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Abstract: In this work, three case studies are reported, namely carbon nanotube/polyvinyl
butyral composites, MWCNTs/polydimethylsiloxane-based coatings and vertically aligned CNT
forest array, of which the friction and resistance to wear/deformation were assessed through
nanoindentation/nanoscratch. Additional deformation parameters and findings are also addressed
and discussed; namely, material deformation upwards (pile-up) or downwards (sink-in) with respect
to the indented surface plane, hardness to modulus ratio (index of resistance to wear) and coefficient
of friction. The enhancement of the scratch resistance due to the incorporation of CNTs in a polymer
matrix is investigated. For the case of the forest structure, sliding between neighboring nanotubes
is identified, while, through ploughing of the tip, local deformation and the extent of plasticity are
also addressed.
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1. Introduction

Composites with (also carbon-based) nanofillers form a promising new group of materials which
align the advantages of both the matrix (polymer mostly) and filling material, with the prerequisite
of strong interfacial bonding [1]. Carbon nanotubes (CNTs), exhibiting increased mechanical and
electrical properties, high aspect ratio and low density, have been extensively investigated in order
to improve the polymer matrix characteristics [2]. One of the key aspects, when CNTs are used as
filler in polymer matrix, is the issue of sufficient dispersion. This issue is crucial to uniformly transfer
the filler properties (e.g., mechanical load) to the matrix. Numerous techniques have been applied to
successfully disperse CNTs, and results denote that the entanglement of CNTs is a key yet negative
issue [3]. Therefore, it is crucial to generate from a less entangled material so as to have a better
dispersion of CNTs in the polymer matrix. Multi-wall CNTs (MWCNTs), having typically higher
tube diameter than single-wall CNTs (SWCNTs), are in principle easier to disperse in a polymer
matrix. Several similar works in literature have studied the elasticity [4,5], damage [6], buckling [7,8],
tribology [9,10] and toughness [11] of CNT-filler polymer (mainly) composites.

The tribological properties of CNT–polymer composites are being assessed by using reciprocating
wear and friction machine under different sliding conditions; friction force, wear loss and friction
coefficient significantly increase with increase in load at fixed sliding time, while wear loss significantly
decreases with increase of sliding time at certain applied load. However, sliding temperature is
reported to gradually reduce and stabilize after a short period of time (5 min) [12]. Investigation of
carbon nanotube reinforced epoxy composite revealed that the surface coverage area of CNTs plays
a significant role in the wear of the composites. With surface coverage area of CNTs greater than
25%, the wear rate is reduced by a factor of 5.5. Improvement of the wear resistance of a high surface
coverage area of CNTs was concluded to appear due to the CNTs exposed to the sliding interface
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which protected the epoxy matrix effectively. Contact sliding in a wear test revealed CNT significant
deformation and cause its fragmentation [13].

The layered graphite-like structure of CNTs in combination with their performance (i.e., strength,
stiffness, thermal conductivity and density) make them an ideal category of materials for a wide range
of engineering applications. Specifically, recent findings on the utilization of CNTs in tribology mainly
for anti-friction, wear-proof and self-lubrication, address direct insertion of CNTs as additives/fillers in
various lubricant media in liquid state or embedded as fillers in polymer, metal and ceramic matrices.
However, critical issues such as processing technique, CNT dispersion and interfacial bonding have to
be confronted, as the mechanisms should be considered with respect to the improvement in tribological
performance [14].

As operating environment in many industrial applications results in the pair under tribo
conditions to operate in the mixed lubrication regime; when the lubricant layer thickness is insufficient
to separate the sliding, usage of lubricant with anti-wear additives is essential. To this regards, recent
studies include experiments conducted on block and disk test setup to determine the effect of using
CNT as anti-wear additive in a commercial lubricant (varying quantities of the CNT have been tried in
the lubricant to conduct the wear tests) [15]. Three different functionalized (surface grafted carboxyl
groups and amino groups) were investigated and the results indicate that compared with pure epoxy
resin, MWCNTs composites exhibited decreased friction coefficient and wear rate (wear rate decreased
with the increase of MWCNT concentration); to this regard, MWCNTs—epoxy composites improve
the wear resistance and decrease the coefficient of friction.

