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Abstract: This paper presents a numerical analysis of the influence of deformation of infinite
parallel cylindrical solids in partial journal bearing on the oil film characteristics. The stationary
elastohydrodynamic EHD problems for three design models of bearings are considered: (1) The
bearing in which the basic contribution to the elastic displacement of the surface brings the thin
elastic liner; (2) The elastic cylinder and the elastic bushing which is modeled by the elastic space
with a cylindrical cut; (3) The elastic cylinder and the elastic bushing in the presence of the thin elastic
liner with a small module of elasticity. It is shown that when the minimum film thickness is fixed
and deformations of the elastic solids increase, then the load capacity increases, reaches a maximum,
and then decreases. The deformation of solids can raise load capacity many times over. When the
deformation of solids increases from zero, the pressure distribution changes from the distribution
of pressure in the case of rigid bodies to the distribution of pressure which takes place with the dry
contact of elastic bodies.
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1. Introduction

Nowadays, most hydrodynamic journal bearings are required to operate with decreasing film
thicknesses. When a bearing is highly loaded, the elastic displacements can exceed the minimum film
thickness and can essentially influence the bearing characteristics.

The deformation effects on the characteristics of a plain journal bearing have been studied in a
number of works. Higginson [1] and Angra et al. [2] presented an analysis of the effects of the elastic
deformation of the bearing liner on the performance of a journal bearing. The calculations were made
at high values of the minimum film thickness. The results of the calculations show that at a fixed
minimum film thickness the load grows as the liner becomes more flexible, but this growth is not great.

An analysis of the EHD behavior of a bearing operating under conditions which tend to be severe
was presented by Bendaoudl et al. [3]. The influence of mechanical deformations were presented at
one load. It was shown that the minimum film thickness was 18% less when deformations were not
taken into account in the calculations.

The significance of the deformation effects on a plane journal bearing subjected to severe operating
conditions was studied by Bouyer et al. [4]. It was shown that mechanical deformations significantly
decrease the maximum pressure, significantly modify the profile of the lubricant gap, but do not have
a great influence on the minimum film thickness magnitude. These conclusions were made on a basis
of the analysis of the results of calculations for two loads.

Chetti [5] and Osman [6] studied the load dependence on eccentricity for rigid bodies and
deformable bodies. The obtained results for elastic bearings was lower than those for rigid bearings
for the whole range of eccentricity.

In all previous work the solutions were proposed only for several loads and for large minimum
film thicknesses. They do not give a representation of how mechanical deformations influence the
characteristics of a lubricant layer in the transition from small deformations to big deformations.
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In the present work, a numerical analysis of the influence of deformations of infinite parallel
cylindrical solids in partial journal bearings on the oil film characteristics is presented. It is shown that
when the minimum film thickness is fixed and the deformation of the elastic solid increases, then the
load capacity increases, reaches a maximum, and then decreases. The deformation of solids can raise
the load capacity many times over.

2. Design Model One

Let us consider the conformal contact of a hard shaft and thin elastic liner that is inserted into a
rigid bush (Figure 1). The inner radius of the liner is a little different from the radius of the shaft R,
which is ∆/R << 1, where ∆ = R1 − R, R1 is the inner radius of the liner.
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Figure 1. Scheme of journal bearing. Rigid cylinder, rigid bush and elastic liner.

Let the line of center (Figure 1) of the bearing and shaft form with the line of action of the load
angle θ, which is defined when solving the problem. The angular coordinate ϕ is measured from the
line of action of the load in the direction of movement of the surface of the shaft.

Consider the case of a partial journal bearing. In this case, the inlet coordinate of a lubricant layer
is determined by the position of the input oil-groove, from which the oil arrives under slight pressure
into the gap. Then the inlet coordinate of a lubricant layer is equal to −ϑ. The coordinate of the output
point of a lubricant layer ϕc is unknown and is determined when solving the problem. This coordinate
should satisfy the condition ϕc ≤ ϑc. Here ϑc is the coordinate of the inlet boundary of the output
oil-groove in which the lubricant arrives after passing the zone of high pressure.

If condition (1) is satisfied, then the deformation of the shaft and bush can be neglected when
determining the film thickness, and only the deformation of the liner must be taken into account.

