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Abstract: Nanolubricants have attracted great interest due to the promise of friction and wear
reduction by introducing nanoparticles. To date, the foremost challenge for developing a new
nanolubricant is particle suspension. To understand the mechanisms of nanoparticle dispersion and
identify bottlenecks, we conducted a comprehensive review of published literature and carried out
an analysis of dispersion based on available data from the past 20 years. This research has led to three
findings. First, there are two primary methods in dispersion: formulation with dispersant and surface
modification. Second, surfactant and alkoxysilanes are primary chemical groups used for surface
modification. Third, functionalization using surfactant is found to be suitable for nanoparticles smaller
than 50 nm. For larger particles (>50 nm), alkoxysilanes are the best. The existence of a critical size
has not been previously known. To better understand these three findings, we conducted an analysis
using a numerical calculation based on colloidal theory. It revealed that a minimal thickness of the
grafted layer in surfactant-modified nanoparticles was responsible for suspending small nanoparticles.
For larger nanoparticles (>50 nm), they were suitable for silanization of alkoxysilane due to increased
grafting density. This research provides new understanding and guidelines to disperse nanoparticle
in a lubricating oil.
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1. Introduction

In mechanical systems, the frictional loss is one of many factors in energy consumption [1].
To reduce friction and wear, nanoparticles have been studied to be used as lubricant additives that
have promising effects on friction and wear reduction in automotive [2,3], mining [4], and other
industrial applications [5]. Nanoparticles of various compositions and sizes have demonstrated
certain degrees of friction modifying and anti-wear effects. We recently reported that in the boundary
lubrication region, the addition of nanoparticles can reduce the friction coefficient up to 70%, and wear
volume as high as 75% [5]. Such lubricants consisting of a base oil and dispersed nanoparticles
emerged as a new class of nanolubricants [5,6]. The bottleneck for further development, however, is the
aggregation of nanoparticles in a base oil. A stable suspension of nanoparticles is essential for a usable
lubricant. The aggregation of nanoparticles limits their ability to lubricate the contact area [7]. The MoS2

nanoparticle can reduce 75% of friction when mixed with lubricant oil. Such reduction was achieved by
ultrasonic dispersion immediately before testing [8,9]. The aggregation of nanoparticles could increase
friction due to the reduced “shear” effects [9]. Understanding the principles of dispersion is essential to
developing novel lubricants. This review is divided into two parts. The first part reviews the methods
used to disperse nanoparticles in lubricant oil. The second studies the mechanisms of dispersion.
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2. Dispersion Methods

There are many ways to characterize nanoparticles suspended in oil. As nanolubricants require
a long time to become stable, methods have been reported to examine dispersion in time. The widely
used method is visual inspection [10–27]. The lubricant dispersed with nanoparticles is visually
different compared to a lubricant. This makes the occurrence of aggregation and the following
sedimentation distinguishable through visual inspection.

One of the commonly used method is visible light scattering. The dynamic light scattering (DLC)
method has been used to measure the hydrodynamic radius of nanoparticles. This method tracks
the scattering of polarized light from a work piece [28] and calculates the radius of the nanoparticles.
The increase of hydrodynamic radius of nanoparticles signals the occurrence of aggregation. Several
studies used UV-visible spectroscopy to track the sample’s light absorption. The decrease of optical
absorption inferred the aggregation and sedimentation of nanoparticles [29]. A previous study
reported on stabilization time of the nanoparticle dispersion in a base oil. The time to reach stable for
nanoparticles is summarized in Table 1. The factors affecting suspension are particle size, medium,
and methods to disperse. Results shown in Table 1 lead to the conclusion that Brownian motion
and gravity could affect dispersion [30]. Ironically, the stability has been characterized in only
a small quantity in most studies. Those studies, in addition, cannot be applied directly to colloidal
particles [31,32]. In particular, understanding the dispersion of nanoparticles at high concentration
is needed.

