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Abstract: Chemically modifying vegetable oils to produce an alternative to petroleum-based
materials is one of the most important emerging industrial research areas today because of
the adverse effects of petroleum products on the environment and the shortage of petroleum
resources. Biolubricants, bioplasticizers, non-isocyanate polyurethanes, biofuel, coating materials,
biocomposites, and other value-added chemicals can easily be produced by chemically modifying
vegetable oils. This short review discusses using vegetable oils or their derivatives to prepare
lubricants that are environmentally safe. Chemically modified vegetable oils are generally used
as base fluids to formulate environmentally friendly lubricants. Reports of their application
as sustainable additives have attracted special attention recently because of their enhanced
multifunctional performances (single additives perform several functions, i.e., viscosity index
improver, pour point depressant, antiwear products) and biodegradability compared with commercial
additives. Here, we have reviewed the use of chemically modified vegetable oils as base fluids and
additives to prepare a cost-effective and environmentally friendly lubricant composition.
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1. Introduction

Producing materials from renewable feed stocks that are useful to various industrial fields as
alternatives to depleting petro-originated resources has attracted considerable attention in recent years.
Vegetable oils (VOs) have low ecotoxicity and are readily available and biodegradable. They can be
used to produce a variety of environmentally safe chemicals that can compete or even surpass the
performance of the existing petroleum-based materials. Materials obtained from vegetable oils (edible
or nonedible), such as soybean oil, sunflower oil, palm oil, rapeseed oil, castor oil, and vernonia oil,
have an application in various fields, including foods, fuels (biofuels), biolubricants, coatings and
paints, adhesives, cosmetics, pharmaceuticals, plasticizers, and construction materials. This review
highlights the application of vegetable oils to formulate biolubricants.

Lubricants are the materials (generally liquids, but may be solids or semi-solids) used to lubricate
machinery parts to reduce friction and increase their lifetimes. Lubricants have a significant role in
tribology, and are formulated from a range of base fluids and chemical additives. Depending on
the nature of the base oil, which is the main component of lubricants, they might be categorized as
mineral (petroleum origin), synthetic (e.g., polyalphaolefins, polyalkylene glycols, synthetic esters,
silicones, etc.), or as a biolubricant/green lubricant. Mineral lubricants, currently the most commonly
used commercial lubricants around the world, are a complex mixture of paraffinic (linear/branch),
olefinic, naphthenic, and aromatic hydrocarbons of 20 to 50 carbon atoms. They are quite stable (higher
oxidation stability) and less expensive than other types of lubricants. However, mineral lubricants
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have poor biodegradability and release toxic materials into the environment. As compared with
vegetable-based lubricants, mineral lubricants have lower viscosity indices, higher boundary friction
coefficients, and a higher volatility. Moreover, the non-renewable petroleum resources used to produce
mineral lubricants are depleting. In order to address the problems associated with petro-based mineral
lubricants, the demand to produce environmentally acceptable lubricants from renewable resources
is increasing. Lubricant additives that are produced from petroleum resources such as acrylates and
zinc dialkyldithiophosphates (ZDDP) create many materials that are harmful to the environment,
including heavy metals and sulfur compounds [1,2]. The friction modifier, such as molybdenum
dithiocarbamate complexes used in solid lubricants, releases heavy metals and sulfur compounds,
and their activity decreases with fluid aging [3]. Therefore, interest in research on bio-based lubricant
additives is also increasing. Synthetic lubricants have advantages over mineral lubricants, such as they
are environmentally benign, have a higher viscosity index, lower pour points, and higher oxidative
stability. However, synthetic lubricants also have some disadvantages, as mentioned below:

• They are more expensive than mineral lubricants [4];
• They are relatively more toxic than vegetable oil-based lubricants;
• They are less readily biodegradable than vegetable oil-based lubricants;
• They have a lower friction tolerance and their exhausts pose problems in the environment;
• They do not work well with mineral oils.

