroscopy for changes in polyethylene crystallinity, including three subjected to both motion
and load with the fourth liner being a load soak control. This spectroscopic assessment was made
by means of a Raman microprobe spectrometer (T-64000, Horiba/Jobin-Yvon, Kyoto, Japan) in
back-scattering geometry. The excitation source was a 488 nm Ar-ion laser (Stabilite 2017-Spectra
Physics, Mountain View, CA, USA) yielding a power of approximately 35 mW on the UHMWPE liner
surface. The confocal configuration of the probe corresponded to a 100× objective with the numerical
aperture, focal length, and pinhole diameter fixed at NA = 0.9, f = 11 mm, and Ø = 100 µm, respectively.
Spectra were typically collected during 10 s in non-polarized measurements. The recorded spectra
were averaged over three successive measurements at each selected point. A spectral resolution
better than 0.15 cm−1 was achieved by means of a 1800 grating L/mm. Spectral mapping was
non-destructively performed in order to analyze the microstructure of the polymer down to 100 µm
inside of the acetabular liner. Statistically meaningful characterizations of the three wear-tested liners
were obtained by averaging the data retrieved from four different locations in both the worn area
(hereafter referred to also as wear zone) and the non-contact area (hereafter referred to also as non-wear
zone). The inclination angle of the liner within the simulator (i.e., 30◦) was taken into account when
selecting the non-wear zone areas for analysis. For each selected location, a map 50 × 50 µm2 in
dimension was collected at six different depths (0, 5, 10, 25, 50, and 100 µm) with an in-plane sampling
of 2.0 µm step (for a total of 676 spectra per each map), as shown in Figure 1. Two locations on the
dome and two locations on the assumed non-contact area were also selected for analyses on the load
soak liner (hereafter referred to as the “pristine liner”). The relationship between the observed Raman
bands and the vibrational modes of the polyethylene molecular structure has been amply documented
in the literature [38–43]. Spectral deconvolutions were performed by means of an automatic fitting
algorithm enclosed in a commercially available computational package (Labspec 5, Horiba/Jobin-Yvon,
Kyoto, Japan) using mixed Gaussian-Lorentzian curves.
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Figure 1. Schematics showing the location of the liners selected for spectroscopic analysis and the
adopted mapping protocol.

The fractions of orthorhombic crystalline (αc) and amorphous (αa) phases were calculated from
the Raman spectrum of polyethylene, according to the following equations [43]:

αc =
I1414

0.46 (I1293 + I1305)
(1)

αa =
I1080

0.79 (I1293 + I1305)
(2)

where I is the integral intensity of each individual Raman band identified by the subscript
(i.e., after spectral deconvolution). Note also that the sum (αa + αc) might locally be <1, because of the
possible presence of a minor fraction of matter in an anisotropic intermediate state (i.e., usually referred
to as the “third phase”) [40,44]. Accordingly, the fraction of this intermediate phase, αt, can be expressed
as follows:

αt = 1− (αc + αa) (3)

Equations (1)–(3) constitute the basis of the Raman spectroscopic method for characterizing the
crystalline structures of the UHMWPE. Two-dimensional Raman maps were collected at different
focal depths of each liner. Two tailed Student t-tests (95% confidence, p < 0.05) were used to compare
population means at different depths of the pristine and wear-tested liners in their respective wear
and non-wear zones.

2.2. SWM Ceramic-on-Polyethylene Hip Simulator Study

Wear testing in this study was conducted in accordance with ISO 14242-3 with the following
specific differences. Only isostatically molded Ø28 mm GUR 1050 PE liners which were gamma
sterilized at 25–40 kGy in an inert gas were used and paired with Si3N4 (MC2®, Amedica, Salt Lake City,
UT, USA) [37] and CoCr (ASTM F75 and F2068) femoral heads. Prior to wear testing, all PE liners
(including controls) were soaked in DI water at room temperature until there was no observable
weight change. Liner wear was measured gravimetrically (Sartorius Precision Balance, Bohemia, NY,
USA) per ASTM 1714 and adjusted using an average of six load-soak controls. Gravimetric loss was
converted to volumetric wear as indicated previously, and regression analyses were used to compare
groups at significance of p < 0.05 via Student’s t-tests. All PE liners were placed in an inverted position