The influence of CNT when combined with friction powder prepared through different process
parameters on flexural properties is recently reported, in order to assess friction performance of
automotive brake friction materials; the findings indicate that flexural property and friction performance
are significantly affected when the modified CNT/friction powders are used. However, it is worth
noting that amorphous carbon clusters and CNTs aggregation are formed when higher concentration of
catalyst are used, leading to faulty specimens and decrease of reinforcement effectiveness [16,17].

In this work, three case studies are reported, namely carbon nanotube/polyvinyl butyral
composites [15], MWCNTs/polydimethylsiloxane-based coatings [16] and vertically aligned CNT
forest array [17], of which the friction and resistance to wear/deformation were assessed through
nanoindentation/nanoscratch.

2. Experimental—Materials and Methods

Deformation during nanoscratch, resistance to wear and coefficient of friction were investigated
via Hysitron TriboLab® Nanomechanical Test Instrument, Minneapolis-Minnesota USA (also able
to perform as Scanning Probe Microscope (SPM)), with a load range from 1 to 30,000.00 µN and
displacement application as a function of applied load (load resolution (1 nN), displacement resolution
(0.04 nm)). In all nanoindentation tests a total of 10 indents were averaged so as to determine the mean
hardness (H) and elastic modulus (E) values for statistical purposes (spacing of 50 µm), in a clean area
environment with 45% humidity and 23 ◦C ambient temperature (operated under feedback closed loop
load or displacement control). All nanoscratch measurements have been performed using the standard
three-sided pyramidal Berkovich probe, with an average radius of curvature of about 100 nm [15].
Hardness and E values can be extracted from the experimental data (load-displacement curves) using
the Oliver-Pharr (O&P) method, for nanoindentation procedure [16,17]. The nanoscratch experimental
procedure consisted of a scratch of the surface for a time of 50 s, and then a maximum imposed load
(50 µN). Preparation of the samples is reported in previous works, for the case studies of carbon
nanotube/polyvinyl butyral composites [15], MWCNTs/polydimethylsiloxane-based coatings [16]
and vertically aligned CNT forest array [17].

To prepare CNTs–PVB (Butvar B-98, Sigma-Aldrich, St. Louis, MO, USA) composites, PVB was
dissolved in a mixture of ethanol (Carlo Erba) (two parts) and 1-butanol (Sigma-Aldrich) (three parts)
solvents. The CNTs was added into the PVB solution. The uniform dispersion of CNTs in composite
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solution was achieved by vigorous stirring (1200 rpm). Viscous nature of the solution entrapped the
gas bubbles. Sonication (ultrasonic frequency, 37 KHz) was carried out for 10 min so as to release the
entrapped bubbles in the mixture. A 20-min degassing in vacuum step was subsequently undertaken
to fully get rid of the trapped solvent gas bubbles. The composite was then cured in oven at 70 ◦C for
4 h. Samples were prepared with four different MWCNTs contents: 0.5, 1, 3, and 5 wt %. PVBCx where
x is the CNTs content in wt % (i.e., PVBC3.0 is 3% sample) [15].

The studied PDMS coatings were based on PDMS (Sylgard 184, Dow Corning, Midland, MI, USA).
This silicon elastomer is supplied as a two-part component; base material (Part A) and curing agent
(Part B), to be mixed in a ratio 10:1 by weight. After the mixing, polymerisation via hydrosilylation
occurs, and a cross-linked polymer is received as a final product. MWCNT, pristine and functionalised
with carboxyl groups (MWCNT–COOH), purchased by Nanothinx S.A., Patras, Greece, were tested as
possible nanofillers. Both materials had average purity of 97%, external diameter of 15–35 nm and an
average length of at least 10 µm [16].

For the CNT forest, a thermal CVD reactor was used to synthesize the VA-MWCNT structure.
The reactor consists of a horizontal quartz tube with 3.4 cm inner diameter and 100 cm long housed in
a three-zone cylindrical furnace 80 cm long. More analytically, a pyrex flask containing the reagent
mixture that composed by camphor (96% purity in weight, Sigma-Aldrich, St. Louis, MO, USA) as
carbon precursor and ferrocene (98% purity in weight, Sigma-Aldrich) as catalyst compound in a
20:1 mass ratio was connected to the tube nearby the nitrogen inlet. A heater plate was located below
the flask, to achieve the heating and sublimation of the reactants. Nitrogen gas flow was used to carry
the gas mixture of precursors towards the center of the furnace, where pyrolysis of the gases took place
at 850 ◦C and forests of CNTs were deposited on silicon wafers [17].