ε

R
>>

E
E1

,
ε

R
>>

E
E0

(1)

Here ε is the thickness of the liner, E, E0 and E1 are the elastic modules of liner, shaft and
bush respectively.

The elastic displacement of the shaft surface w0 is proportional of the shaft radius R and inversely
proportional to the modulus of elasticity of the shaft E0, that is w0 = C1R/E0. The elastic displacement
of the bush surface is w1 = C2R/E1 and the elastic displacement of the liner surface is w = C3ε/E.
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Here C1, C2 and C3 are some constants. The conditions (1) follow from these expressions and from the
conditions w0 << w and w1 << w.

When the additional condition ε
R << 1 is correct, then the displacement of the liner surface w can

be defined as [7,8]

w = ε
(1 + ν)(1− 2 ν)

(1− ν)

p̃
E

(2)

Here p̃ is pressure which acts from the lubricant layer to the surface of the liner, and ν is the
Poisson’s ratio of liner. According to (2), the film thickness h̃ can be defined as:

h̃(ϕ) = ∆− e cos(ϕ− θ) + ε
(1 + ν)(1− 2ν)

1− ν

p̃
E

Here e is the eccentricity. The pressure we define from the Reynolds equation

1
R2

d
dϕ

(
ρ̃h̃3

12µ̃

dp̃
dϕ

)
− u

2R

d
(

ρh̃
)

dϕ
= 0 (3)

Here ρ̃ and µ̃ are the oil density and viscosity respectively, and u is the velocity. The oil density
and viscosity depend on the pressure as follows

ρ̃ = ρ0

(
1 +

C1 p̃
1 + C2 p̃

)
, µ̃ = µ0 exp

(
αp p̃

)
(4)

Here ρ0 and µ0 are the oil density and viscosity at atmospheric pressure respectively, C1 and C2

are constant and αp is pressure coefficient of viscosity.
The boundary conditions for the pressure are of the form

p̃(−ϑ) = p̃(ϕc) = 0

dp̃
dϕ

∣∣
ϕ=ϕc = 0, if ϕc < ϑc

(5)

Condition (5) means that if ϕc > ϑc is obtained when using the condition dp̃
dϕ

∣∣
ϕ=ϕc = 0 then it

is necessary to accept ϕc = ϑc and to solve the problem without using the condition dp̃
dϕ

∣∣
ϕ=ϕc = 0

In this paper we will suppose that the angles ϑ and ϑc are such that the condition dp̃
dϕ

∣∣
ϕ=ϕc = 0 is

satisfied. Integrating Equation (3) in the domain (ϕ, ϕc) and taking into account boundary condition (5),
the following equation can be obtained

− 1
R2

(
ρ̃h̃3

12µ̃

dp̃
dϕ

)
+

u
2R

ρ̃h̃ =
u

2R
ρ̃0h̃c

The conditions of the balance of forces look like

R

ϕc∫
−ϑ

( p̃ cos ϕ− τ̃ sin ϕ)dϕ = W, R

ϕc∫
−ϑ

( p̃ sin ϕ + τ̃ cos ϕ)dϕ = 0

Here W is the force, and τ̃ = µ̃ u
h̃
+ h̃

2
1
R

dp̃
dϕ is tangent stress acting from a lubricant layer on a shaft.

The following dimensionless variables are defined

h =
h̃
∆

, p =
p̃

pL
, pL =

∆(1− ν)

ε(1 + ν)(1− 2ν)
E, ρ =

ρ̃

ρ0
, µ =

µ̃

µ0
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Here pL is characteristic elastic contact pressure. When p̃ = pL the displacement of the liner
surface w equals the radial clearance ∆.

In dimensionless variables, the equations and conditions can be represented as follows

h(ϕ) = 1− χ cos(ϕ− θ) + p (6)

ρh3 exp(−Gp)
dp
dϕ

= V(ρh− hc), hc = 1− χ cos(ϕc − θ) (7)

ρ = 1 +
K1 p

1 + K2 p
(8)

ϕc∫
−ϑ

(p sin ϕ + τ cos ϕ)dϕ = 0, τ = ψ

(
V
6

exp(Gp)
h

+
h
2

dp
dϕ

)
(9)

ϕc∫
−θ

(p cos ϕ− τ sin ϕ)dϕ = P (10)

p(−ϑ) = p(ϕc) = 0 (11)

