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Abstract: Modern small diameter metal-on-metal (MoM) bearings for total hip arthroplasty (THA)
have been developed in the nineteen-eighties to address the problem of polyethylene wear related
osteolysis. Subsequently large diameter MoM hip resurfacings (HRA) were designed for young and
active patients to preserve bone and avoid dislocation. Large diameter MoM THA were originally
meant as an easy femoral component-only revision solution for femoral neck fractures in HRA, but
were then advocated for primary THA as well. In the last decade however, increasing numbers of
revisions for adverse local tissues reactions (ALTR) to metal debris have been reported. These ALTR
are due to excessive wear of the MoM bearings, usually related to malpositioning of the components
leading to edge loading, or in rare cases to metal sensitivity. Besides the immunological reactions,
metal particles and ions have a potential local and systemic toxicity. Wear and tribocorrosion at the
taper-trunnion connections of MoM THA but also THA with polyethylene and ceramic bearings
have also been recognized as a cause of ALTR with extensive tissue destruction. Despite the fact that
the long-term survivorship and functional results of certain MoM HRA are excellent and better than
THA in the young and active patients group, MoM bearings have become very unpopular and are
likely to be replaced by bearing couples of other materials.

Keywords: metal-on-metal bearings; hip arthroplasty; hip resurfacing; wear particles; metal ions;
edge loading; toxicity

Metal-on-Metal (MoM) bearings for hip arthroplasty consisting of cobalt-chromium-molybdenum
(CoCrMo) alloys were first introduced in the sixties by McKee and Farrar [1] and by Ring [2]. As early
as 1968, Papps et al. published their findings on the toxicity of CoCrMo particles on tissue cultures [3],
endorsed by the research of Trevor Rae, who, in 1979, concluded: ‘after the implantation of orthopaedic
prostheses, metals can dissolve from the alloys used, some of the metals are toxic. [ . . . ] From the
biological standpoint, in view of the very much higher levels of soluble metal produced, metal against
metal bearings should be avoided.’ [4] By that time, however, MoM hip arthroplasties had been
abandoned for the low friction metal-on-polyethylene (MoP) hip replacements developed by Sir John
Charnley [5]. When an increasing number of these MoP total hip arthroplasties (THA) had to be
revised because of progressive loosening and extensive osteolysis caused by a macrophage response to
polyethylene (PE) wear particles [6] whilst hip simulator studies were demonstrating substantially less
volumetric wear from MoM bearing surfaces [7,8], MoM hip articulations were reintroduced to solve
the problem of polyethylene (PE) particle-induced osteolysis. The imperfections regarding geometry,
tolerance and metallurgy (low-carbon content associated with higher wear) of the first generation MoM
articulations were resolved in the second generation high carbon content Metasul® MoM bearings
(Sulzer/Centerpulse, Winterthur, Switzerland, 1988), which exhibited very promising short- and
medium term results [9]. Furthermore, in the nineties, modern MoM hip resurfacing arthroplasty
(HRA) (Figure 1) was proposed to address the inferior clinical results of THA in young and active
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patients, including the high dislocation rates of the 22 and 28 mm diameter femoral heads of the low
friction MoP THA [10].
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Figure 1. Radiograph of a Metal-on-Metal (MoM) Hip Resurfacing Arthroplasty (HRA). 

Early HRA failure modes mainly consisted of femoral neck fractures [11] (Figure 2), treated by 
revising only the femoral component and preserving the acetabular component and the MoM 
bearing. Large diameter MoM femoral heads modularly fitting on a prosthetic femoral stem had been 
specifically designed for these femoral component-only revisions of HRA (Figure 3). Following the 
good initial results of the Metasul® MoM hips and the reduced risk of dislocation with large diameter 
femoral heads, these HRA revision big femoral head (BFH) components were also used for primary 
THA, despite the smaller coverage angle of the acetabular design, the introduction of an additional 
MoM articulation at the taper–trunnion head–neck junction and despite the fact that these 
components had not been thoroughly tested for this indication [12,13].  

 

Figure 2. Early failure of an MoM HRA due to femoral neck fracture. 

Figure 1. Radiograph of a Metal-on-Metal (MoM) Hip Resurfacing Arthroplasty (HRA).