There are two strategies to achieve stable suspension of nanoparticles in lubricant oil. One is to
change the formulation of the lubricating oil by incorporating dispersant with nanoparticles. The other
is to modify nanoparticles with amphiphilic chemicals or alkoxysilanes. Both methods alter the surface
of nanoparticles by absorption or chemical reaction to form an organic layer.

Table 1. The publications researched in this review.

Particle Size (nm) Media Disperse Method * Stability Stable Time

Oxides

TiO2 2 liquid paraffin SSM. stable 1 month [10]
5 liquid paraffin SSM. not reported [33]

10 liquid paraffin SSM. stable Claimed [34]
15 PAO Spectrasyn 4 SI-ATRP stable 56 days [11]
23 PAO None aggregated [35]

25 liquid paraffin Silanization +
Dispersant stable 5 months [12]

75 AOI group III None not reported [36]
SiO2 12 PAO NIM stable 2 days [13]

15 Ionic liquid None aggregated [37]
23 PAO Spectrasyn 4 SI-ATRP stable 56 days [11]
23 PAO SI-ATRP stable 60 days [14,38]
25 GMO Silanization stable 5 months [39]
45 EOT5 None not reported [15]
60 PAO 100 Silanization stable 2 months [16]
100 RO base oil Silanization stable 8 days [17]
110 PAO Silanization stable 2 months [40]
200 PAO Silanization stable 4 months [18]
200 PAO Silanization stable 2 months [41]

ZrO2/SiO2 100 20# machine oil Other stable 12 h [42]
Al2O3/SiO2 70 liquid paraffin Silanization stable 3 months [19]

CuO 5 PAO SSM. stable 30 days [43]
40 PAO 6 None not reported [44]

ZnO/CuO 40 vegetable oil None not reported [45]
ZrO2 25 PAO 6 None not reported [44]
ZnO 20 PAO 6 None not reported [44]

ZnO/Al2O3 50 20# machine oil SSM. stable 28 days [20]
Fe3O4 10 liquid paraffin SSM. stable Claimed [46]
Fe2O3 30 500 SN basic oil Dispersant Stable Claimed [47]
Al2O3 80 20# machine oil SSM. stable 20 days [21]

Al2O3/TiO2 100 base oil Silanization stable 110 h [48]
GO/ZrO2 5 liquid paraffin Other stable 48 h [22]
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Table 1. Cont.

Particle Size (nm) Media Disperse Method * Stability Stable Time

Sulfide

PbS 5 liquid paraffin SSM. stable Claimed [49]
IF-WS2 65 PAO None not reported [50]

100 PAO None stable hours [51]
110 liquid paraffin Silanization stable 14 days [23]
120 liquid paraffin None aggregated [52]

WS2 7 PAO SSM. stable 6 months [24]
100 liquid paraffin SSM. stable Claimed [25]
200 liquid paraffin SSM. stable 1 day [53]

IF-MoS2 35 PAO/Hexane None not reported [54]
MoS2 3 PAG SSM. stable 2 weeks [55]

15 250X base oil Dispersant stable Claimed [56]
85 EOT5 None not reported [15]
90 coconut/paraffin oil SSM. stable 2 days [57]

MoS2 sheets N/A PAO SSM stable 7 days [58]
Mo15S19 10 Linseed Oil None not reported [59]

MoS2/TiO2 125 rapeseed oil None stable 2 days [26]
CuS 20 liquid paraffin SSM. stable Claimed [60]

Metal

Cu 5 liquid paraffin SSM. stable months [10]
9 500SN base oil SSM. stable Claimed [61]

15 liquid paraffin SSM. stable Claimed [62]
40 raw oil Dispersant not reported [63]
75 500SN base oil Dispersant aggregated [64]

Carbon-coated Cu 65 PAO6 None not reported [65]
Mo 60 PEG None not reported [66]
Ni 8 PAO SSM. stable 1 month [67]

20 500SN base oil Dispersant stable Claimed [68]
20 PAO None stable hours [69]

Ag 4 liquid paraffin SSM. stable months [10]
4 PAO SSM. stable 3 months [70]
6 PEG SSM. stable 7 months [71]
6 Kerosene SSM. stable months [72]