Here ψ = ∆
R , χ = e

∆ is relative eccentricity

V =
6uRµ0

∆2 pL
=

p∗
pL

=
6µ0uRε(1 + ν)(1− 2ν)

(1− ν)∆3E
(12)

p∗ =
6uRµ0

∆2 is the characteristic hydrodynamic pressure, K1 = pLC1, K2 = pLC2, G = αp pL, and P
is dimensionless force which is equal to

P =
W

RpL
(13)

Dimensionless parameter V equals the ratio of the characteristic hydrodynamic pressure to the
characteristic elastic contact pressure. When this parameter is small the pressure p(ϕ) is also small
compared to characteristic elastic contact pressure, and deformations of the liner have little effect on
the solution of the problem. It means that at small values for parameter V the solution of the problem
differs slightly from the solution for rigid bodies. When parameter V increases, the influence of the
deformations of the liner on the pressure and film thickness also increases.

2.1. Asymptotic Properties of the Solution

Let us consider the solution of the problem at large values of parameter V and when the influence
of pressure on lubricant density and viscosity is not taken into account, that is at ρ = 1, µ = 1. It follows
from (7) that in this case

h− hc =
h3

V
dp
dϕ

Since the pressure and pressure derivative are limited then

h→ hc at V → ∞ (14)

It follows from (6) and (14) that p→ p∞ at V → ∞ where

p∞ = hc − 1 + χ cos(ϕ− θ) (15)
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Let us consider the case when ϑc = ϑ and ϕc = ϑ. The angle θ is proportional to ψ when function
p(ϕ) looks like (15). Parameter ψ is usually small

(
ψ < 10−3) and we can accept θ = 0. It is not

difficult to obtain in this case

lim
V→∞

χ =
1− hc

cos ϑ
, and p∞ = (1− hc)

(cos ϕ

cos ϑ
− 1
)

(16)

lim
V→∞

P = (1− hc)

(
ϑ

cos ϑ
− sin ϑ

)
, lim

V→∞
pmax = (1− hc)

(
1

cos ϑ
− 1
)

(17)

2.2. Numerical Method

The input parameters of the problem are K1, K2, G, V and χ. After setting these parameters,
the functions h(ϕ), p(ϕ), ρ(ϕ), µ(ϕ), τ(ϕ), and parameters ϕc and θ can be found by solving the
system of Equations (6)–(8) under conditions (9) and (11). The dimensionless load P can be found
using the expression (10) after that.

The angles θ, ϕc are defined by iteration. The initial approach of these parameters is assigned at
first. Thus, the initial values of θ, ϕc are specified before the calculations.

The mesh of N nodes {ϕk}, k = 1, 2, . . . , N, ϕ1 = −ϑ, ϕN = ϕc is entered. It follows from
Equations (6)–(8), that

hN = hc = 1− χ cos(ϕc − θ) (18)

hi = h(ϕi) = Li + yi, i = 1, 2, . . . , N − 1 (19)

Li = 1− χ cos(ϕi − θ) + pi+1 (20)

yi = pi − pi+1, pi = yi + pi+1 (21)

ρi+1(yi + Li + hi+1)
3[1− exp(−Gyi)]

= −4GV(∆ϕ) exp(Gpi+1)[ρi+1(yi + Li + hi+1)− 2hc]

i = 1, 2, . . . , N − 1
(22)

ρi = 1 +
K1 pi

1 + K2 pi
(23)

Equations (9) and (10) can be presented as (24) and (25) after replacing the integrals by finite sum.

N

∑
k=1

ak(pk sin ϕk + τk cos ϕk) = 0 (24)

∆ϕ
N

∑
k=1

ak(pk cos ϕk − τk sin ϕk) = P (25)

τk = ψ

(
V
6

exp(Gpk)

hk
+

hk
2

pk+1 − pk
ϕ2 − ϕ1

)
, k = 1, 2, . . . , N − 1 (26)

τN =
ψV
6hc

; a1 = aN =
1
2

; ak = 1, k = 2, . . . , N − 1 (27)

As θ and ϕc are known, we can calculate hN = hc on Formula (18) and LN−1 on Formula (20).
The condition pN = 0 must be taken into account. As hN , hc, LN−1, pN are known, the value of yN−1

can be found using the Equation (22) and expressions (23). Really, after substitution of expression (23)
into the Equation (22) and the assignment of i = N − 1, we receive a non-linear equation with respect
to yN−1. After solving this equation, the values of hN−1 and pN−1 can be defined under the Formulas
(19) and (21).