Early HRA failure modes mainly consisted of femoral neck fractures [11] (Figure 2), treated
by revising only the femoral component and preserving the acetabular component and the MoM
bearing. Large diameter MoM femoral heads modularly fitting on a prosthetic femoral stem had been
specifically designed for these femoral component-only revisions of HRA (Figure 3). Following the
good initial results of the Metasul® MoM hips and the reduced risk of dislocation with large diameter
femoral heads, these HRA revision big femoral head (BFH) components were also used for primary
THA, despite the smaller coverage angle of the acetabular design, the introduction of an additional
MoM articulation at the taper–trunnion head–neck junction and despite the fact that these components
had not been thoroughly tested for this indication [12,13].
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In the meantime, Trevor Rae’s warnings remained buried under a load of papers on PE wear and
PE particle disease, and were forgotten.

In 2005, Willert et al. published the first report on adverse tissue reactions to MoM hip
arthroplasties, including 16 cases of 28 mm-diameter Metasul® bearings [14]. In 2008, the first paper on
‘Pseudotumours associated with Metal-on-Metal Hip Resurfacing’ from the Oxford group appeared [15]
followed by many anecdotal reports on elevated metal ions, metallosis and soft tissue reactions from
other centres [16]. In August 2010, the ASR (Articular Surface Replacement) MoM hip resurfacing
and ASR-XL MoM THA (DePuy Orthopaedics, Warsaw, IN, USA) were recalled from the market for
higher early revision rates due to adverse local tissue reactions (ALTR) to metal debris [17]. In the last
decade, it has become apparent that design features including clearance and even more importantly
the subtended articular arc (coverage angle) [18,19] (Figure 4) are crucial factors in the articular



Lubricants 2017, 5, 37 3 of 12

wear characteristics of MoM hip devices. In MoM hip arthroplasty, an important factor influencing
the lubrication is the clearance, which is the difference in radius (radial clearance) or in diameter
(diametrical clearance) between the acetabular and the femoral bearing surfaces [20]. (Figure 5). When
the clearance is too large, the contact area between the femoral head and the acetabular cup during
loading will be small (polar loading), which leads to high contact stresses and increased wear. When
the clearance is too small, equatorial contact may occur during loading and both components will
be jammed together, which also leads to increased wear (equatorial loading). In the ideal situation,
a small wedge exists between the acetabular and femoral component via which a fluid film will be
entrained during motion. Modern MoM hip arthroplasty designs and manufacturing have minimized
the clearance problem by refining component geometry and reducing the tolerances, but with excessive
wear e.g., at the edge, the altered clearance may become an additional factor accelerating implant
failure [20]. The most important factor contributing to failure of modern MoM implants has been
the coverage angle: a smaller subtended articular arc leads to a smaller contact patch to rim distance
(CPR) (the distance between the point of intersection of the hip reaction force with the cup and the
closest point on the inner side of the cup rim) [21]). A CPR < 10 mm leads to edge loading with higher
wear [18,19,21] (Figure 6) and occurs more frequently with smaller femoral head sizes and when the
acetabular component is placed at a higher inclination angle or at an inadequate anteversion angle [18].
This problem was most pronounced with the ASR designs exhibiting very low coverage angles but also
with the smaller sizes of the BHR (Birmingham Hip Resurfacing, Smith&Nephew, London, UK) which
had a smaller coverage angle and were more at risk for edge loading and increased wear, especially
when not placed in the ideal position (Figure 7) [21,22]. Wear-related ALTR, as a result of innate
macrophage-dominated immunological reactions to excessive wear debris (in casu metal particles)
thus occurred more frequently with smaller sizes [23–25], in diagnoses associated with difficult surgical
reconstruction because of anatomical anomalies such as developmental dysplasia of the hip (DDH) and
post-traumatic osteoarthritis [23–25] and in the hands of less experienced surgeons with a suboptimal
surgical technique leading to inadequate component positioning [23,24,26,27]. Females are more at risk
for ALTR because of all the aforementioned reasons including smaller size, more frequent diagnosis of
DDH, and higher anatomical hip anteversion [20–22]. Additionally, women seem to be more prone to
metal allergy; cases of ALTR not related to excessive wear but to adaptive immunological reactions to
metal particles occurring more often in females [23,24,28]. It needs to be emphasized that the generation
of metal particles is not an exclusive characteristic of MoM hip arthroplasty. In wear simulator studies
with total knee arthroplasties (TKA), Kretzer et al. have demonstrated that 12% (in weight) of the wear
products generated in these metal-on-polyethylene articulations were metallic purely related to wear
and without measuring additional soluble metal ion generation by corrosion [29].Lubricants 2017, 5, 37  3 of 12 
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Figure 7. Retrieval of high wear Birmingham Hip Resurfacing (BHR) HRA, head size 52 mm,
implanted in a 59-year-old male with primary osteoarthritis. This was revised after 58 months for cup
malpositioning (EBRA measurement inclination 57◦; anteversion 51◦) associated with very high metal
ions (Cr: 25.1 µg/L; Co 72.4 µg/L) and a soft tissue mass. This coordinate measuring machine derived
wear depth map shows high wear due to edge loading, (maximum 158 microns).