Although biolubricants produced from vegetable oils are more costly than mineral lubricants,
they are a promising alternative to synthetic and mineral oil-based lubricants because of their specific
functional attributes such as high viscosity index, good lubricity, superior anticorrosion properties,
high flash point, high biodegradability, and low aquatic toxicity [5,6]. With its long fatty acid chain
and polar end groups, the structure of vegetable oil is amphiphilic in nature. Oils are suitable as a
base stock for easily blending different kinds of environmentally acceptable additives, and are used
as both boundary and hydrodynamic lubricants. Additives prepared from vegetable oils showed
excellent tribological properties and performed well at extreme pressures. Li et al. [7] illustrated
the application of an extract of natural garlic oil as a high-performing and environmentally friendly
extreme pressure additive in lubricating oils. Ossia et al. [8] showed that eicosanoic and octadecanoic
acids present in castor and jojoba oil enhanced the tribological and oxidation stability of castor and
jojoba oil as well as mineral oil base-stocks. Erhan et al. [9] disclosed the use of poly (hydroxy thioether)
vegetable oil derivatives as antiwear/antifriction additives for environmentally friendly industrial oils
in automotive applications. Different methods of making fatty acid ester derivatives from unsaturated
fatty acids through formation of their epoxides have also been described by Erhan et al. [10,11].
Doll et al. [12] disclosed a novel process of preparing chemically modified triglycerides by the reaction
of epoxidized triglyceride oils or alkyl esters thereof with phosphorus-based acid hydroxide or
esters. The phosphorus-containing triglyceride derivatives so produced have a found utility as
antiwear/antifriction additives for industrial oils and automotive applications. Biswas et al. [13]
described a method of preparing nitrogen-containing fatty acid derivatives by reacting epoxidized
fatty acids, their esters, or triglyceride oils with amines of cyclic or aromatic hydrocarbons. These
fatty acid derivatives are used as antiwear/antifriction additives for industrial oils and automotive
applications. Heise et al. [14] described the preparation of boron-containing fatty acid derivatives by
reacting epoxidized fatty acids, their esters, or triglyceride oils with borate compounds which have a
found application as antifriction additives in the automotive industry.

Erickson et al. [15] disclosed the methods for preparing lubricant additives (antiwear) by
combining triglyceride vegetable oils (meadowfoam oil, rapeseed oil, or crambe oil) with at least
one sulfurized vegetable oil and a phosphite adduct of vegetable oil. The same group also reported
the preparation of bio-based lubricant additives that comprise a combination of meadowfoam oil
as a triglyceride or a wax ester, sulfurized triglyceride meadowfoam oil or sulfurized wax ester of
meadowfoam oil, and phosphate adducts of triglyceride meadowfoam oil or wax ester of meadowfoarn
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oil [16]. Few bio-based additives showed multifunctional performances [17–20]. Therefore, we do not
need to blend different kinds of additives with the base stock. However, there are some limitations
in using vegetable oils. The major component of VOs is a triglyceride of long-chain fatty acids of
mostly unsaturated carbon atoms. The double bonds of the fatty acid chains are mostly unconjugated.
They have low thermo-oxidative stability, poor bio-resistance, poor hydrolytic stability, and poor
fluidity at lower temperatures [21–23]. Therefore, they cannot be used directly as lubricant-based
stocks/additives. The presence of bis-allylic protons in the chain makes VOs very prone to oxidative
degradation [24]. This ultimately results in an insoluble deposit formation in vegetable oils which
increases oil acidity, viscosity, corrosion, and volatility. Another drawback of VOs is their higher
cost of production compared with mineral lubricants. This cost currently prohibits the complete
replacement of mineral lubricants by biolubricants for commercial purposes. These limitations can,
however, be mitigated by chemically modifying VOs to reach a desirable performance level without
increasing the cost. Extensive research is being conducted worldwide to produce lubricant base stocks
or additives from vegetable oils more economically [25–28].

2. Chemical and Physical Properties/Characteristics of Vegetable Oils

Chemical and physical properties of VOs mainly depend on the composition of unsaturated fatty
acids, which in turn depend on the climate of cultivation, genetic modification of the oil-producing
crops, and so forth. Fatty acids present in vegetable oils are mostly long and straight-chained with
unconjugated double bonds, and most of these unsaturated fatty acids possess a cis configuration
(Figure 1). However, some fatty acid chains, such as ricinoleic and vernolic acids, contain hydroxyl and
epoxy functional groups, respectively [29,30]. In the triglycerides of vegetable oils, such as soybean,
sunflower, palm, linseed, etc., oleic acid, linoleic acid, and linolenic acid predominate. In castor oil and
vernonia oil, however, ricinoleic acid (Figure 2) and vernolic acid (Figure 3) are the major constituents,
respectively. Fatty acid compositions of commonly used vegetable oils are listed in Table 1. The higher
the percentage of unsaturation, the better the VOs will be in preparing environmentally acceptable
lubricants (base stock/additives). Vegetable oils can be classified as edible or nonedible. Coconut, olive,
soybean, sunflower, palm, peanut, canola, corn, and so forth belong to the class of edible oils. Since they
are used to formulate biolubricants, their demand is always very high. The non-edible vegetable oils
such as neem, castor, mahua, rice bran, karanja, jatropha, linseed etc. are comparatively less expensive
and therefore have an advantage over edible oils for the production of biofuel/biolubricants [31–33].
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Figure 1. General structure of triglyceride esters of edible vegetable oils.