Further, the value of LN−2 can be calculated and so on. As a result, the values of hi and pi can be
calculated consistently at i = N − 1, i = N − 2, . . . , i = 1. Thus, the values of hi (i = 1, 2, . . . , N)
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and pi (i = 1, 2, . . . , N − 1) can be calculated if the values of θ, ϕc are assigned. After that
τk (k = 1, 2, . . . , N) can be computed on Formulas (26), (27) and parameter T can be determined.

T = ∆ϕ
N

∑
k=1

(ϕk − ϕk−1)(pk sin ϕk + τk cos ϕk)

The validity of the conditions (28) indicates that the solution of the problem is found.

|p1| < εp, |T| < εT (28)

Here εp and εT are the parameters which determine the precision of the solution. They are set
before the calculations.
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Figure 2. Flowchart for determining θ and ϕc.

The flowchart for determining θ and ϕc is shown in Figure 2. Equation (22) is solved with respect
to y using Newton iterations.

The number of nodes N determines the accuracy of the solution. The influence of number N
on the accuracy of the solution is illustrated by the results of the calculation presented in Table 1.
The calculation was made at the next values of parameter: ϑ = 1.2, V = 0.01, χ = 1.3, G = 0,
K1 = K2 = 0.
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Table 1. The values of parameters P and hmin at various values of N.

N 20 50 100 200 500

P 0.33056 0.33585 0.33646 0.33660 0.33660

hmin 0.04295 0.04312 0.04314 0.04315 0.04315

The results in Table 1 indicate that the results of the calculation have high precision when N ≥ 20.

2.3. Discussion

At first, we will consider the results when the influence of pressure on lubricant density and
viscosity is not taken into account, that is, the decision of a problem at G = 0, K1 = 0, K2 = 0.
Figures 3–6 present the results at ϑ = 1.4 radians.

The ratio (29) is proportional to the dimension load W and does not depend on the elastic
properties of the liner. The parameter V is inversely proportional to the modulus of elasticity of
the liner. Therefore, the dependence of ratio P/V on parameter V characterizes the influence of the
elasticity of the liner on the load.

P
V

=
W∆2

6µ0uR2 =
P

p∗R
(29)

Chetti [5] and Osman [6] presented the dependence of load from eccentricity for rigid bodies and
deformable bodies. They came to the conclusion that at given eccentricities the load for rigid bearing
is greater than that for elastic bearing.
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Figure 3. Dependences of ratio P/V and minimum film thickness hmin on V at χ = 0.9.

Figure 3 shows the dependences of ratio P/V and minimum film thickness hmin on V at χ = 0.9.
It follows from these results that the dimension load decreases when the elastic deformation of the
liner increases as in [5,6]. However, the presented results also demonstrate that at a given eccentricity
the minimum film thickness essentially increases when the elastic deformation increases. This means
that the influence of deformations on the film thickness may be shown more demonstrably by the
dependences of the ratio P/V on V at hmin = const.

Figure 4 shows the dependences of P
V on V at different values of hmin. When V → 0 then the

solution of the problem approaches the solution for the rigid bodies. Therefore

lim
V→0

P
V

=
Whd(hmin)

pLR
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Here Whd is the load in a pure hydrodynamic regime which depends on the minimum film
thickness, that is Whd = Whd(hmin).

The value of coordinate ϕc does not exceed the value of ϑ = 1.4 in all the presented results of the
calculation. The pressure distribution approaches the pressure distribution for the dry contact of a
rigid cylinder and an elastic liner at a large value of V. It follows from (17) that at ϑ = 1.4 and a large
value of V there will be

P
V
≈ 7.25

V
(1− hmin) or lg

(
P
V

)
= lg(7.25(1− hmin))− lgV (30)

Relationship (30) is presented in Figure 4 as a linear dependence.
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It follows from the results presented in Figure 4 that the ratio P
V as a function of V has a maximum.