Lubricants 2016, 4, 35 5 of 24

at a 30◦ cup angle in a 9-station biaxial rocking motion hip simulator (Shore-Western, Monrovia, CA,
USA, or SWM) for 5.0 Mc of normal gait based on a standard Paul curve (i.e., 2.2 kN max; 0.2 kN min,
1.0 Hz). The lubricant was alpha-calf serum (HyClone, Logan, UT, USA) diluted with DI water to
obtain a protein concentration of 20 mg/mL and a pH of 8.0. EDTA was added (20 mL per L) to
reduce calcium film in accordance with previous studies [45]. A bactericide was not added to the
lubricant; but it was changed every 0.5 Mc. Testing was interrupted at 1.0, 3.0, and 5.0 Mc to assess
wear. All components were cleaned and weighed using ASTM F1714 protocol. Regression analysis
was used to calculate average wear rates, and Student’s t-tests were used to compare groups and
significance. Surface roughness (Ra) was acquired for the Si3N4 and CoCr femoral heads and liners
using a non-contact surface analyzer (New View 5000, Zygo, Middlefield, CT, USA) in three random
polar positions. Initial surface roughness of the CoCr heads was not measured prior to testing,
but values were acquired at each stoppage for wear assessment. Optical (BX41, Olympus America,
Center Valley, PA, USA) and scanning electron microscopy (SEM, Quanta, FEI, Hillsboro, OR, USA)
were selectively conducted on the wear-tested components. All samples were sputter-coated (108 auto,
Cressington, Watford, UK) with a thin (~20 to 30Å) layer of gold. Samples were imaged using
an accelerating voltage of 10 kV at working distances of 7–10 mm and spot sizes of 4–5 mm.

2.3. SWM Ceramic-on Ceramic Hip Simulator Study

In this study, six Ø28 mm and three Ø40 mm matched Si3N4 head and liner pairs (MC2®, Amedica
Corporation, Salt Lake City, UT, USA) [37] along with three similar Ø28 mm Al2O3 (BIOLOX® forte,
CeramTec, Plochingen, Germany) [46] pairs were tested in a 12-station SWM hip simulator. All bearing
pairs were run in an inverted mode with a 30◦ cup angle. Lubricant preparation was as indicated in
Section 2.2, with change-outs occurring at every 0.5 Mc. Other parameters of this biaxial wear test
were representative of ISO 14242-3. Gravimetric wear results obtained at 0.25, 0.5, 1, 1.5, 2, and 3 Mc
were converted to volumetric wear using density values of 3.27 g/cc and 3.98 g/cc for Si3N4 and
Al2O3, respectively. Surface roughness, scratches, and protein deposition profiles were evaluated using
the aforementioned non-contact surface analyzer. The standard ISO 14242-3 testing sequence was
terminated at 3.0 Mc due to near zero wear and substantial protein build-up on the articulation
components. In lieu of its completion, the test was altered to include two experimental factors:
(1) A 35 s dwell was engineered into the test protocol at maximum load (cf. Figure 2); and, (2) Several
experimental cleaning techniques were employed in an attempt to remove adsorbed proteins. The static
dwell was selected because it appeared to be more clinically relevant than the 24/7 continuous Paul
orbital duty cycle, given that patients function quite differently, with intermittent, multidirectional,
and varied motion. It was envisaged that a dwell at constant load would likely expel serum lubricant
from the contact zone between head and liner pairs requiring subsequent acceleration to overcome
unlubricated static friction, with the combined effect of adverse wear for these hard-on-hard bearings.
The experimental cleaning protocols were employed because of tenacious adherence of proteins to all
the components. After removal of the implants from the simulator, they were imaged for deposits,
and then soaked in DI water for 3 h to hydrate the proteins. They were subsequently placed in
concentrated muriatic acid (i.e., HCl, at ~20%) and sonicated for 30 min. After removal from the acid
bath they were rinsed with DI water, placed in an ethanol bath, and sonicated for an additional 15 min.
Implants were then weighed and imaged for protein deposition and wear. After 3 Mc other cleaning
methods were also tested, including the use of a commercial solvent (Microclean MulticareTM Microcare
Corp., New Britain, CT, USA), multi-enzyme detergents (EnzyteTM, Decon Labs, Inc., Bryn Mawr, PA,
USA), and standard alkaline detergents. Wear testing was then resumed for an additional 2 Mc using
the revised loading profile and cleaning methods. Wear particles were neither obtained nor analyzed
from this CoC study.
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3. Results and Discussion

3.1. AMTI Ceramic-on-Polyethylene Hip Simulator Study

Given in Table 1 are wear results for hip simulator testing of Si3N4 femoral heads against PE and
XLPE liners, with comparisons to other biomaterials presented in Figure 3 [31,36,45,47–99]. For the
AMTI study, volumetric wear rates for Ø28 mm PE acetabular liners articulating against CoCr and
Si3N4 femoral heads were 53.1 ± 4.8 mm3/Mc and 66.0 ± 5.8 mm3/Mc, respectively. This difference
was statistically significant (p = 0.02), but, as will be discussed later, the lower wear rate for the CoCr
femoral heads was likely due to greater protein adsorption onto the CoCr-PE wear couple as compared
to the Si3N4-PE couple. Volumetric wear rates for the Ø28 mm and Ø40 mm XLPE liners articulating
against Si3N4 were 5.0± 1.3 mm3/Mc and 9.1± 1.6 mm3/Mc, respectively. There were no comparative
controls for the XLPE liners used in the AMTI study.
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Table 1. Polyethylene wear rates from AMTI and SWM simulators at 5 Mc.