The percentage of unsaturated fatty acids, which largely varies among different types of VOs,
can be determined by measuring the iodine value (IV) [34]. Larger IV values indicate a greater degree
of unsaturation per vegetable oil triglyceride. Depending upon the IV values, vegetable oils can further
be classified as drying oils (IV > 130), semi-drying oils (100 < IV < 130), or non-drying oils (IV < 100).
The more unsaturated the fatty acid, the more susceptible it is to functionalization. Linseed oil, soybean
oil, sunflower oil, castor oil, and so forth contain more than 80% unsaturated acids, and therefore
can easily be chemically modified. So the derivatives of these oils are largely applied to formulate
biolubricants (base stocks/additives) [17,18,20,21,29].
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The quality/performance of a biolubricant depends largely on their physical properties, which
include the viscosity index [35], pour point [36], flash point, cloud point [37], thermal stability [38],
oxidation stability, shear stability [39], iodine value, and density. A better lubricant should have a
higher viscosity index, flash point, thermo-oxidation stability, shear stability, and lower pour point
and cloud point. The fatty acid compositions of different VOs are listed in Table 2.
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Table 1. Fatty acid compositions of commonly used vegetable oils [40–52].

Vegetable Oils C12:0 C14:0 C16:0 C18:0 C16:1 C18:1 C18:2 C18:3 Others

Soybean oil - - 11–12 3 0.2 24 53–55 6–7 -
Sunflower oil - - 7 5 0.3 20–25 63–68 0.2 -
Rapeseed oil - - 4–5 1–2 0.21 56–64 20–26 8–10 9.1 (20:1)

Palm oil - 1 37–41 3–6 0.4 40–45 8–10 - -
Rice bran oil - - 20–22 2–3 0.19 42 31 1.1 -

Cotton seed oil - 1 22–26 2–5 1.4 15–20 49–58 - -
Coconut oil 44–52 13–19 8–11 1–3 - 5–8 0–1 - -

Corn (Maize) oil - - 11–13 2–3 0.3 25–31 54–60 1 -
Peanut/Ground

nut - - 10–11 2–3 0 48–50 39–40 - -

Sesame oil - - 7–11 4–6 0.11 40–50 35–45 - -
Safflower oil - - 5–7 1–4 0.08 13–21 73–79 - -
Karanja oil - - 11–12 7–9 - 52 16–18 - -
Jatropha oil - 1.4 13–16 6–8 - 38–45 32–38 - -

Rubber seed oil - 2–3 10 9 - 25 40 16 -
Mahua oil - - 28 23 - 41–51 10–14 - -
Tung oil - - 2.67 2.4 - 7.88 6.6 80.46 * -
Neem oil - - 18 18 - 45 18–20 0.5 -
Castor oil - - 0.5–1 0.5–1 - 4–5 2–4 0.5–1 83–85 #

Linseed oil - - 4–5 2–4 0–0.5 19.1 12–18 56.6 -
Olive oil - - 13.7 2.5 1.8 71 10 0–1.5 -

* Alpha-eleostearic acid. # Ricinoleic acid.
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Table 2. Physical properties of vegetable oils.

Vegetable Oils Iodine
Value

Pour
Point (◦C)

Cloud
Point (◦C)

Kinematic
Viscosity at 40 ◦C

(mm2/s)

Flash
Point (◦C)

Density at
15 ◦C (g/cm3) Ref.

Soybean oil 138–143 −12 −4 29 254 0.914 [53–55]
Sunflower oil 125–140 −15 −9.5 36 274 0.916 [53–56]
Rapeseed oil 98–105 −15 −2 35 246 0.912 [53–55]

Palm oil 48–58 23.6 25.2 39.4 252 0.919 [57]
Rice bran oil 103 13 16 38.2 184 0.906 [41]

Cotton seed oil 90–119 −4.5 −0.5 34 234 0.918 [41,56]
Coconut oil 8–11 12.7 13.1 27 266 0.918 [53–56]

Peanut/Ground
nut/Arachis oil 84–100 −7 4.5 40 271 0.903 [53–55,

58]

Sesame oil 104–116 −11 −8 36 260 0.918 [41,56,
58]

Karanja oil 81–90 −4 2 38.8 212 0.9358 [48,49]
Jatropha oil 82–98 −6 11 34 225 0.94 [53–55]