When the deformations of the liner are small, they lead to an increase in the load capacity of the
lubricant layer. However, when the deformations of the liner are large, they can decrease this
load capacity.

The elasticity of the liner can raise the load capacity of the lubricant layer many times over.
For example, at hmin = 0.02 this increase can be 18 times. At hmin = 0.2 this increase may not be more
than two times.

Figure 5 shows the dependences of h(ϕ) and p(ϕ)/pmax at various values of parameter V and at
hmin = 0.02. It follows from these results that the point of minimum function h(ϕ) moves to the left
when V increases. The pressure distribution gradually passes from specific hydrodynamic distribution
to pressure distribution in dry contact.
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Figure 5. Dimensionless film thickness and ratio p
pmax

as a function of angle coordinate ϕ at
G = 0, K1 = 0, K2 = 0, hmin = 0.02 and at different values of parameter V.

Higher values of parameter V correspond to a more flexible liner. The shaft penetrates into the
liner more deeply if the liner is more flexible. This leads to an increase of the size of the contact
zone when parameter V increases. The point of minimum film thickness was located near the output
point of a lubricating layer. As a result, the point of minimum film thickness shifts towards right as
parameter V increases.

Figure 6 shows the dependences of the maximum of pressure pmax on parameter V at different
values of hmin. It follows from these results that the dependence of lgpmax on lgV is close to linear
dependence up to the limiting value

pmax =

(
1

cos 1.4
− 1
)
(1− hmin) = 4.88(1− hmin)

The results presented above are received without taking into account the influence of oil density
and viscosity variation. This influence is illustrated by the curves in Figure 7.
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different values of hmin.

Figure 7 shows the dependences of ratio P/V on V at hmin = 0.02. Curve 1 is obtained when the
influence of oil density and viscosity variation are not taken into account. Curve 4 presents results
when only the influence of the viscosity variation is taken into account. Curve 2 presents results
when only the influence of density variation is taken into account. Curve 3 presents results when the
influence of density and viscosity variations is taken into account.

The presented results indicate that the density variation with the variation of pressure leads to a
small variation in the load capacity of the lubricant layer. Basically, this influence becomes appreciable
only in a small vicinity of the value of V at which the function P

V (V) has a maximum.
The influence of the viscosity variation on load capacity also is small and it also is maximal in a

small vicinity of the value of V at which the function P
V (V) has a maximum. However, the influence of

viscosity variation on load capacity is more important than the influence of density variation, because
curves 3 and 4 are quite close to each other compared to curves 1 and 2.Lubricants 2018, 6, 12  12 of 18 

 

 

Figure 7. Dependences of ratio V  on V  at min 0.02h  . 

3. Design Model Two 

Now we will determine the deformation of the elastic shaft and elastic bushing using the 

solution of the plane problem of theory elasticity for the elastic circle and for the elastic plane with 

circular cut. 

A general solution to the problem of elasticity for circular rings is given in a book [9]. It follows 

from this solution that the elastic displacement of the surface of elastic circles can be determined 

under the formula 

 
 

   

  
     

2

0

0

0

0 0

1 2

0

2 1 1
cos ln sin

2 2

1 2 1
2 cos sin

2

c

c

R
w p d

E

R
p d C C

E









  
    



 
        







   
    

 

 
      





 (31) 

Here 1C  and 2C  are constants that must be specified when solving a specific problem, 

 
1,

0, c

if

if

  
  

  

  
  

 
 

The elastic displacement of the surface of the circular cut in elastic plane can be determined 

under the formula 

 
   

  
     

2

1 1

1

1

1 1 1

3 4

1

2 1
cos ln sin

2

1 2 1
2 cos sin

2

c

c

R
w p d

E

R
p d C C

E









  
   



 
        







 
   

 
      





 (32) 

Let us consider the case of EEE  10  and   10 . Taking into account the 

expression (31) and (32), the film thickness can be determined under the formula 

   
 

   
24 1 1

cos cos ln 2sin
2 4

cR
h p

E





  
      




   
       

 
  (33) 

The following dimensionless variables are defined 

Figure 7. Dependences of ratio P/V on V at hmin = 0.02.



Lubricants 2018, 6, 12 11 of 16

3. Design Model Two

Now we will determine the deformation of the elastic shaft and elastic bushing using the solution
of the plane problem of theory elasticity for the elastic circle and for the elastic plane with circular cut.