10 liquid paraffin SSM. not reported [73]
15 liquid paraffin SSM. stable 7 days [74]

Pd 2 liquid paraffin SSM. stable Claimed [75]
2 liquid paraffin SSM. not reported [76]
3 PAO SSM. stable months [77]

Pb 40 liquid paraffin SSM. stable claimed [78]

Carbon

Graphene N/A liquid paraffin Dispersant not reported [79]
N/A SAE 10W30 None not reported [80]
N/A PAO 9 SSM. stable Claimed [81]
N/A SN350 SSM. stable 6 h [29]
N/A hexadecane SSM. stable 2 days [82]
N/A PEG400 NIM stable 30 days [83]

Graphene Oxide N/A mineral oil Dispersant not reported [84]
N/A SAE 5W30 None not reported [85]
N/A PAO None not reported [86]

Carbon Spheres 200 SAE 5W30 None not reported [87]
Nanodiamond 5 paraffin None not reported [88]

10 paraffin SSM not reported [89]
30 Diisodecy Adipate None not reported [90]
10 ISO68 base oil None not reported [91]

Fullerene 10 mineral oil None not reported [92]
Carbon

nano-onions 4 PAO None aggregated [93]

10 PAO None not reported [94]
5 PAO None not reported [95]

Carbon nano-horns 97 Mobil Pegasus 1005 Dispersant stable 14 days [27]
Carbon nanotube 100 PAO Dispersant stable 24 h [96]

N/A lubricant oil Dispersant not reported [97]
N/A liquid paraffin None not reported [98]
N/A sunflower oil Dispersant not reported [99]
N/A ionic liquid None stable Claimed [100]
N/A rapeseed oil SSM stable 10 days [101]
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Table 1. Cont.

Particle Size (nm) Media Disperse Method * Stability Stable Time

Other

CaCO3 20 500SN base oil Dispersant not reported [102]
40 PAO SSM. stable Claimed [103]
45 dodecane /decane Dispersant stable Claimed [104]

Zinc borate 35 500 SN basic oil Dispersant stable Claimed [105]
ZnAl2O4 95 Lubricant oil SSM. unstable [106]
La(OH)3 30 liquid paraffin None Not reported [107]

LaB 30 500SN base oil Dispersant stable Claimed [108]
LaF3 6 liquid paraffin SSM. stable Claimed [109]

8 liquid paraffin SSM. stable months [10]
BN 70 POE Silanization stable 10 days [110]

* Abbreviations: SSM: Surfactant/organic surface modification. NIM: Nanoscale ionic materials. SI-ATRP:
Surface-induced atomic transfer radical polymerization.

The property of nanoparticles, the dispersion method, and resulting suspension are listed
in Table 1. The stable time was retrieved from either visual inspection or light scattering results.
Each time represents the duration of nanoparticles which stay dispersed in a lubricating oil without
aggregation and sedimentation. If there was no stabilizing time given or no empirical proof of
long-term stabilization, the stabilization time was marked as “Claimed”.

One conclusion can be immediately deduced from Table 1 that all well-dispersed nanoparticle
additives are either formulated with dispersants or with surface modification. Without a proper
dispersion method, the aggregation always occurs, no matter the material or shape of nanoparticles.

2.1. Formulation with Dispersant

In early research (before 2005), the common method used to study the effects of nanoparticles
in lubricant was to disperse these nanoparticles using dispersants [47,56,64,68,79,102,105].
The dispersants used including Aliquat 336 [68], Estisol 242 [12], oleic acid [12], sorbitol
monostearate [47,105], and several others. These dispersants were mixed with the nanoparticles
and the lubricant oil to create a stable dispersion. In some cases, multiple types of dispersants were
used simultaneously [12].