Rubber seed oil 104 18 25 33.89 228 0.928 [59,60]
Mahua oil 58–70 11 20 37.18 238 0.945 [61]
Neem oil 81 7 13 35.8 200 0.918 [52]
Castor oil 83–86 −21 −18 251 229 0.960 [53–56]

Linseed oil 168–204 −15 5 26–29 241 0.938 [41,58]
Safflower oil 145 −7 −2 28.3 260 0.914 [53–55]

Olive oil 75–94 −14 −11 39 177 0.918 [41,56]

3. Chemical Modification/Derivatization of Vegetable Oils

Vegetable oils used directly as base stocks or lubricant additives cannot perform satisfactorily.
They have lower thermo-oxidative stability, higher viscosity, and lower volatility. They burn
incompletely and form deposits in fuel injectors of engines due to a high viscosity (about 11 to
17 times higher than diesel fuel) and low volatility. Therefore, before using vegetable oils as
biofuel/biolubricants, they must be chemically modified. This can be performed in two different ways:
reactions at the carboxyl groups of fatty acids/esters/triglycerides of vegetable oils or reactions at
the olefinic functionalities of the fatty acid chain. Transesterification of VOs is the most important
initial step in producing biofuel/lubricants. Fatty acid alkyl esters along with glycerol are produced
by transesterification of VOs. There are several examples in which transesterified VOs were used as a
biofuel/biolubricant [62–65]. These fatty acids can be further converted into their derivatives by one
or multistep strategies involving numerous reactions to produce various types of lubricants/additives
based on industrial needs. Glycerol obtained from triglyceride esters can also be converted into
water-based lubricant additives [66] along with other different essential chemicals.

Functionalization of the olefin functional groups of unsaturated fatty esters or free fatty acids of
vegetable oils can be performed by various reactions such as epoxidization, carbonation, maleation,
acrylation, hydroxylation, hydroformylation, reduction, thiol-ene addition, and polymerization to
produce plasticizers, polyurethanes, adhesives, paints, coatings, and envirsonmentally friendly
additives for lubricants [40,67–71]. The different modes of chemical vegetable oil transformation
to produce base stocks/additives for biolubricants are discussed below.

Transesterification: Transesterification of vegetable oils with different alcohols produces fatty
acid alkyl esters (and glycerol) that can be used as biofuel or biolubricants (Figure 4). Transesterification
reactions can be catalyzed by both homogeneous [72,73] and heterogeneous catalysts [74] (alkalies and
acids). In a transesterification reaction, homogeneous alkali catalysts are commonly used. In most
cases, short-chain alcohols such as methanol/ethanol are used (for biodiesel production) as a base,
and either potassium or sodium hydroxide is used as a catalyst. Potassium hydroxide is found to
be more suitable for ethyl ester biodiesel production, but either base can be used for methyl ester
production. As the base catalyst is mostly used for biodiesel production, fats and oil used for this
purpose must be free of fatty acids (i.e., a good quality feedstock). Low quality feed stocks, including
non-edible vegetable oils, animal fats, waste cooking oils, and grease, contain a significant amount
of free fatty acids (FFAs) [75]. When FFAs are present, the base catalyst cannot be used because of
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soap formation. Acid catalysts work much more slowly than a base catalyst in a transesterification
reaction [76]. Moreover, because of the corrosive nature of acid catalysts; expensive acid-resistant
reactors must be used. Therefore, in order to convert a low quality feedstock into biodiesel, first the
FFAs present in the feedstock should be converted into esters with an acid catalyst to obtain a mixture
of fatty acid alkyl esters and triglycerides. The esters in the second step are transesterified with
methanol/ethanol catalyzed by a base to obtain biodiesel. An acid-catalyzed process, although slow
and requiring a higher temperature, can be used with any type of feedstock. It is mostly used for
transesterification of high free fatty acid-containing feedstock such as yellow grease, crude palm oil,
and karanja, as in these cases a base catalyst cannot be used. Regardless of whether an acid or a base
catalyst is used, homogeneous catalysts present certain disadvantages. Homogeneous catalysts require
a high energy consumption and are corrosive (acid catalysts are more corrosive than base catalysts).
They are also difficult to recover from the solution. Because of these disadvantages, the application
of heterogeneous solid catalysts in the transesterification process has become more popular recently.
Heterogeneous acid catalysts, such as ion-exchange resins (Amberlyst-15, Nafion) [77,78], sulfated
inorganic oxides [79], inorganic superacids (WO3/ZrO2, WO3/ZrO2-Al2O3) [80] and basic catalysts
such as alkaline earth oxides (CaO, MgO), alkali-supported catalysts (KF/K2CO3 or KNO3 supported
Al2O3) [81], zeolites [82] and guanidine-supported catalysts [83] have attracted considerable interest
recently. Extensive research on preparing the biodiesel or lubricant-based stocks/additives through
transesterification of vegetable oils is ongoing [61–65]. Sulek et al. showed that the friction coefficient
of diesel fuel was decreased by 20% and wear by two-fold due to blending fatty acid methyl esters
derived from rapeseed oil with the fuel [84]. A significant reduction of wear scar diameter from the
addition of 5% rapeseed oil methyl esters in diesel fuel was disclosed by Sukjit et al. [85]. It was
reported that the lubrication performance of diesel base oils was improved when palm oil methyl
esters are blended [86,87]. Masjuki and Maleque (1997) reported that adding 5% (v/v) of palm oil
methyl ester in the base oil lubricant resulted in a low wear rate of an EN31 steel ball bearing [88].
Malavolti et al. [89] has synthesized biodiesels through the transesterification of castor oil with various
alcohols in the presence of trimethylchlorosilane (TMSCl) as an acidic mediator. The potential use of
castor oil methyl esters as biolubricants, with its high viscosity, low pour point, and good lubricity,
was explained by Madankar et al. [90].