3. Results and Discussion

3.1. Carbon Nanotube/Polyvinyl Butyral Composites (PVBC)

For the carbon nanotube/polyvinyl butyral composites case, as CNT concentration is increased
(PVBC5.0, where 5.0 indicated the CNT addition percentage (5%)), a large raise in the stiffness of the
system is evidenced, which leads to energy dissipated reduction during the experiment; however, there
is more tube–tube slip in the system at higher concentration, since percolation, coupled to sufficient
dispersion leads to a higher contact surface among CNTs. The mechanical properties are reported to
decrease with an increase in CNTs, after a threshold concentration, a fact that is probably attributed to
extensive tube–tube slip mechanism. For concentrations above percolation threshold, particle contacts
occur, due to sticky inter-particles potential; extensive agglomerate regions act as resulting mechanical
defects for the composite [18–24].

In nanoscratch process, as the scratch tip ploughs through the material ahead of it, the material
will be either pushed forward or piled up sideways [25]; this is usually noted for relatively ductile
polymers, where ironing and plastic deformation occur. In addition to the surface friction between the
substrate and the scratch tip, the material is accumulated ahead of the indenter.

Coefficient of friction (CoF) is defined as the ratio of the lateral force to the normal force, while
depends on indenter geometry, surface roughness of the sample, and the material properties of the
sample (homogeneity, crystallinity, orientation). Rather than simply being a friction index, CoF value
is also a measure of the resistance to scratch (e.g., a harder, wear-resistant material exhibits more
resistance to scratch, while the tip will consequently experience a larger lateral force). In Figure 1,
CoFs for all samples are presented (four scratches under same conditions were performed at three
samples of each type for reproducibility). The CoF ranges from 1 to 0.5 continuously at the beginning
of scratching, which is corresponding to the loading stage (PVBC1.0 and neat PVB matrix). Then
it remains unchanged at 0.5 (25 s) during the steady scratching process; the average values of this
stage are taken as the effective friction coefficient. These CoF trends are rather same for both samples,
implying no significant differences. For neat PVB matrix, the CoF is reduced with increasing normal
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load to a minimum value (~0.5) and remains constant, implying that plastic flow is the dominant
deformation mode. For PVBC1.0, the CoF decreases with increasing normal load to a minimum value
of ~0.52, which corresponds to the initiation of scratching, then increases again to finally decrease to
~0.48. While the main friction mechanism in the first stage was adhesion, both adhesion and ploughing
contribute to the CoF in the last stage. PVBC5.0 exhibits increased CoF, when compared with neat PVB
matrix and PVBC1.0; thus, nanoscratching testing showed that there is significant improvement in the
scratch resistance due to incorporation of CNTs [15].
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Figure 1. Coefficient of friction for PVB–CNT composites, obtained through nanoscratch testing [15]. 
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Figure 1. Coefficient of friction for PVB–CNT composites, obtained through nanoscratch testing [15].

An important issue of nanoindentation measurements is that the material around the contact
area tends to (plastically) deform upwards (so-called pile-up) or downwards (so-called sink-in) with
respect to the indented surface region. The appearance of such piled-up and sinked-in areas is usually
interpreted in terms of the strain-hardening behavior of the indented material [26–29]. Identification
and quantification of the deformation zone around a nanoindentation imprint is of major importance
as the shape of the out-of-plane displacement zone is the actual contact area between the tip and
the sample. Sinked-in patterns decrease and pile-up patterns increase the calculated contact area.
These deviations in the surface deformation mode influence the quantitative analysis of the contact
pressure (as hardness). If piling-up or sinking-in are not considered appropriately during micro-
and nanoindentation hardness tests, significant errors may occur when extracting hardness values
from the experimental data [30,31]. Creep deformation during nanoindentation testing has an effect
on pile-up, which leads to erroneous assessment of the sample properties. Fischer-Cripps noted
this behaviour, for cases where the measured modulus of elasticity was found much lower than
expected [32]. For identical sample, Rar et al. noted that when allowed to creep for a long testing time,
a higher value of pile-up/sink-in was revealed indicating a transition from an initial elastic sink-in
deformation to a plastic pile-up deformation [33].