Femoral Head
Material

Testing
Machine

Bearing
Size

UHMWPE &
Sterilization Method

Wear Rate
(mm3/Mc)

Range
(mm3/Mc)

Si3N4 AMTI 28 PE, ETO 66.0 ± 5.8 60.3–71.9
CoCr AMTI 28 PE, ETO 53.1 ± 4.8 47.5–56
Si3N4 AMTI 28 XLPE, 78.5 KGy, ETO 5.0 ± 1.3 3.5–6.0
Si3N4 AMTI 40 XLPE, 78.5 KGy, ETO 9.1 ± 1.6 8.1–10.9
CoCr SWM 28 PE, 25–40 KGy 17.6 ± 0.7 16.7–18.1
Si3N4 SWM 28 PE, 25–40 KGy 21.3 ± 4.1 16.7–24.3

As expected, the wear rate for the XLPE liners was significantly lower (p = 0.001) than the PE
liners, regardless of size; and the wear rate for the Ø40 mm XLPE liners was greater (p = 0.01) than
that of the Ø28 mm XLPE liners. Bulk lubricant temperatures monitored throughout the test showed
no significant differences between any of the cells, typically ranging between 37.7 ± 0.5 ◦C and
37.9 ± 0.2 ◦C. There were no changes in the roundness of any of the liners after 5 Mc as measured
by CMM. Photographs of PE components (cf. Figure 4) showed an immediate disappearance of
most of the machining marks after 0.5 Mc. Between 3.0 and 5.0 Mc, the surfaces showed marked
adhesive wear, which is typical of conventional PE. Photographs of the XLPE liners (cf. Figure 5) also
showed early disappearance of machining marks. However, they were still distinguishable after 0.5 Mc,
but essentially removed at ≥2.0 Mc. The particle analysis revealed no significant differences in size
between any of the groups (cf. Figure 6). Particles from XLPE liners were, in general, slightly rounder
than particles from PE liners, exhibiting a larger average inverse aspect ratio, although this difference
was not statistically significant. No CoCr or Si3N4 wear debris was observed in these AMTI tests.
Mean surface roughness values (Ra) for CoCr and Si3N4 heads were not significantly different,
ranging between 11.9 ± 1.6 nm and 14.2 ± 3.2 nm, respectively, after 5.0 Mc.
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The Raman spectroscopic results of the AMTI liners are shown in Figure 7. Average phase fraction
profiles (i.e., crystalline, amorphous, and third phase) are compared for wear, non-wear, and pristine
zones of the liners. For all analyzed samples, the crystalline phase increased within the first few
microns of the subsurface, and reached a plateau at a depth of around 50 µm. While this trend is typical
for other commercial UHMWPE liners, there was a significant difference between wear, non-wear,
and the pristine zones up to a depth of about 20 µm. Beyond 20 µm, the wear and non-wear zones
showed similar crystalline phase contents, both of which were about 3% higher than the pristine
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liner. Increased crystallinity was induced by formation of residual free radicals inside the amorphous
phase. These reacted with oxygen, creating hydroperoxides, which evolved into ketones, carboxyl acids,
and other carbonyl groups [100–102]. They are responsible for polyethylene chain breakage and
subsequent recrystallization [103,104]. Recrystallization might have also been assisted by plastic
deformation. Stretching and weakening of the crosslinks promotes reorganization of the polymeric
structure and contributes to the formation of free radicals. In gamma-irradiated and artificially aged
polyethylene, as is the case for these liners, more favorable conditions for oxidation are expected
deeper within the liner as compared to the surface [105–108]. This might explain the negligible increase
of crystallinity on the unworn surface. Within the first few microns of the subsurface, the pristine
and non-wear zones showed similar amounts of amorphous and third phases, whereas there was
a clear decrease of the third phase and increase of the amorphous phase for wear-zones. This suggests
that both recrystallization and amorphization of the polymer occurred due to sliding against Si3N4.
Amorphization appears to have increased at the expense of the third phase. Plastic deformation
occurring in the superficial layer of the bearing may have induced rotation of the crystalline lamellae,
which might have altered the molecular arrangement of the chains in the third phase, with a consequent
increase in the amorphous phase. Overall, the wear-induced microstructural modifications of the
polymer were small. The narrow increase in crystallinity within the subsurface of both wear and
non-wear zones indicates that oxidative degradation is not severe, and that Si3N4’s natural affinity
for oxygen may be beneficial in limiting degradation of XLPE liners [109]. In fact, recent in vitro
accelerated hydrothermal ageing studies indicate that Si3N4’s ability to scavenge oxygen from the
tribolayer may delay the onset of polyethylene embrittlement [110]. Clinically, this could ultimately
lead to enhanced XLPE longevity. However, this observation must be confirmed by additional hip
simulator testing and further analyses.
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3.2. SWM Ceramic-on-Polyethylene Hip Simulator Study