Besides the generation of metal particles, metal ions are released by corrosion of the metal implant
surfaces and also the metal wear particles. The most studied ions in relation to MoM hips are chromium
(Cr) and cobalt (Co). Cr ions from MoM hip surfaces usually consist of trivalent Cr3+ ions that rapidly
bind with hydroxides and anions to form Cr hydroxides, oxides and salts used for the regeneration
of the passive film on the metal surfaces [30]. These ions are thus less available for bonds with
biomolecules (proteins, RNA, DNA) intra- and extracellularly and potentially less toxic. Co ions, on
the other hand, remain in a soluble state for a longer time and may bind to intra- and extracellular
biomolecules with a potential systemic toxic effect [31].

Elevated systemic (whole blood, serum or urine) levels of Co and Cr are indicative of higher wear
or failure of an MoM hip articulation, after exclusion of other sources of metal ions such as occupational
exposure, other metal implants or medicinal intake [17,29]. Safe upper levels have been established in
unilateral (Cr < 4.6 µg/L; Co < 4.0 µg/L) and bilateral HRA (Cr < 7.4 µg/L; Co < 5 µg/L) [19,32]. These
safe levels are confirmed in other studies [33]. Additionally, well performing MoM hips have been
associated with decreasing ion levels [33]. Analysis of consecutive ion levels in HRA demonstrated
a statistically significant overall decrease of Cr and Co levels with time [34]. In 25% of patients,
ion levels were undetectable at ≥10 years postoperatively. Increasing metal ion levels correlated
with greater cup inclination angles and levels >10 µg/L were associated with poorly functioning or
malpositioned MoM HRA leading to metal particulate debris [34]. The in vivo decrease of metal ion
levels with time is in accordance with tribocorrosion studies indicating a lower-wear bedding-in phase
after the initial running-in phase of higher wear [35]. These studies also describe the formation of a
passive protective film on the articulating metal surfaces after the initial wear-in, preventing further
corrosion [35,36]. Ions are then mainly formed by corrosion of the metal particles provided there is no
additional surface wear.