A general solution to the problem of elasticity for circular rings is given in a book [9]. It follows
from this solution that the elastic displacement of the surface of elastic circles can be determined under
the formula

w0(ϕ) =
2(1−ν0

2)R
πE0

ϕc∫
−ϑ

p̃(ξ)
[

1
2 + cos(ϕ− ξ) ln

∣∣∣sin ϕ−ξ
2

∣∣∣]dξ+

(1−2ν0)(1+ν0)R
2πE0

ϕc∫
−ϑ

p̃(ξ)[(ϕ− ξ)− 2πθ(ϕ− ξ)]dξ + C̃1 cos ϕ + C̃2 sin ϕ

(31)

Here C̃1 and C̃2 are constants that must be specified when solving a specific problem,

θ(ϕ− ξ) =

{
1, i f − ϑ ≤ ξ ≤ ϕ

0, i f ϕ < ξ ≤ ϕl

The elastic displacement of the surface of the circular cut in elastic plane can be determined under
the formula

w1 = − 2(1−ν1
2)R1

πE1

ϕc∫
−ϑ

p̃(ξ) cos(ϕ− ξ) ln
∣∣∣sin ϕ−ξ

2

∣∣∣dξ+

(1−2ν1)(1+ν1)R1
2πE1

ϕc∫
−ϑ

p̃(ξ)[(ϕ− ξ)− 2πθ(ϕ− ξ)]dξ + C3 cos ϕ + C4 sin ϕ

(32)

Let us consider the case of E0 = E1 = E and ν0 = ν1 = ν. Taking into account the expression (31)
and (32), the film thickness can be determined under the formula

h̃(ϕ) = ∆− δ cos(ϕ− θ)−
4R
(
1− ν2)
πE

ϕc∫
−ϑ

p̃(ξ)
[

cos(ϕ− ξ) ln
∣∣∣∣2 sin

ϕ− ξ

2

∣∣∣∣− 1
4

]
(33)

The following dimensionless variables are defined

h =
h̃
∆

, p =
p̃
pS

, pS =
1
8

∆
R

E
(1− ν2)

, ρ =
ρ̃

ρ0
, µ =

µ̃

µ0
, χ =

δ

∆
(34)

In dimensionless form the basic equations look like

h(ϕ) = 1− χ cos(ϕ− θ)− 1
2π

ϕc∫
−ϑ

p(ξ)
[

cos(ϕ− ξ) ln
∣∣∣∣sin

ϕ− ξ

2

∣∣∣∣− 1
4

]
dξ (35)

ρh3 exp(−Gp)
dp
dϕ

= V(ρh− h0) (36)

h0 = h(ϕc), ρ = 1 +
K1 p

1 + K2 p
(37)

τ = ψ

(
V
6

µ

h
+

h
2

dp
dϕ

)
(38)

ϕc∫
−ϑ

(p sin ϕ + τ cos ϕ)dϕ = 0 (39)
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ϕc∫
−ϑ

(p cos ϕ− τ sin ϕ)dϕ = P (40)

Here

V =
6uRµ0

∆2 pS
=

p∗
pS

=
48µ0uR2(1− ν2)

∆3E
(41)

K1 = pSC1, K2 = pSC2, G = αp pS, P =
W

RpS
(42)

3.1. Numerical Method

When calculating the value of h at the mesh point ϕ = ϕi, the function p(ϕ) is approximated by a
piecewise linear function (43)

p(x) =
N−1

∑
k=2

pkSk(ϕ) (43)

where Sk(ϕ) =


ϕ−ϕk−1
ϕk−ϕk−1

, ϕk−1 ≤ ϕ ≤ ϕk
ϕk+1−ϕ
ϕk+1−ϕk

, ϕk ≤ ϕ ≤ ϕk+1

0, ϕ /∈ [ϕk−1, ϕk+1]

.