Glycerol obtained as a co-product in the transesterification process can be converted into biofuels,
green additives for water-based lubricants, foods, pharmaceuticals, cosmetics, liquid detergents,
antifreeze, and toothpaste by numerous reactions including esterification [87], acetalization [40],
oxidation [40], hydrogenolysis [40], internal dehydration, and oxidative carbonylation [40]. Low-cost
glycerol aqueous solutions with a good biocompatibility and low temperature properties have
reportedly been applied in multiple fields as a better green lubricant [91]. High molecular weight
polyglycerol derivatives, useful as thickening agents for water-based lubricants, are prepared by
oxyalkylation of a polyglycerol with ethylene oxide or a mixture of ethylene oxide and propylene
oxide [92].
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Hydrolysis: The hydrolysis of triglyceride esters or the fatty esters produced from them by
the transesterification process produces free fatty acids. These fatty acids are converted into their
corresponding esters, used as biolubricants, when treated with higher alcohols (C8 to C14) in the
presence of a suitable catalyst [93]. The process can be successfully used as an alternative method for
producing biodiesel/biolubricants from waste cooking oils/fats, which otherwise have no immediate
potential use [94]. The hydrolysis of oils, prior to saponification, provides the possibility of overcoming
many problems associated with the recovery of the by-product glycerol. Besides biodiesel production,
fatty acids are major components used to prepare a wide variety of products such as soaps, surfactants,
lubricants, plasticizers, paints and coatings, pharmaceuticals, and foods and agricultural, industrial,
and personal care products. Different catalysts have been used to hydrolyze VOs/fatty esters. Avisha
et al. discovered a novel synthetic method to produce biolubricants by using the two-step process of
Candida rugosa lipase-mediated hydrolysis of waste cooking oil (WCO) to FFAs followed by Amberlyst
15H esterification of them with octanol [95]. The octyl esters thus produced have been used as the
desired biolubricant. Vescovi et al. also produced biodiesel from WCO via enzymatic hydrolysis
followed by esterification [96]. Waghmare et al. [97] synthesized biodiesel by ultrasound-assisted
enzyme catalyzed hydrolysis of waste cooking oil under solvent-free conditions. Soares et al. [98]
manufactured biodiesel from soybean soap stock acid oil by hydrolysis in subcritical water, followed
by lipase-catalysed esterification. Luo et al. reported the hydrolysis of vegetable oils catalyzed by
SO3H-functional Brønsted acidic ionic liquids at a moderate temperature and reaction time [99]. Syaima
et al. has reported the synthesis of the biolubricant from palm oil mill effluent (POME) using enzymatic
hydrolysis and non-catalytic esterification [100]. They studied the effect of different parameters such
as temperature, agitation speed, enzyme loading, POME concentration, and the ratio of alcohol to fatty
acids on the rate of hydrolysis and esterification reaction. The optimum hydrolysis rate was achieved
at 40 ◦C with enzyme loading at 20 U/mL, pH 7.0, and the concentration of POME 50% (v/v). They also
evaluated the viscosity and density of the biolubricants.

Fatty acids can easily be converted into their derivatives such as amides and amines or reduced
into alcohols. These compounds are very significant for industrial application, especially as an antiwear
lubricant additive.