Wear results for the SWM hip simulator testing of Si3N4 femoral heads against PE are also
given in Table 1, with comparisons to other biomaterials in Figure 3 [31,36,45,47–99]. In this study,
volumetric wear rates for the PE liners were 17.6 ± 0.7 mm3/Mc and 21.3 ± 4.1 mm3/Mc for CoCr and
Si3N4 femoral heads, respectively. However, unlike the results from the AMTI study, this difference
was not significant (p = 0.2). Nevertheless, the observed lower wear rate for PE articulation against
CoCr is consistent with observations from the AMTI study. In contrast to the AMTI study, there was
a 4 ◦C higher average bulk lubricant temperature for cells containing CoCr versus Si3N4 femoral heads
in the SWM simulator. Also, in contrast to the AMTI study, surface finishes for both femoral heads
in the SWM study increased throughout the test. This increase was significant (p = 0.01) for CoCr
femoral heads when compared to the Si3N4 heads (cf. Table 2). For instance, at 1.0 Mc, the mean
surface roughness (Ra) of the Si3N4 and CoCr femoral heads was 4.3 nm and 8.6 nm, respectively.
At 5.0 Mc, the mean surface roughness of the Si3N4 heads had increased to 15 nm, whereas the CoCr
femoral heads had increased 7.5-fold to 112 nm. Despite the use of a common cleaning technique,
optical and scanning electron microscopy revealed more organic particulate debris adhering to the
CoCr femoral heads than the Si3N4 components. For the acetabular liners, there was a 30% difference
in mean surface finish at 1.0 Mc between the Si3N4 and CoCr groups; but there was little difference
thereafter. No particle collection or size distribution analyses were performed for the SWM study.

Table 2. Mean surface roughness (Ra) and maximum observed roughness of femoral heads and
acetabular liners from the SWM study (nm).

# of Cycles

Femoral Heads Acetabular Liners

Si3N4 Group CoCr Group Si3N4 Group CoCr Group

Mean Max Mean Max Mean Max Mean Max

1 Mc 4.3 7 8.6 19 77 177 106 276
3 Mc 18 37 101 381 76 177 99 199
5 Mc 15 24 112 410 93 190 102 187

Testing differences between various laboratories using alternative hip simulators is an obvious
source of variation in reported wear data, even with identical PE materials and protocols.
Many machine variables remain controversial, such as simulator kinematics and their complexity,
load application, utilization of a stationary head and moving liner or vice-versa, head on top or liner
on top, multiple versus single station controls, lubricant composition, temperature, and circulation
methods, among others [35]. Furthermore, a number of critical reviews have pointed-out the limitations
of the accepted hip simulator testing standards (i.e., ISO 14242-1,3). They currently do not account
for common clinically relevant conditions such as microseparation, malpositioning and edge loading,
starved lubrication, and stop-motion, rest, and resume-motion sequences [111–113]. Each of these
conditions has been shown to profoundly affect component wear and longevity.