Substituting (43) into (35) and using the integrals (44), (45) the expression (46) can be obtained

∫
cos t ln

∣∣∣∣sin
t
2

∣∣∣∣dt = I1(t) + c, I1(t) = sin t ln
∣∣∣∣sin

t
2

∣∣∣∣− 1
2
(t + sin t) (44)

∫
t cos t ln

∣∣sin t
2

∣∣dt = I2(t) + c1, I2(t) = (t sin t + cos t− 1) ln
∣∣sin t

2

∣∣−
− 1

2

(
t2

2 + t sin t + 2 cos t
) (45)

hi = 1− χ cos(ϕi − θ)− 1
2π

N−1

∑
k=2

(
I1
k,i + I2

k,i

)
pk, i = 1, 2, . . . , N (46)

I1
k,i =

ϕi−ϕk−1
ϕk−ϕk−1

[
I1(ϕk − ϕi)− I1(ϕk−1 − ϕi)− 1

4 (ϕk − ϕk−1)
]
+

1
ϕk+1−ϕk−1

[
I2(ϕk − ϕi)− I2(ϕk−1 − ϕi)− 1

8 (ϕk − ϕi)
2 + 1

8 (ϕk−1 − ϕi)
2
]

I2
k,i =

ϕk+1−ϕi
ϕk+1−ϕk

[
I1(ϕk+1 − ϕi)− I1(ϕk − ϕi)− 1

4 (ϕk+1 − ϕk)
]
+

1
ϕk+1−ϕk

[
I2(ϕk+1 − ϕi)− I2(ϕk − ϕi)− 1

8 (ϕk+1 − ϕi)
2 + 1

8 (ϕk − ϕi)
2
]

The Reynolds’s Equation (36) can be written in the finite difference form as

ρi+1(hi + hi+1)
3[exp(−Gpi+1)− exp(−Gpi)] =

−4GV(∆ϕ)

{
[ρi+1(hi + hi+1)− 2hc] + 2hc

3 dp
dϕ

∣∣∣
ϕ=c

}
i = 1, 2, . . . , N − 1

(47)

The conditions of the balance of forces looks like in the case of mathematical model 1.
The variable hi, hi+1 and ρi+1 can be excluded from Equation (47) by using expressions (23) and

(46). As a result, these equations will represent the system of N − 1 equations with respect to N − 2
variables p2, p3, . . . , pN−1. This system of equations together with the equation of balance of forces
defines the variables p2, p3, . . . , pN−1, θ and the variable ϕc. The specified system of equations is
solved using the Newton iterations method.
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3.2. Discussion

Figure 8 presents results that are analogous to the results presented in previous section.
The calculation where made at G = 0, K1 = 0, K2 = 0 and ϑ = 1.2. The solid curves present
the results of the calculation of the discussed design model two. The dashed curves present the results
of calculation of design model three, which will be discussed later.
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The presented results indicate that the solution of this problem has the same properties as
the solution of the problem for bearings with a thin liner. In particular, the function Θ(V) =
P(V)|hmin=const

V (V) has a maximum which shifts to the right with the growth of hmin. The growth
of the load capacity of the lubricant layer caused by the deformation of bodies can be more than in
3.5 times when hmin = 0.05. This growth can reach values of 1.5 when hmin = 0.2.

The calculations indicate that as in the case of model one, variation of the viscosity and density of
the lubricant slightly influences film thickness and pressure.

4. Design Model Three

It follows from the results presented above that deformations can essentially raise the load capacity
of a lubricant layer. The maximum load capacity is provided at a certain value of parameter V which
looks like (12) in a bearing with a thin liner when the shaft and bush deformations can be neglected,
and looks like (41) in the case of a homogeneous elastic shaft and a homogeneous elastic bush.

If the bearing is projected on a certain regime it is desirable to pick up the parameters so that the
deformations as much as possible raise the loading capacity of the bearing. However, if materials with
the specified module of elasticity are used and the specified lubricant is used, then there are a few
possibilities to obtain a maximal load capacity by changing the value of parameter V. However, there is
a possibility of increasing the load at the expense of the deformation of bodies by the introduction of
the thin elastic liner with a small module of elasticity.