The mechanism of dispersant-stabilizing nanoparticles was through absorption on the surface
of the nanoparticle. Those dispersants were amphiphilic molecules which had both lipophobic and
lipophilic functional groups. The lipophobic part can absorb on the surface of the nanoparticle, forming
an organic layer [111]. This organic layer can sterically stabilize the nanoparticles. In some cases,
the addition of dispersant lowered the effectiveness of nanoparticles [112].

Among the studies where only dispersant was used, none achieved long-time stability. The stable
time was either untested or less than a few weeks. The one which reached long-time stability (5 months)
used a nanoparticle with silane surface modification [12].

Furthermore, the dispersion agent also changed the formulation of lubricant oil. The mechanism of
dispersant-stabilizing nanoparticles was absorption on the surface of the nanoparticles. This absorption
could occur on the surface of the tribological pairs where lubricant was used. In addition, the amount
of dispersant added was more than the amount of nanoparticles in this method [56,68,105,108], and the
property of nanolubricant was altered. In the case of IF-WS2 nanoparticles, the addition of dispersant
lowered its effectiveness [112].

Recently, the synergetic friction modification effects between ionic liquid and nanoparticle
additives have been investigated [38,66,80]. It is possible that the addition of ionic liquid improves the
dispersion stability of nanolubricants. One report, in particular, showed a long stable time [38].

The drawbacks mentioned above rendered formulation with dispersant an unideal method to
disperse nanoparticles in lubricant oil. It was clear that surface modification methods were needed to
form a stable nanoparticle dispersion.
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2.2. Surface Modification

In recent years, methods of surface modification of nanoparticles as lubricant additives have
shown visible improvements. Figure 1 shows the accumulated number of papers on different methods
plotted against the publication year. This section discusses about methods, specifically the processes,
their effectiveness and corresponding processes in achieving stable suspension.
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2.2.1. Surfactant

Surfactant modification was one of the most widely used methods for nanoparticle dispersion
(Table 1). Instead of adding surfactants to the lubricant oil as a dispersant, this method attaches
surfactant molecules onto the surface of the nanoparticle. The formulation of lubricant oil was not
changed to suit the need of nanoparticle dispersion.

The method of surfactant modification uses the surfactant with functional groups that can react
with nanoparticle surfaces. Some examples of these surfactants are shown in Figure 2 [113]. Each of
these surfactants has an active group and a long alkyl chain containing about 15 carbon atoms.
These surfactants were used to directly modify nanoparticles’ surfaces. This was performed by
mixing nanoparticles, solvent, and surfactant at an elevated temperature for a certain amount of
time. Nanoparticles need to be well dispersed in the solvent, or the surface modification process
can be impeded [114]. Different nanoparticles and surfactants have different reaction mechanisms.
For example, the carboxyl group in carboxylic acid can react with the hydroxyl group on the oxide
nanoparticles through esterification [34,81,115,116], while cationic surfactants can ionically bond to
the surface of the nanoparticles [10,53,62,67,117].

Treating the metal oxide nanoparticle surface first with acid or oxidant can enhance the binding
between nanoparticles and surfactant, thus, enhancing the dispersibility of nanoparticles [114,118].
Without these treatments, some of the surfactant do not chemically bond to the surface of the
nanoparticle [115,116], and can be dissolved into the lubricant oil when the solubility of the
surfactant in the oil is high [116]. However, these treatments cannot effectively modify metal sulfide
nanoparticles [57]. The metal sulfide nanoparticles have the best performance as a friction modifying
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additive [5]. Due to the lack of the hydroxyl group, however, modifying metal sulfide nanoparticles’
surfaces with amine or carboxylic acids was difficult. Therefore, the sulfide nanoparticles modified
with surfactant resulted in dispersions with low stability [57].
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To solve this problem, another modification method was developed. Instead of modifying
nanoparticles, this method uses a surfactant to modify the precursor of nanoparticles first, which allows
synthesizing of nanoparticles with a pre-attached surfactant. The tungsten sulfide nanoparticles
synthesized using this method achieved remarkable dispersion stability in both room temperature
and low temperature conditions [24]. This method can also synthesize other types of metal sulfide.
However, their dispersion stability in lubricant and their tribological impact is still unknown [119].