The lower PE wear rates for test cells containing Ø28 mm CoCr femoral heads in both the AMTI
and SWM studies are likely due to a combination of protein precipitation and preferential adhesion
of UHMWPE debris. Protein adsorption onto bearing surfaces can be thermally or mechanically
activated (i.e., frictional heating, pressure, or high shear) [114,115]. Their presence is often difficult
to detect (<250 nm), but their effect in reducing wear has been extensively examined [45,62,116–125].
The temperature differential between CoCr and Si3N4 cells within the SWM study suggests higher
precipitation occurred in the CoCr cells. Even though no bulk differences in serum lubricant
temperatures were observed in the AMTI study, it has been shown that the local interfacial surface
temperature between the head and the liner can vary greatly depending upon the thermal conductivity
of the head material. This effect was separately documented by Lu et al. [118] and Bowsher et al. [62].
In a hip simulator equipped with calibrated thermocouples, and with the aid of finite element analyses,
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Lu et al. estimated transient interfacial temperatures between ZrO2, CoCr, and Al2O3 femoral heads
and PE liners of 99 ◦C, 60 ◦C, and 45 ◦C, respectively. These values inversely correlated with each
head material’s thermal conductivity [118]. Bowsher et al. studied the effect of femoral head thermal
conductivity on PE wear rates for zirconia ZrO2, CoCr, Al2O3, and Si3N4 and found logarithmic
correlation with a coefficient of >0.99 [62]. Significant wear rate reductions were noted for the lower
thermal conductivity materials. Thus, the CoCr heads, which ran demonstrably hotter in the SWM
study, likely induced greater protein precipitation, resulting in reduced PE wear when compared to
the Si3N4 heads. Furthermore, although bulk serum temperatures in the AMTI study were consistent
between CoCr and Si3N4 cells, higher interfacial temperatures for cells containing CoCr heads also
likely induced localized protein precipitation, which in turn reduced PE wear. Another possible reason
for the lower UHMWPE wear rates using CoCr femoral heads could be due to adhesive as opposed to
abrasive wear. Instead of wear debris being freely released into the lubricant by abrasion, it may have
been adhesively retained on the femoral heads. Optical and SEM examination of the heads revealed
rougher surfaces for the CoCr components (cf. Table 2) associated with a greater adherence of organic
particulate debris. Similar to protein precipitation, adhesive wear is sensitive to interfacial temperature
and friction [126]. Given the lower thermal conductivity of CoCr as compared to Si3N4, a large amount
of polyethylene debris apparently adhered to the CoCr heads due to thermally activated adhesive
wear. This effect was also apparent on the Si3N4 heads, but to a lesser extent. As demonstrated by
other investigators, the presence of serum proteins initially serves to reduce adhesive wear; but upon
their precipitation, adhesion increases [118]. Furthermore, it has been demonstrated that CoCr has
a propensity for greater polyethylene adhesive wear than nitride-based materials [127].

Figure 3 presents comparative PE and XLPE wear data for gamma irradiated UHMWPE liners
articulating against CoCr, ZrO2, Al2O3, and Si3N4 femoral heads. These data were extracted from
a survey of peer-reviewed publications, comprising approximately 60 hip simulator studies dating
from the mid-1990s to the present [31,36,45,47–99]. Results from the AMTI and SWM studies are
included in the figure; but data from the ETO-only sterilized PE of the AMTI study were omitted
due to a paucity of comparative literature and its current clinical irrelevance. Nowadays, most PEs
are gamma irradiated to form XLPE, and if not, they are gamma sterilized. The highest polyethylene
wear rates reported in the literature are typically for non-irradiated PEs. Yet, even low amounts of
radiation initiate cross-linking, which in turn results in significant wear reductions. This effect was
aptly demonstrated by Wang et al. [128]. For non-irradiated polyethylene, they reported a PE wear rate
of ~140 mm3/Mc against 32 mm CoCr. An irradiation dosage of as little as 25 kGy reduced the wear
rate by over 60% to 50 mm3/Mc, which is typical of the values observed in Figure 3. Further irradiation
was even more effective, reducing the wear rate to 1/20th that of a non-irradiated polymer. Therefore,
gamma sterilization of the SWM Ø28 mm PE liners is likely a major factor in their observed lower
wear rates in comparison to the AMTI PE liners. Nevertheless, there is a broad range of reported PE
wear rates for various bearing couples; and it is evident that even mildly irradiated PE can eclipse the
ETO-only sterilized PE wear performance from the AMTI study. Wear rates decrease asymptotically for
the highly cross-linked XLPE (>75 kGy) as demonstrated in the AMTI study (cf. Table 1); and compiled
data from Figure 3 indicate that Si3N4-on-XLPE couples have comparable XLPE wear to CoCr and
Al2O3 containing bearings [31,36,45,47–99]. Therefore, data from both the AMTI and SWM studies
for PE and XLPE liners can be considered consistent with the range of reported wear rates from
published literature. In summary, both the AMTI and SWM studies showed greater UHMWPE wear
when articulating against Si3N4 femoral heads. However, the wear differential for the SWM study was
not statistically significant. Furthermore, considering the observed confounding effects of preferential
protein adsorption and polyethylene debris adhesion to the CoCr femoral heads, it was concluded that
the UHMWPE wear using Si3N4 was likely at least equivalent to CoCr. Overall, these results indicate
that Si3N4 femoral heads can be effectively used in CoP total joint arthroplasty devices, and suggest
that oxidative protection of the polyethylene may be an added benefit.
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3.3. SWM Ceramic-on-Ceramic Hip Simulator Study