The given circumstance is illustrated by the results of the calculations for the scheme presented in
Figure 9. The results of the calculations for this bearing scheme are shown in Figure 8.
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The scheme of the bearing consists of an elastic shaft, elastic bush end elastic thin liner, the modules
elasticity of which is small. In this case the film thickness can be defined as

h̃(ϕ) = ∆− δ cos(ϕ− θ)− 4R(1−ν2)
πE

ϕc∫
−ϑ

p̃(ξ)
[
cos(ϕ− ξ) ln

∣∣∣2 sin ϕ−ξ
2

∣∣∣− 1
4

]
+

ε
(1+νl)(1−2νl)

1−νl

p̃
El

(48)

Here νl, El are the Poisson’s coefficient and module elasticity of liner, respectively. In dimensionless
variables defined as (34), the Equation (48) looks like

h(ϕ) = 1− χ cos(ϕ− θ)− 1
2π

ϕc∫
−ϑ

p(ξ)
[

cos(ϕ− ξ) ln
∣∣∣∣sin

ϕ− ξ

2

∣∣∣∣− 1
4

]
dξ + βp (49)

where β = 1
8π

(1+νl)(1−2νl)
(1−ν2)(1−νl)

ε
R

E
El

.
The value of β = 0 corresponds to the case ε = 0, that is, the case when the elastic liner is absent.

The increase of parameter β corresponds to the increase in the liner thickness.

The dashed curves in Figure 8 show the dependences of the function Θ(V) =
P(V)|hmin=const

V (V) at
different values of hmin and at β = 0.2. The results presented in Figure 8 indicate that the thin liner
leads to an increase in the maximum bearing load capacity and leads to a decrease in the value of
parameter V at which the function Θ(V) has a maximum.

5. Example of Bearing Calculation

Determine the minimum film thickness of the bearing mill roll, the construction of which
corresponds to design model two. The parameters of the bearing are: ϑ = 1.2 radian, R = 0.3 m,
W = 1.02 · 107 N/m, ψ = ∆/R = 8 · 10−4, u = 10 m/s, µ0 = 0.01 Pa · s, αp = 1.7 · 10−8 Pa−1, ν = 0.3,
E = 2 · 1011 Pa.

According to the Formulas (34), (41) and (42) we find ps = 2.2 · 107 Pa, V = 0.142, P = 1.545 and
P/V = 10.88. These values of V and P/V correspond to points in Figure 8, which is between the curves
hmin = 0.07 and hmin = 0.1. The calculations indicate that at G = 0, K1 = 0 these values of V and P/V
correspond to hmin = 0.079 and h̃min = Rψhmin = 19 µm.
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It follows from the results of the calculation that when V → 0 and P/V = const = 10.88 then
hmin → 0.0367 and h̃min → 8.8 µm. This means that the deformation increased the load capacity more
than two times.

Consider the influence of the viscosity variation on the minimum film thickness. Using (42) we
have G = 0.374. It follows from the solution of system of equation that hmin = 0.09 and h̃min = 21.6 µm
at this value of G and at K1 = 0. Thus the increase in lubricant viscosity leads to an increase in
minimum film thickness of 13.7 percent.

Consider the influence of density variation on minimum film thickness. Using (42), we have
K1 = 0.0132, K2 = 0.0374. The calculations give hmin = 0.0906 and h̃min = 21.74 µm at these values
of parameters K1, K2 and at G = 0.374. Thus the increase in lubricant density leads to an increase in
minimum film thickness of 0.6 percent.

6. Conclusions

The stationary EHD problems for three design models of bearings were considered:

(1) The bearing in which the basic contribution to the deformation brings a thin elastic liner;
(2) The elastic cylinder and the elastic bushing, which is modeled by an elastic space with a

cylindrical cut;
(3) The elastic cylinder and the elastic bushing in the presence of a thin elastic liner with a small

module of elasticity.

It was shown that when the minimum film thickness is fixed and the deformations of the elastic
solids increase, then the load capacity increases, reaches a maximum, and then decreases. Deformations
of solids can raise load capacity many times over.

The maximum load capacity takes place at a certain value of dimensionless parameters which is
proportional to the speed, the lubricant viscosity and inversely proportional to the elasticity module.
It was shown that the presence of the thin elastic liner in the third settlement scheme of the bearing led
to a reduction of the value of the dimensionless parameters at which the load capacity has a maximum.
This means that it is possible to essentially raise the load capacity of bearings at operating conditions
by the introduction of a liner with a small module of elasticity.

When the deformations of solids increase from zero, the pressure distribution changes from the
distribution of pressure in the case of rigid bodies to the distribution of pressure that takes place in the
dry contact of elastic bodies.
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