The dispersion stability of surfactant-modified nanoparticles was also closely linked to their size.
Nanoparticles under 10 nm in size show better stability of dispersion by using the surfactant surface
modification method [10,24,53,55,57,74]. This result can be explained by the steric stabilization theory
discussed in the next chapter.

2.2.2. Silanization

The surface silanization method is almost exclusively applicable to metal oxides and
metal nanoparticles with surface oxidations. This method uses alkoxysilanes to modify the
nanoparticle surface. Figure 3 presents a few examples of alkoxysilanes used to modify
nanoparticles [10,16,19,21,40,41,110,113]. Similar to surfactants, alkoxysilane molecules have
a functional group capable of reacting with nanoparticle surfaces (Si-CH3), and a functional group that
can stabilize the nanoparticles in oil. The surface silanization process can graft not just alkyl functional
groups but also other functional groups like the amino group or the epoxide group.

Typical treatment of TiO2 or SiO2 nanoparticles was mixing the alkoxysilanes and nanoparticles
in a basic solvent at an elevated temperature [10,16,19,21,40,41,110]. Two chemical processes would
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occur during the surface silanization process: formation of Si-O-Metal bonds on a nanoparticle’s
surface through hydrolysis and condensation of silane alkoxy groups, and oligomerization between
two alkoxysilane molecules [120–122]. These two competing chemical processes created a structure
on the surface layer which had a complex conformation (Figure 4). Studies surveyed in Table 1
all used silanes with three silanes functional group and long reaction times under aqueous solvent.
Under this condition, a thick interlinking layer formed [121]. However, even with this thick layer,
the nanoparticles functionalized with the amino group still had poor stability compared to the
nanoparticles functionalized with alkyl chains in lubricant oil [41].

For nanoparticles which have little or no surface hydroxyl group, it was difficult to directly use
silanes to perform surface modification. The IF-WS2 treated with ODTS (octadecyltrichlorosilane) could
only be stabilized in liquid paraffin for less than one week [23], but similar sized silica nanoparticles
with similar treatment could be stable for more than 4 months [41]. Surface oxidation [110,118] or
coating the surface of nanoparticle with silica [123] are alternative methods.

Even though nanoparticles with long alkyl chains grafted on its surface could form more
stable dispersion in lubricant oil, the alkoxysilanes with long alkyl chains were not used by
majority of the research reviewed. This was likely because those types of alkoxysilanes were more
expensive compared to amino silanes, such as APTEOS ((3-Aminopropyl)triethoxysilane) or DETAS
(N1-(3-Trimethoxysilylpropyl)diethylenetriamine).
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A two-step functionalization method was developed to solve this problem. The first step
of the modification was the grafting of alkoxysilanes with an amino group. APTEOS [17,124] or
DETAS [16,40] was used in this process. The second step was to bond a carboxylic acid surfactant,
such as lauric acid [17] or stearic acid [16,40,124], to the amino group. This method grafted long alkyl
chains on the silica surface without the use of expensive ODTS (octadecyltrichlorosilane). This method
can result in a thicker grafted layer with a preferred chemical structure.

In contrast to the surfactant surface modification, all the nanoparticles which used surface
silanization were larger than 10 nm in size. The large curvature of small nanoparticles could limit the
reaction between alkoxysilane and a hydroxyl group, reducing the grafting density [125]. Additionally,
almost all the papers reviewed used an excessive amount of silane in the surface modification process.
However, this practice could cause irreversible aggregation of nanoparticles in the modification process
when small nanoparticles were used [126].

2.3. Other Methods

Some recent work reported the adaption of the silane modification method to develop
nanolubricants based on surface-induced-atom-transfer-radical polymerization (SI-ATRP) and
nanoscale ionic material (NIM).