The upper acceptable levels outlined above refer to ion measurements of patients with MoM HRA
and do not include MoM THA with a large diameter femoral head. Several authors have demonstrated
higher levels of Co and Cr ions with MoM large diameter head THA compared to MoM HRA [37,38].
The extra burden of metal particles and ions is probably related to wear due to high tolerances leading
to toggling, to the introduction of ridged surfaces on tapers/trunnions to accommodate ceramic
heads as well and/or to inadequate load distributions [39–41]. However, crevice corrosion at the
taper–trunnion connection between the modular head and the prosthetic femoral neck is probably the
most important factor leading to ALTR [42]. The trunnion refers to the proximal conal extremity of
the femoral stem or the ’male’ component of the modular junction. The taper refers to the ‘female’
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component of the modular junction i.e., the area inside the femoral head that receives the trunnion.
A taper may either be the internal cone of the femoral head or of the sleeve adaptor inserted into the
metal or ceramic femoral head to accommodate the prosthetic neck. The confined spaces (crevices)
between taper and trunnion allow for an alteration of the chemical environment by trapping fluid,
excluding oxygen and lowering the pH [42]. In addition, toxic corrosion products including metal
oxides, chlorides and organometallic compounds, but also particles and third bodies may be trapped
and accumulate. The low pH and degradation products form a highly toxic environment leading to
rapid cell death, necrosis and tissue destruction even with low concentration of metal ions. Crevice
corrosion is recognized as one of the failure mechanisms at the taper/trunnion modular connection of
MoM THA with large diameter heads (Figure 8) [42,43].Lubricants 2017, 5, 37  7 of 12 
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Monitoring of metal ions is advocated as a screening tool for implant performance, in order to
detect increased wear at an early stage, and, if necessary, perform a hip revision before extensive
tissue destruction has occurred [19]. Furthermore, metal ion measurements are useful to prevent toxic
local and systemic reactions which may result from continuous exposure to high levels of ions and
particles, especially Co. Animal studies have identified Co2+ as the major element mediating mainly
neurotoxicity but also cardiac and thyroid toxicity [44], whilst Cr3+ ions alone had no apparent clinical
or histo-pathological adverse effects. According to the Mayo Medical Laboratories (Rochester, MN,
USA), Co ≥ 1 µg/L is indicative of Co exposure whilst dosages > 5 µg/L may be associated with
adverse effects [45,46]. However, there is no established toxicity level in total joint arthroplasty (hips
and knees). Systemic Co toxicity in relation with MoM hips has been referred to as arthroprosthetic
cobaltism [47,48], including symptoms of hearing loss, visual impairment, vertigo, neurological
disorders, cardiomyopathy, hypothyroidism, fatigue, cognitive disorders, behavioural and mood
changes [23,47,48]. However, systemic Co toxicity is rare, is associated with high systemic Co levels
>20 µg/L [19,23] to >100 µg/L [46] and is usually reversible after revision of the failing components
with decrease of the Co levels [23,47–51]. Furthermore, there is no evidence of nephrotoxicity at
10 years [52].

Co particles have also been shown in vitro to have a toxic effect on macrophages leading to
apoptosis and necrosis [53]. In a review paper, Nine et al. tried to correlate biological findings with
debris morphology and disintegration [54]. Smaller debris particles from any material (PE, metal,
ceramic) are associated with higher inflammatory responses incl. cytokine release. Phagocytosis of
particles by macrophages was shown to be size-dependent: nanosized particles from any material
highly stimulate cells at high volumetric dosages whilst the size-dependent response rate weakens
with lower doses [54]. Sansone et al. showed that CoCr particles may also have an adverse effect on
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bone by inhibiting osteoblastic functions whilst recruiting osteoclastic precursors, the combination of
which may lead to osteolysis and aseptic component loosening [55].

Baskey et al. demonstrated that Co2+ and Cr3+ ions are capable of stimulating migration of
T-lymphocytes, but not B-lymphocytes, which could explain the accumulation of T-cells in some of
the ALTR [56]. These histological features were first characterised as ALVAL (Aseptic Lymphocytic
Vasculitis Associated Lesions) by Willert et al. [14]. The term ALVAL is essentially a histological
description and is often misused as diagnostic term. Attempts to classify the ALVAL features have led
to several scores, which are mostly qualitative but unfortunately too inconsistent with each other to be
compared [57,58]. Whether Baskey’s findings can also be correlated with a possible delayed type IV
hypersensitivity reaction remains to be elucidated. The incidence of failures of joint arthroplasties due
to metal allergy is believed to be low, but the diagnosis is difficult as skin patch tests and lymphocyte
transformation tests (LTT) are usually inconclusive [59], and the differentiation from a low grade
infection often tricky. In a review of the Danish allergy register and the Danish Knee Register however,
Munch et al. stated that metal allergy was probably underestimated as cause of failure of total joint
arthroplasty, as multiple TKA revisions were more often associated with proven Cr or Co allergies [60].

Genotoxicity of Co and Cr ions has been a concern. In vitro studies and studies of cells retrieved
from synovial fluid recovered at MoM hip revisions demonstrated chromosomal changes/DNA
damage associated with Cr3+/6+ and Co2+ ions [61]. These findings do not imply a greater risk for
cancer, however. In young female patients with an MoM hip who became pregnant, ion transfer via
the placenta amounted to about 50% of the whole blood levels [62]. However, to date, there has not
been any evidence of teratogenicity or fetal toxicity. Co ions have also been found in the sperm of men
with MoM hips [63], but an effect on paternal fertility comparable to the decreased fertility of stainless
steel welders exposed to Cr6+ [64] has not been demonstrated.