Head, liner, and combined volumetric wear rates for the SWM CoC hip simulator study at
3.0 Mc are provided in Table 3. For Ø28 mm couples, there were no significant differences in wear
rates between Si3N4 and Al2O3 bearings, with both essentially showing near zero wear. In fact,
within experimental error, the Ø28 mm femoral heads had a slight weight gain whereas their
corresponding liners indicated an opposite trend. As expected, there was more wear with Ø40 mm
Si3N4 couples than either the Ø28 mm Si3N4 or Al2O3 bearings, leading to significant differences in
head (p = 0.02) and combined (p = 0.05) wear rates, but, interestingly, no differences in liner wear
rates. The Ø40 mm Si3N4 heads and liners showed continual, but minimal material loss throughout
the 3.0 Mc test. There were no Ø40 mm Al2O3 controls included in this simulator study. The wear
performance of Si3N4 and Al2O3 bearings in this study are comparable to compiled data for other
hard-on-hard bearings (cf. Figure 3), and both are superior to CoCr-on-CoCr bearings.

Table 3. Ceramic-on-ceramic wear rates from SWM hip simulator at 3 Mc. (Negative values indicate
volumetric material loss).

Material Bearing Size
Wear Rate (mm3/Mc)

Head Liner Combined

Silicon Nitride 28 mm 0.007 ± 0.009 −0.014 ± 0.017 −0.007 ± 0.017
Alumina 28 mm 0.004 ± 0.013 −0.020 ± 0.012 −0.017 ± 0.012

Silicon Nitride 40 mm −0.023 ± 0.003 −0.029 ± 0.022 −0.052 ± 0.014

Protein precipitation was suspected as the source of the observed weight variability of these
bearing couples. Consequently, the standard ISO-prescribed study was interrupted at 3.0 Mc.
The components were examined for protein deposition at that point, followed by experimenting
with several cleaning methods. Shown in Figure 8a is the wear pattern observed on one of the
Si3N4 femoral heads at 3.0 Mc. This head exhibited a slight change in color over its entire surface
(from a dark gray to lighter gray), but its appearance was more significant in the main wear zone
(MWZ), and a rainbow of colors was seen in the transition zone (TZ). The results of non-contact
white light interferometry for this head are shown in Figure 8b–d. Proteins are evident, appearing as
adherent columnar structures of uniform thickness (~250 nm). Scratch patterns of approximately
200 µm in width were observed, which abrasively removed proteins down to the original ceramic
surface. As described in the methods section, several experimental cleaning protocols were employed
to remove the proteins. After each attempt, wear testing resumed using an interrupted loading
profile (i.e., stop-dwell-start) as described previously, with the test eventually terminating at 5.0 Mc.
Measurements taken during this non-standard segment showed heightened wear and variability.
This is highlighted in Figure 9 for two each of Ø28 mm Si3N4 and Al2O3 femoral heads. Part of the
observed variability was presumably due to protein precipitation and adhesion. Yet, even though there
was greater variability, the wear for the Si3N4 heads was statistically indistinguishable from the Al2O3

controls. Conversely, presented in Figure 10 is combined average wear for all bearing materials and
sizes. Note again from this figure that wear for Si3N4 and Al2O3 bearings up to three Mc was equivalent
and essentially equal to zero. However, introduction of the stop-dwell-start loading cycle and alternative
cleaning methods had a significant effect on the wear rate for Si3N4 bearings, increasing the average for
both Ø28 mm and Ø40 mm bearing pairs to 7.99 mm3/Mc and 2.93 mm3/Mc, respectively, while the
Al2O3 controls remained near zero wear. In particular, an abrupt loss of material was noted for two of
six Si3N4 bearings between 3.0 Mc and 5.0 Mc, (one each of Ø28 mm and Ø40 mm), whereas the
remaining four Si3N4 couples had essentially zero wear, comparable to the Al2O3 couples. Reasons for
this variability are presently unknown. It was initially postulated that perhaps it was due to lack of
diametral conformity between the matched heads and liners, or related to differences in finish between
convex and concave surfaces. However, post-test inspection provided no correlation, with clearances
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ranging from 69 µm to 156 µm, and RMS Ra values of between 8 nm and 35 nm. Clearly, the contrasting
use of the non-standard cycle, which included the hold sequence at maximum load, played a significant
role in lubrication breakdown and increased friction. The stop-dwell segment likely expressed lubricant
out of the contact area between the head and liner leading to a breakdown of fluid film and resumption
of boundary layer lubrication. Contacting asperities between surfaces then dramatically increased
static friction, leading to their microfracture upon re-start of the bearing. Indeed, scuffing, microcracks,
and microfracture were observed on the high-wear Si3N4 bearings. This wear pattern is consistent with
the findings of other investigators who reported that heterogeneous acicular ceramic microstructures
exhibit this type of wear behavior [129–131]. Thermally activated dissolution of the bearing surface
(or wear debris) and reformation of the tribochemical film ensued which lowered friction, until the
bearing once again came to its next stop in the cycle, resulting in a repetition of stick-slip behavior.
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The collected data from the SWM CoC wear test provide three instructive points: (1) Frictional
heating leads to serum degradation and protein precipitation on all bearing couples, which adversely
affects observed weight or volumetric changes [62,111,132]. Consequently, hip simulator wear rates
need to be tempered with the knowledge that bearing materials of dissimilar thermal conductivities
may result in markedly different wear behavior; (2) While the standard Paul cycle is used
for test expediency, continuous motion simulation does not adequately represent actual human
gait [98,111,113,133]. Alternatively, a stop-dwell-start protocol is more clinically relevant, and may more
effectively discriminate between bearing materials; and, (3) Interruption of the continuous Paul cycle
leads to lubrication breakdown for Si3N4 bearings, resulting in increased friction and wear.