The SI-ATRP method can graft a long chain polymer on the surface of nanoparticles [11,14,127,128].
Instead of grafting long chain molecules on the nanoparticle surface, this method grafted silanes with
initiator groups. This initiator was then used to react with monomers, forming a polymer chain on
the surface [11,14]. This method could graft polymers with more than 100 C–C bonds [11], an order
of magnitude higher compared to the results from the surfactant modification or surface silanization
methods. It also achieved remarkable dispersion stability. The TiO2 and SiO2 particle treated with this
method could stay stable over a large temperature range (−20 ◦C to 140 ◦C) for a long period of time
(>2 months) [11,14].

The NIM method employed a two-step surface modification process. For the first step of the
surface modification, an ionic corona was tethered on nanoparticles by surface silanization or ion
exchange. For the second step, an organic counter-ion was linked to the surface [13,129]. This formed
a liquid-like material which could disperse into both polar and non-polar solvents [83].

Essentially, those two methods further altered the nanoparticles’ physical and chemical properties
forming a new type of nanomaterials.

2.4. Evaluation

The methods discussed have different effectiveness and reliability. In Figure 5 the reported
minimum stabilizing time is plotted. In the figure, each marker represents one report on the stable
time of one type of nanoparticle. According to the aggregated data, modifying the nanoparticle surface
is undeniably more effective compared to dispersing nanoparticles directly or formulating the oil
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with dispersant. Among the surface modification methods, the surface silanization method appears
more reliable.

In comparison to the types of materials, oxides appear to have the longest stable time. Due to
the abundance of the hydroxyl group on their surface, oxide is well suited to be modified by both
surfactant and silane [115,125,130]. In existing reports, there was only one non-oxide nanoparticle
additive suspended for more than 1 month [24]. This was made possible by adding surfactant to modify
the precursors of WS2 nanoparticles with oleyamin. This may suggest that the difficulty in forming
a stable dispersion with non-oxide particles can be solved with suitable surface modification methods.
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3. Theory

3.1. Some Basics

The dispersion of nanoparticles can be explained by colloidal theories [131]. The dispersed
particles studied in colloidal science ranged between 1 nm and 1000 nm in size, a range which overlaps
the size of nanoparticles.

In colloidal theories, the tendency in aggregation of nanoparticles was determined by two factors:
the thermal agitation particles received from the solvent and the interaction between nanoparticles.
The thermal agitation in the solvent has an energy of KbT, where Kb is Boltzmann constant and T is
temperature. This thermal agitation was shown to push the nanoparticles to move randomly in the
solvent, causing the famous Brownian motion [132]. The interaction between particles resulted in the
attractive and repulsive forces between two particles [132]. Stable dispersion formed when the thermal
agitation overcame the attractive force between particles.

The DLVO (Derjaguin and Landau 1941, Verwey and Overbeek 1948) theory has been widely
accepted to explain the colloidal stability of particles. It explained the dispersion stabilization through
attractive van der Waals forces and repulsive screened electrostatic forces [132]. The van der Waals
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force originate from the polarization of particles. These polarized particles act as electric dipoles
which attract each other and aggregate if no repulsive force exists. This tendency of aggregation is
opposed by the electrostatic force between the particles. Although this force is weak in a non-polar
solvent, it is enhanced through ion screening process in polar solvent [133,134]. However, the polarity
of lubricants renders electrostatic stabilization difficult in lubricant oil. In the context of colloidal
dispersion, the dielectric constant (ε) can be used to measure polarity. In organic media, with ε ≤ 5 the
electrostatic interaction is weak even when nanoparticles have surface charge [133,135]. Most lubricants’
dielectric constant are around 2.5 [136], far lower than the dielectric constants of water or other polar
solvents. Thus, the surface charge of nanoparticles cannot improve dispersion in the lubricant oil.
In some of the surveyed publications, ζ-potential (surface potential) is characterized and used to reflect
the dispersion stability [40–42]. However, it is incorrect for proving dispersion stability using this
characterization because surface potential contributes little to the particles’ interactions in lubricant oil.

Another widely adapted theory is “steric stabilization” [137–139]. This theory states that a grafted
particle generates a repulsive force when another particle approaches it. With sufficient repulsive force
acting against the van der Waals potential, a balanced state is possible resulting stable suspension.
In the following, further discussion about this theory is carried out.