In Figure 2, the normalised pile-up/sink-in height hc/hm is plotted vs. displacement (a) and the
H/E ratio (b). Rate-sensitive materials exhibit lower pile-up when compared with rate insensitive
materials (due to strain hardening) [34]. This is in line with the fact that when hc/hm approaches unity
for low H/E, the respective deformation is intimately dominated by pile-up (Figure 2d–g) [35,36].
However, when hc/hm approaches zero for higher H/E, this corresponds mainly to elastic deformation
(dominated by sink-in) [37]. Higher stresses are related with higher H/E (hard materials); increased
stress concentrations are developed towards the tip, whereas for low H/E (soft materials), the stresses
are found lower and are distributed homogeneously at the cross-section of the material [38,39]. H/E
is an index of resistance to wear; high H/E is indicative of the increased wear resistance in a range
of materials [39,40]: ceramic, metallic and polymeric. In Figure 2, alter of H/E slope denotes the
strengthening of composites with incorporation of 0.5% CNTs, whereas this ratio decreases with
incorporation of 3 and 5% CNTs in the PVB matrix. Lower deviation of H/E values for 5% CNTs in
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the PVB matrix (PVBC5.0) implies good dispersion in the matrix, leading to almost stable behavior at
resistance to wear (~100 to 350 nm displacement range). We can also observe in Figure 2b that while
for the pure PVB, hc/hm is independent of the normalized hardness H/E, the addition of CNTs leads
to a decrease of hc/hm for increasing H/E values; this is attributed to the switch from pile-up to sink-in
deformation behaviour, after the addition of CNTs.
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Figure 2. (a) Normalised pile-up/sink-in height hc/hm plotted vs. displacement and (b) normalized
hardness H/E, for the PVB samples with CNTs, namely PVB 0%, PVB 0.5%, PVB 1%, PVB 2% and
PVB 5%. Additionally, the ratio of hardness/elastic modulus (H/E) vs. displacement is plotted (c).
Representative SPM images of scratches in PVB (50 µm × 50 µm) (d,e) and PVBC5.0 (50 µm × 50 µm)
(f,g) are presented [15].

3.2. MWCNTs/Polydimethylsiloxane-Based Coatings

In Figure 3, H/E and H3/E2 ratios are depicted for the PDMS samples with CNTs, namely PDMS
0%, PDMS 0.05%, PDMS 0.1% and PDMS 0.2%, while representative SPM images of scratches in
PDMS (50 µm × 50 µm) (d–g) are presented. While H/E ratio has been previously addressed to rank
materials as an index of their wear resistance [33–35], H3/E2 ratio implies that the amount of elasticity
is exhibited by a coating; i.e., high (low) H3/E2 values correspond to an elastic (plastic) behavior of the
coating [41–43]. In Figure 3, it is noted that the surface of the coating exhibits different results from
the bulk of the sample, revealing switch in deformation mechanisms (denoted with dashed lines);
the values for depths up to 500 µm are verified from previous researches [44]. Furthermore, the H3/E2

ratio revealed a similar trend: in principle, plain PDMS presented the greater elastic behavior compared
with the rest of the composite samples, with alter of behavior at depths greater than 1600 nm. Moving
deeper in the structure of the coating (after 1600 nm), the values for the H/E and H3/E2 ratios increase,
mainly indicating that addition of 0.1% MWCNTs in PDMS results in enhanced elasticity.