As discussed in the introduction, a significant number of studies have examined the friction and
wear behavior of self-mated Si3N4 in aqueous environments. In general, all prior research supports the
observation that Si3N4 wears via a hygroscopic tribochemical reaction. Surface transitional oxynitrides
(–Si2NH, –SiNH2, –Si2ON2) [134] react with water to generate silicon dioxide (i.e. silica, or SiO2) and
ammonia (NH3) in accordance with the following equation [135]:

Si3N4 + 6H2O→ 3SiO2 + 4NH3; ∆G = −439 kJ/mol (4)

However, instead of pure silica, it is now recognized that several intermediate hydrated meta- and
orthosilicates form within the tribochemical film, the most prominent being silicic acid (Si(OH)4) in
accordance with the following reaction [26]:

Si3N4 + 12H2O→ 3Si (OH)4 + 4NH3 (5)

In its hydrated form, particularly in the presence of amines, alkali, or alkali-earth ions, silicic acid
develops a viscous gel [136,137]. This gelatinous structure forms a coherent hydrodynamic film in
the wear track, which serves as the primary lubrication source between bearing surfaces. Its presence
dramatically reduces the bearing’s dynamic friction coefficient. Even a more complicated picture ensues
when accounting for the oxide sintering aids incorporated into Si3N4 grain boundaries, or substituted
into the silicon nitride lattice itself [138]. The probable tribochemical reaction for Si3N4 containing
Al2O3 and Y2O3 dopants is given in the following equation:

M2O3 + 3H2O→ 2M (OH)3 ; M = Al, Y (6)

Equation (6) indicates that aluminum hydroxide is tribochemically formed during wear;
and actually, this has been verified for Al2O3 ceramics [139]. For yttria, a similar reaction is possible;
but in accordance with Fisher et al., yttria likely forms insoluble fractured roll debris in the wear
track [140]. Note that copious amounts of water are consumed during these tribochemical reactions
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(i.e., Equations (4)–(6)). From an estimate of contact area and fluid film thickness (i.e., Ø4 to
Ø6 mm2 × 40 to 90 nm, respectively) [141,142], part of the stick-slip behavior could be due to
lubrication starvation, wherein insufficient local moisture is available to facilitate continued formation
of the tribochemical film, resulting in an abrupt transition from hydrodynamic to boundary
lubrication [143,144]. Observations from the SWM CoC hip simulator are in line with previously cited
literature on the wear behavior of self-mated Si3N4. It is characterized by the following salient features:

(1) High friction is initially observed during a transient run-in period; but this dramatically declines
with increasing sliding distance due to formation of a coherent tribochemical lubricating film.

(2) Reduced friction is maintained by continuous motion at lower loads and higher speeds.
These conditions aid in retention of the tribochemical film within the wear track. However,
slight perturbations of the wear couple (i.e., displacement of the bearing out of the normal wear
track) result in an immediate increase in friction, returning the bearing to its transient run-in
period. Reformation of the tribochemical film is necessary to reduce friction to prior low levels.

(3) Conversely, high or oscillating friction, and stick-slip behavior are observed for high-loads
(above a critical value), slow speeds, and start-stop cycling, as the bearing transitions from
hydrodynamic to boundary film lubrication and back again; and,

(4) The reaction products that form the tribochemical film are soluble and potentially resorbable.