Fatty amines: Fatty amines, obtained from fatty acids or fatty acid alkyl esters by reaction with
ammonia at a high temperature followed by dehydration and hydrogenation, are used in the lubricant
industry as a friction modifier in engine oils [101,102]. The preparation of fatty amines occurs in
two steps (Figure 5). In the first step, fatty acids or fatty acid alkyl esters are treated with ammonia
in the presence of a dehydration catalyst to form fatty nitriles. The nitriles are hydrogenated into
fatty amines by a metal catalyst in the second step. Oleic acid, when treated with excess ammonia
at 408 K and 35 bar, yields oleonitrile, which under catalytic hydrogenation at 413 K, gives stearyl
amine with a yield close to 96% [40,103]. These additives are far better than the commercial ZDDP
type antiwear additives.
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The use of a partly neutralized fatty amine salt as a friction modifier for lubricating oil, especially
for an internal combustion engine, was claimed by Lundgren [104,105]. The inventor found that a
partially neutralized fatty amine salt works as an excellent friction modifier for a lubricating oil to be
used in an internal combustion engine or a gearbox. Laufenberg et al. [106] disclosed the production
of lubricant concentrates and aqueous lubricant solutions containing at least one polyamine derivative
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of a fatty amine and/or a salt of such an amine for lubricating, cleaning, and disinfecting automatic
chain and belt conveyor systems.

Fatty amides: Fatty amides can be prepared by base catalyzed aminolysis of fatty acids
or esters using ammonia or a primary or secondary amine (e.g., dimethylamine, ethanolamine,
isopropanolamine, or diethanolamine). These amines are valuable in preparing a wide variety of
value-added materials, such as cleaners, fabric treatments, hair conditioners, personal care products
(liquid cleansing, conditioning bars, oral care), antimicrobial compositions, agricultural uses, and most
importantly, as an antiwear additive in oil field applications. Pramanik et al. [107] reported the effect
of soybean oil-based fatty amides as a rheology modifier additive in coatings. It has been reported that
the fatty amide formed by reacting fatty acids with diethanolamine was used as an active ingredient
to manufacture dry cleaning soaps, fuel oil additives, rust inhibitors, textile scouring, dye leveling
agents, and woolen cloths [108,109]. Amides prepared from hydrogenated soybean oil or coconut oil
glycerides and a hydroxyalkyl polyamine have been reported as an ingredient useful in lubricating
and softening textile materials such as rayon fabrics [110]. The lubricity of fuels can be increased by
blending and adding fatty amides. Gentry et al. disclosed the application of alkanolamide of a fatty
acid, an alkanolamide of a modified fatty acid, or a mixture as lubricity aids in low sulfur diesel fuels
and spark ignition fuels [111]. It was reported that a modified mixed amide derived from the reaction
of a substantially saturated fatty acid triglyceride with a deficiency of dialkanolamine, either alone or
in combination with a sulfurized substantially unsaturated fatty acid triglyceride, were used as an
improved friction modifier or antiwear additive to crankcase oils [112].

Fatty alcohols: Fatty alcohols or their derivatives can be used for the production of different
industrially useful materials such as biolubricants, plasticizers, surfactants, etc. Fatty alcohols are easily
obtained from fatty esters of vegetable oils/natural fats by catalytic reduction reaction. The selective
reduction of unsaturated esters to unsaturated alcohols is generally performed by a metal-based
solid hydrogenation catalyst under high pressure and temperature. Methyl oleate was converted into
the corresponding unsaturated alcohol selectively when treated with Ru-Sn-B/Al2O3 catalysts at a
high temperature (523–573 K) and pressure (25–35 MPa) in a liquid-phase slurry-bed process [113].
Giraldo et al. developed an environmentally friendly Ni-Cu-Zeolite as a bimetallic catalyst for selective
hydrogenation of the preparation of palm oil-based fatty alcohols [114]. The larger chain alcohols
are suitable for producing biofuels and as non-ionic surfactants or emulsifiers, as well as emollients
and thickeners in the cosmetics and food industries. Mueller et al. disclosed information on the
application of linear and/or branched fatty alcohols (containing at least 12 carbon atoms) or mixtures
of such fatty alcohols with carboxylic acid esters as a lubricating additive in water-based drilling
fluids used in geological exploration [115]. The fatty alcohol-based lubricants or lubricant systems are
particularly suitable for use in water-based alkali metal silicate drilling muds, which are known to
be distinguished by comparatively high pH values. These fatty alcohols are also used as an antifoam
additive for lubricants.