The existence of MWCNTs, both homogeneously dispersed and in a large percentage hinders
the scratch of the surface. PDMS 0.1% reveals the lowest coefficient of friction (CoF, µ- Figure 4).
An overall evaluation of the results obtained by the scratch tests concludes that low percentage of
MWCNTs (0.05%) and the addition of the larger percentage of MWCNTs (0.2%) led to higher values
of CoF compared to PDMS 0%; for the case of 0.1% addition, the lowest CoF is evidenced. This high
resistance to wear combined with the elastoplastic deformation indicates a change in the structure of
the bulk material.
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3.3. Vertically Aligned CNT Forest Array

Carbon nanotube based architectures have increased the scientific interest owning to their
exceptional performance rendering them promising candidates for advanced industrial applications in
the nanotechnology field. Despite individual CNTs being considered as one of the most known strong
materials, much less is known about other CNT forms, such as CNT arrays, in terms of their mechanical
performance. The resistance to nanoscratch of VA–MWCNT forests was investigated; the synthesized
VA–MWCNTs forests consisted of well-aligned MWCNTs (Figure 5). Cycle indentation load-depth
curve was applied and hysteresis loops were observed in the indenter loading–unloading cycle due
to the local stress distribution. Hardness (as resistance to applied load [45]) and modulus mapping,
at 200 nm of displacement for a grid of 70 µm2 was conducted; through trajection, the resistance is
clearly divided in 2 regions, namely the MWCNT probing and the in-between area MWCNT–MWCNT
interface [46]. The CoF (Figure 5) deviates to values below 0.3; scanning (probing) of the sample in
a cyclic nanoscratch process is performed. Ploughing of the tip during nanoscratch is attributed to
a synergistic mechanism (observed as a periodic phenomenon, e.g., noted in red dashed circles) of
individual CNT bending, plastic deformation and accumulation of material ahead of the tip.
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4. Conclusions

In this work, three case studies are reported, namely carbon nanotube/polyvinyl butyral
composites, MWCNTs/polydimethylsiloxane-based coatings and vertically aligned CNT forest
array, of which the friction and resistance to wear/deformation were assessed through
nanoindentation/nanoscratch. For the case of carbon nanotube/polyvinyl butyral composites, as CNT
concentration is increased, a large increase in the stiffness of the system is evidenced, which results
in reduction of the energy dissipated during the experiment. Lower deviation of H/E values for 5%
CNTs in the PVB matrix implies good dispersion in the matrix, leading to almost stable behavior
at resistance to wear (~100 to 350 nm displacement range); also, a transition from pile-up to sink-in
deformation behaviour, after the incorporation of CNTs, was evidenced. The friction coefficient is
calculated in the 1 to 0.5 range continuously at the initial loading stage of scratching), for 1% CNTs in
the PVB matrix and neat PVB matrix. For the case of MWCNTs/polydimethylsiloxane-based coatings,
the surface of the coating presents different results from the bulk part of the sample, revealing switch
in deformation mechanisms. Plain PDMS presented the greater elastic behavior compared with the
rest of the composite samples, with alter of behavior at depths greater than 1600 nm. Moving deeper in
the structure of the coating (after 1600 nm), the values for the H/E and H3/E2 ratios increase, mainly
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indicating that addition of 0.1% MWCNTs in PDMS results in enhanced elasticity. Low percentage of
MWCNTs (0.05%) and the addition of the larger percentage of MWCNTs (0.2%) led to higher values of
CoF compared to PDMS 0%; for the case of 0.1% addition, the lowest CoF is evidenced. For the case
of vertically aligned CNT forest array, CoF deviates to values below 0.3, when applying a scanning
(probing) of the sample in a cyclic nanoscratch process. Ploughing of the tip during nanoscratch
is attributed to a synergistic mechanism (observed as a periodic phenomenon) of individual CNT
bending, plastic deformation and accumulation of material ahead of the tip.

Overall, nanoscratching revealed that there is considerable enhancement of the scratch resistance
due to the incorporation of CNTs in a polymer matrix. Addition of CNTs increases the stiffness of
the structure, until a concentration threshold beyond which deterioration of the composite begins
to occur. For a plain CNT structure (here CNT forest), contact deformation, such as sliding between
neighboring nanotubes, results in energy dissipation. Thus, hysteresis can be considered as a material
property derived from the local stresses distribution. Through ploughing of the tip, the interfacial
contact stresses occur between the inter-CNTs, while CNTs are deformed mainly by local bending;
nanoscratching indicated a more plastic rather than elastic response of the CNT forest structure.
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