In order to assess possible carcinogenesis of MoM hip replacements, epidemiological studies have
been undertaken. Mäkelä et al. matched the Finnish Hip registry and the Finnish Cancer Registry from
2001 to 2010 to compare the overall cancer and death risk of 10,728 MoM hips and 18,235 conventional
THA and concluded that the risk was not increased with MoM [65]. Similarly, Smith et al. investigated
the National joint Registry of England and Wales and showed that there was no evidence that MoM
was associated with an increased risk of cancer [66].

Individual series and hip registries are now publishing excellent long-term (15 to 20 years)
survivorship results of MoM THA with the Metasul® bearing and of certain MoM HRA including
BHR, CONSERVE PLUS (Microport Orthopaedics, Boston, MA, USA) and RECAP (Biomet Inc.,
Warsaw, IN, USA) [67–69]. A paper reporting short-term results from the Finnish registry put the BHR
forward was the best hip replacement option [70]. Important factors of success were male gender
and surgical volume and experience [27]. The latest reports of the Australian Registry show excellent
survivorship of the BHR, ADEPT (Matortho, Leatherhead, UK) and MITCH (Stryker, Kalamazoo,
MI, USA), with better results than conventional THA in patients younger than 50 at surgery [25].
Functional results including gait analysis and activity assessments are also more favourable for hip
resurfacing [70,71]. Most remarkable were the papers demonstrating a significantly lower 10 year
cumulative patient mortality rates for MoM hip resurfacing (2.6%) compared to non-cemented (3.2%)
and especially cemented THA (7.3%) after adjustment for age, gender, comorbidity, rurality and social
deprivation [72,73]. The reasons for these mortality findings have not been elucidated.

For all the aforementioned reasons, MoM bearings have become controversial. Despite the fact
that an estimated 1 milllion current generation MoM hip replacements have been performed over the
last 20 years with good to excellent results from experienced surgeons even on the long term, especially
in the case of Metasul® THA and BHR HRA [25,67,74], the reports of revisions for unexplained pain
and soft tissue reactions have alerted the orthopaedic community, the health authorities and the
patients. Advisory organs such as the SCENIHR (Scientific Committees on Emerging and Newly
Identified Health risks) of the European Commission [75] and Health authorities such as the Food and
Drug Administration (FDA) in the USA [76] and the Medicines and Healthcare products Regulatory
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Agency (MHRA) in the UK [77] have issued repetitive alerts and recommendations regarding the use
of MoM hip arthroplasty and the management of patients. MoM THA with BFH > 36 mm are not to be
used anymore except for unusual revision cases. MoM HRA is still acceptable, but implantation in
females and in patients with small head sizes is advised against. Patients with an MoM hip replacement
are to be followed closely and regular metal ion measurements are advocated. In case of unexplained
pain or elevated ion levels, additional cross-sectional imaging with Magnetic Resonance Imaging
(MRI) or ultrasound is advised; if ALTR is diagnosed, revision of the MoM hip to a THA with an
alternative bearing couple is advocated. Certain countries have banned MoM hips altogether including
hip resurfacing (the Netherlands, Sweden, Denmark), and well-functioning and asymptomatic MoM
hips are being revised under the pretense that they would be poisonous. In 2015, Smith&Nephew
decided to withdraw the BHR smaller sizes from the market [78] and Zimmer-Biomet is ending the
30 year-long Metasul story in December 2017.

Unfortunately, due to all the negative publicity around MoM, there is a major lack of interest and
funding for fundamental research to finally elucidate the pathogenesis of the ALTR and investigate
individual patient susceptibility. In the meantime, the new problem of trunnionosis or taperosis and
associated destructive ALTR described above has become a cause for increasing concern regarding
CoCrMo and TiAlV taper–trunnion connections, and also with MoP and ceramic bearings and <40 mm
head sizes [79].

Even though the long-term survivorship and functional results of MoM HRA are excellent and
better than THA in the young and active patients group, the future of MoM hip replacement looks
gloomy and new bearing couples for hip resurfacing are likely to take over soon.
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