Epoxidation of fatty acids/esters and their application as a biolubricant: One of the most
important steps in preparing a biolubricant (base stock and/or additive) from vegetable oils is the
epoxidation of its olefinic functionalities. The epoxidation of free fatty acids/esters/vegetable oils
can be carried out in the presence of peracids through an in-situ or ex-situ process by varying the
reaction parameters: reactant molar ratio, temperature, nature of the solvent, presence or absence
of a catalyst (mineral acids/ion exchange resins), stirring speed, type of peroxyacid (peracetic,
performic, m-chloroperbenzoic acid), mode and rate of the addition of H2O2/acetic or formic acid,
the reaction period, and contacting patterns (batch/semi-batch mode/azeotropic distillation) [116–118].
To avoid the corrosive nature and undesirable side reactions (ring opening of oxirane) of mineral
acids, heterogeneous catalyst systems such as acidic ion exchange resins [119], transition metal-based
catalysts such as Ti-silica [120], Nb(V)-silica [121], sulfated-SnO2 [122] and polyoxometalate [123]
have become known recently for their ability to perform the epoxidation reaction. To characterize
the epoxidation products, different analytical methods, such as measurement of the iodine value,
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oxirane content, FTIR, 1H NMR, and ESIMS are performed. Iodine values of the FAMEs (fatty acid
methyl esters) and vegetable oils expressed as gram per 100-gram sample (g per 100 g) are generally
determined according to Wij’s method [124]. Alves et al. (2013) found that modified vegetable oils
such as epoxidized sunflower and soybean oils resulted in a lower friction coefficient than the mineral
and synthetic oils [125].

Because of their higher reactivity, the oxirane rings of the epoxides can easily be opened by
different reagents such as acids, alcohols, thiols, and amines to provide different value-added
compounds such as biolubricants (base stocks/additives), bio-plasticizers, and other industrially
useful chemicals. The epoxidized vegetable oils/fatty esters are used to prepare antiwear/antifrictional
additives for lubricants. Because of their higher solubility in biodegradable vegetable oils and synthetic
esters, these additives showed a considerably better performance than conventional petroleum-based
additives. Schafer et al. described the development of corrosion-protection additives from an
epoxidized methyl ester of an unsaturated fatty acid and a sulphonic acid [126]. Rowland et al.
disclosed different antifrictional additives from an epoxidized ester of fatty acids to reduce lead
corrosion in lubricants and fuels [127]. Lathi et al. discussed the preparation of lubricant base
stock/additives by opening the rings of epoxidized soybean oil with different alcohols (n-butanol,
iso-amyl alcohol, and 2-ethylhexanol) followed by esterification of the resulting hydroxy group through
alcoholysis using the same catalyst [128]. The furnished lubricants showed significant improvement
in pour point values. It was further observed that as the chain length of branched alcohol increased,
it gives lower pour point values and 2-ethylhexanol showed lowest pour point value as compared to
other alcohols. Hydroxy thio-ether derivatives of vegetable oils prepared by opening the epoxy rings
of epoxidized soybean oil with common organic thiols are used as sustainable antiwear/antifrictional
additives for lubricants [129,130]. The incorporation of sulfur in the triglyceride backbone in this
process introduces polar functionalities in the molecule which improved the adsorption power of
the derivatives on metal surface resulting in reduced wear and friction coefficient. They showed
better antiwear performance compared to commercial additive packages. Ester hydroxy derivatives of
methyl oleate, obtained by opening the epoxy rings of epoxidized methyl oleate by different organic
acids (propionic, levulinic, octanoic, hexanoic, or 2-ethylhexanoic acid) showed better pour point
and cloud point values [28]. They also showed improved thermo-oxidation stability and tribological
and lubricity properties when used as lubricant additives. The opening of epoxy rings with different
amines produces substituted derivatives of β-amino alcohols that are used in the medical field as
antioxidant derivatives for lubricants [131]. Carbonated derivatives of fatty esters, which are also used
to prepare biolubricants and other essential value-added materials, can easily be prepared from epoxy
derivatives of fatty esters/vegetable oils [132].