3.2. Steric Stabilization

Steric stabilization is established by the balance between two forces: the van der Waals attractive
force and the elastic steric force [137–140]. Although van der Waals force is complex in nature,
a simplified form by Hamaker was used when analyzing colloidal systems [141]. Assuming the
size of the nanoparticles are small compared with the average distance between them, we use London
van der Waals potential [141]:

Vvdw(z, R) = −A
6

(
2R2

z2 − R2 +
2R2

z2 + ln
(

z2 − 4R2

z2

))
(1)

Here z is the distance between two particles’ centers, R is the radius of the particle and A is the
effective Hamaker constant. The effective Hamaker constant can be approximated by the Hamaker
constant of the particles and the medium [132]:

A =
(√

Aparticle −
√

Amedium

)
(2)

The nanoparticles have a Hamaker constant of 10−20 − 10−19 J [142] and the organic media has
a Hamaker constant normally about 10−20 J [143–145]. For example, the Hamaker constant of Silica in
vacuum is 6.35× 10−20 J [142]. Compared to inorganic compound, the metals have a larger Hamaker
constant 22× 10−20J [146]. Their Hamaker constants also increases with decrease in size [147,148].
The Hamaker constant of a 5 nm sized Ag nanoparticle is 34× 10−20J [148], larger than that of bulk
material. Thus, an effective Hamaker constant of 10−20 − 10−19J is used to analyze the van der Waals
attraction in lubricant oil.

The repulsive force originates from the deformation of the absorbed or grafted surface layer.
When two particles with surface grafted layers approach, the surface layer deforms, and the
conformation of the grafted molecule changes (Figure 6). This leads to the change of the free energy
and the repulsive force [139]: f = d∆F

dH , here, f is the repulsive force, ∆F is the free energy of the surface
layer, and H is the height of this polymer layer. In small deformations, the elastic potential between
two approaching particles are (modified from Reference [139] Equation (54)):

∆Vsteric
∼=

d
2

(
H0 − H/2

r

)
∆F(H/2) when H < 2H0 (3)



Lubricants 2019, 7, 7 11 of 21

Here, d is the density of grafted chains, H0 is the thickness of the grafted layer, r is particle radius,
∆F is the free energy of one molecule, and H is the distance between particles. A potential well appears
when van der Waals potential and steric potential are combined (Figure 6a). If the thermal agitation is
larger than this potential well, a stable dispersion can be expected.

A qualitive analysis on Equation (3) leads to the major factor influencing steric stability: the size
of the particles, the thickness of the surface layer, the density of grafted chains, and the free energy of
the grafted chains. These factors are discussed in following sections.

Lubricants 2018, 6, x FOR PEER REVIEW  11 of 22 

in vacuum is 6.35 × 10−20 J  [142]. Compared to inorganic compound, the metals have a larger 
Hamaker constant 22 × 10−20J [146]. Their Hamaker constants also increases with decrease in size 
[147,148]. The Hamaker constant of a 5 nm sized Ag nanoparticle is 34 × 10−20J [148], larger than that 
of bulk material. Thus, an effective Hamaker constant of 10−20 − 10−19J is used to analyze the van 
der Waals attraction in lubricant oil. 

The repulsive force originates from the deformation of the absorbed or grafted surface layer. 
When two particles with surface grafted layers approach, the surface layer deforms, and the 
conformation of the grafted molecule changes (Figure 6). This leads to the change of the free energy 
and the repulsive force [139]: 𝑓𝑓 = 𝑑𝑑Δ𝐹𝐹

𝑑𝑑𝑑𝑑
, here, 𝑓𝑓 is the repulsive force, Δ𝐹𝐹 is the free energy of the surface 

layer, and 𝐻𝐻 is the height of this polymer layer. In small deformations, the elastic potential between 
two approaching particles are (modified from Reference [139] Equation (54)):  