Furthermore, this study suggests that current hip simulation standards inadequately represent
the varied kinematics of the human gait. Common daily activities of standing, bending, walking,
or running, coupled with rest periods of sitting or reclining, subject bearing couples to both a broad
range of loads and repetitive stop-dwell-start cycles. The inclusion of a simplified stop-dwell-start
sequence in this CoC study demonstrated a marked difference in bearing performance between
Al2O3-on-Al2O3 and self-mated Si3N4 bearings. This modest protocol change prevented the
establishment of a coherent tribochemical fluid film, which appears to be essential for low-friction
Si3N4-on-Si3N4 bearings. Instead, a hygroscopic reaction led to starved lubrication, which resulted in
marked frictional fluctuations and higher wear. There are several possible solutions to this observed
phenomenon. For example, aluminum ion implantation has been shown to increase Si3N4’s oxidation
resistance. This treatment will likely improve Si3N4’s tribochemical performance as well [145–147].
Alternatively, coating Si3N4 with a suitably engineered diamond-like carbon (DLC) is another relevant
possibility. Enhanced bearing longevity can be expected provided an adherent defect free coating is
achieved; and the elastic moduli of the substrate and coating are reasonably matched [148]. From another
perspective, rigorous mechanical models (as well as market trends) suggest the use of dissimilar
bearing materials in lieu of hard-on-hard devices (i.e., CoP vs. CoC) [149–151]. Due to differences
in chemical affinities, elastic moduli, and hardness, Si3N4-on-XLPE bearings should not experience
the same slip-stick behavior that was observed in the Si3N4-on-Si3N4 couples, although additional
simulator testing needs to confirm this supposition. Additionally, in vivo studies demonstrate excellent
wear performance and survivability (currently >10 years) for ceramic-on-XLPE in comparison to
ceramic-on-ceramic articulation [152–155]. Further XLPE improvements (e.g., vitamin E stabilization
or phospholipid grafting) along with lower costs will build on these advances, favoring continued use
and future growth of CoP bearings [47,156–158].

4. Summary and Conclusions

Since 2008 Si3N4 has proven to be an effective interbody fusion device in the cervical and
thoracolumbar spine. Its success in this application has prompted an examination of its potential as
a bearing material in total joint arthroplasty. Three separate wear studies were conducted for this
purpose (i.e., two CoP and one CoC). For the CoP tests, average hip simulator wear for Si3N4-PE
and -XLPE was found to be higher than CoCr controls. However, values were comparable to reported
wear for similar polyethylenes using oxide ceramics. Protein precipitation on the lower thermal
conductivity CoCr heads was found to be a confounding factor in interpretation of the wear data.
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It is reasoned that the performance of Si3N4 bearings against conventional PE or XLPE is at least
equivalent to CoCr when accounting for this effect. No significant differences were observed in PE
wear particles or PE surface morphology when using either CoCr or Si3N4 femoral heads. Post-wear
test Raman spectroscopic examination of an XLPE liner indicated that Si3N4’s natural affinity for
oxygen might aid in preventing polyethylene degradation. For the CoC studies, Si3N4-on-Si3N4

bearings had essentially zero wear up to 3.0 Mc in a continuous orbital motion duty cycle, and were
statistically indistinguishable in performance to Al2O3-on-Al2O3 controls. Protein adsorption onto
the Si3N4 couples was also noted in the CoC tests. However, in contrast to the self-mated Al2O3

bearings, increased wear was observed for two Si3N4 couples between 3.0 Mc and 5.0 Mc under
a specially engineered load profile that incorporated a stop-dwell-start sequence. It is believed that
this change resulted in the cyclic breakdown of fluid film, and resumption of boundary lubrication,
with associated slip-stick behavior. This behavior is consistent with reported literature for self-mated
Si3N4 under water lubrication. A tribochemical reaction occurs upon initial abrasion of Si3N4’s
oxynitride surface—the products being ammonia (NH3) and hydroxylated silicic acid (Si(OH)4·xH2O).
Under low-loads, high speeds, and continuous motion, a coherent lubricating gelatinous film forms in
the wear track; and this substantially reduces the bearing’s friction and wear. However, high-loads,
lower speeds and interrupted motion (or other perturbations) inhibit its formation, leading to increased
or fluctuating friction and wear. Additional laboratory friction and hip simulator tests will be required
to corroborate these observations, and ultimately clinical studies coupled with retrievals may be
necessary to understand the potential of self-mated Si3N4 couples. Nevertheless, the current results
support the use of Si3N4 against dissimilar surfaces (i.e., CoP); and further advancements in XLPE
polymers are expected to accelerate the growth of CoP devices, including the potential use of Si3N4 as
a femoral head material.
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