The opening of the epoxy rings of vegetable oils/fatty derivatives to produce different
value-added compounds that have an application in the formulation of biolubricants are shown
in Scheme 1.
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Conversion of the olefinic functional groups into cyclic carbonates and the use of different
nucleophiles to open the rings: Cyclic carbonates are attractive green intermediates that are non-toxic,
biodegradable, and can easily be prepared by coupling carbon dioxide with epoxy fatty esters (Figure 6).
Fatty ester carbonates have the physical and chemical properties useful for preparing different valuable
chemicals for many applications [132–135]. There are two main benefits of the conversion of fatty
acid derivatives/epoxidized oils into cyclic carbonates. The first one is the preparation of novel
materials from renewable resources, and the second is recycling and exploiting of carbon dioxide into
the value chain. The coupling reaction of epoxides with CO2 is an intensively studied field of research,
and various homogeneous and heterogeneous catalysts have been reported for this reaction [133–135].
Han et al. [136] employed imidazolium-based ionic liquids with varied alkyl chain lengths bearing
different anions as a heterogeneous catalyst for preparing cyclic carbonates. Tamami et al. reported on
the synthesis of carbonated soybean oil from epoxidized soybean oil at an atmospheric CO2 pressure
using tetra-n-butylammonium bromide ([Bu4N]Br) as a catalyst [137]. An improved protocol for the
synthesis of carbonated oleo compounds was described by Doll et al. [133]. They have synthesized
carbonated methyl oleate and carbonated methyl linoleate from epoxy derivatives of fatty esters
using supercritical carbon dioxide directly with a catalytic amount of tetrabutylammonium bromide.
The synthesized compounds have potential uses as industrial lubricants or fuel additives. Shorter chain
linear carbonates are useful as emollients, and longer chain carbonates have been used as lubricants
and fuel additives [138].

Schäffner et al. [67] tested simple alkali halides combined with a phase transfer catalyst in the
reaction of epoxidized methyl linoleate with CO2 to prepare the respective bis-carbonate. Sodium
iodide and 15-crown-5 as well as the combination of potassium iodide and 18-crown-6 were proven to
be very active catalyst systems in the model reaction at 100 ◦C, 100 bar, and 17 h with a conversion of
94% and 90%, respectively [139].

The carbonated ring of the fatty esters can easily be opened by a variety of nucleophiles to produce
phthalate-free bio-plasticizers [140], non-isocyanate polyurethane [141], biolubricants [68], adhesives,
and many other value-added products.
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Polymerization and preparation of polymer nanocomposites: Biolubricants (additives/base
stocks) can also be prepared through homopolymerization of vegetable oils/fatty esters or their epoxy
derivatives or copolymerization with suitable co-monomers. Polymerization of vegetable oil or their
derivatives can be conducted by different techniques, e.g., cationic, free radical, ring opening, and
condensation polymerization. Thermally polymerized soybean oil mixed with additives and diluents
was used as a bio-based gear oil [142]. In our previous work, free radical polymerization of vegetable
oils and their application as eco-friendly lubricant additives has been discussed [17–19,143,144].
Biresaw et al. [145] described the application of bio-based polyesters as an extreme pressure additive
in mineral oil. The synthesis and evaluation of telomerized vegetable oil, sulfurized and phosphorus
derivatives of telomerized vegetable oils, and combinations thereof for use as thermal oxidative
stability enhancers and viscosity improvers have been reported by Landis [146]. Telomerization
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induces vegetable oil that contains no more than 4% polyunsaturated fatty acids to help enhance its
thermo-oxidative stability. The invention is further related to telomerized triglyceride vegetable oils as
a lubricating composition base stock substitute. Recently, relatively new polymerization methods such
as acyclic diene metathesis polymerization [147] and ring-opening metathesis polymerization [148,149]
of functionalized fatty alcohols have been employed to synthesize vegetable oil-based polymers as
well. Polymerization of vegetable oils/derivatives in the presence of different organic or inorganic
nanofillers produces polymer nano-composites, which are extensively applied in the automotive
industry, especially as an antiwear coating/additive in lubricants [150].

4. Conclusions

In this short review we highlighted the chemical transformation of vegetable oils to produce
different materials that have an application in the formulation of biolubricants. The study is significant
in the present context of increasing global environmental pollution and decreasing petroleum
resources. The main advantages of vegetable oil-based lubricants are its high biodegradability and
low aquatic toxicity. Recently bio-based lubricants are blended with commercial ones to prepare
eco-friendly lubricant compositions. However, we have not yet been able to completely replace the
commercial mineral lubricants with bio-based lubricants. This is due to the current lower production
of vegetable oils which increases the cost of bio-based lubricants compared with petroleum-based ones
Although the vegetable oil-based lubricants (base fluids or additives) are more costly than commercial
petroleum-based lubricants, they are emerging as future green products because of their nontoxic and
biodegradable nature. These oils have a higher viscosity index, better wear performance, higher flash
point, and lower pour point and cloud point than other lubricants. Research is still being conducted to
develop a new methodology for manufacturing biolubricants from vegetable oil-based materials that
would be more economical and greener, and will one day replace mineral oil-based lubricants with
bio-based products in environmentally sensitive applications.
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