Δ𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≅
𝑑𝑑
2

 �
𝐻𝐻0 − 𝐻𝐻/2

𝑟𝑟
� Δ𝐹𝐹(𝐻𝐻/2)   𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝐻𝐻 < 2𝐻𝐻0 (3) 

Here, 𝑑𝑑  is the density of grafted chains, 𝐻𝐻0  is the thickness of the grafted layer, 𝑟𝑟 is particle 
radius, Δ𝐹𝐹 is the free energy of one molecule, and H is the distance between particles. A potential 
well appears when van der Waals potential and steric potential are combined (Figure 6a). If the 
thermal agitation is larger than this potential well, a stable dispersion can be expected.  

A qualitive analysis on Equation (3) leads to the major factor influencing steric stability: the size 
of the particles, the thickness of the surface layer, the density of grafted chains, and the free energy 
of the grafted chains. These factors are discussed in following sections.  

 
(a) 

 
(b) 

Figure 6. The model of steric repulsion, (a) The van der Waals potential, elastic steric potential, and the
combination of the two. Value plotted based on Equations (1) and (3). (b) The figure diagrammatically
represents the afore mentioned.

3.3. Size Effects

The theoretical analysis from the previous chapter indicates that when the same surface
modification is used, a reduction in the size of nanoparticles will decrease the attractive van der
Waals force and increase the repulsive steric force. The result from the surfactant surface modification
best illustrates this size effect. In Figure 7, the stable time of seven different research articles using
a similar surfactant surface modification method is plotted against the size of the nanoparticle used in
their research. It appears that the nanoparticles with a size smaller than 10 nm have better stability
compared to the nanoparticles with a size larger than 10 nm.
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buttom, left to right: [24], [10,43], [55], [74], [57], [53]) using surfactant surface modification.

A simple estimation based on colloidal theory can explain this phenomenon. The potential well
of the steric stabilization is correlated to the size of interacting particles. There is no elastic steric force
beyond the thickness of the surface polymer layer. Thus, one minimum of the potential energy is
around the thickness of the surface layer. The value of this minimum is smaller than the value of van
der Waals potential. Only considering these two factors (surface layer thickness and van der Waals
potential), an upper limit of the nanoparticle that can be stabilized by a surface layer of thickness H0.
The estimated upper limit of a nanoparticle is the root of R in:

Vvdw(H0, R)− kbT = 0 (4)

The surface layer thickness H0 of surface modification by surfactant is about 3 nm [149,150].
The estimated upper limit is plotted in Figure 8. This estimation is in agreement with the literature
surveyed in this paper (Table 1).Lubricants 2018, 6, x FOR PEER REVIEW  13 of 22 
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However, according to Figure 7, the nanoparticles with a radius less than 200 nm still have poor
stability. Both the van der Waals and the steric forces need to be considered to explain this [139].
In Figure 9, the potential of particle–particle interaction is plotted against the distance between two
particles. All three figures are based on the nanoparticles with the same parameters except the particle
radius. The steric potential was calculated using models proposed in Reference [109]. In this figure,
the potential is normalized by the free energy of the surface molecule layer, and distance is normalized
by the thickness of the grafted layer under θ conditions. The diameter of the nanoparticle was the
only different parameter in those three calculations. With the increase of nanoparticle size, the total
repulsive force decreased until it totally vanished.
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3.4. Grafted Surface Layers

The properties of the grafted layer are believed to influence the ability of nanoparticles to
disperse in organic media [40,41,116,149]. For the same nanoparticle, a change in the grafting density,
the thickness of the surface grafted layer or the free energy can alter the strength of the repulsive force
in Equation (4).
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The effectiveness of the surface modification method requires a sufficient grafting density. In the
case of surfactant surface modification, an increase in the concentration of surfactant used has a positive
impact on the dispersion stability [115,116,149]. When the nanoparticle reacted with the surfactant in
the solvent, if the nanoparticle aggregated and does not fully react with the surfactant, its re-dispersity
is impeded [114]. This is the reason why surface silanization is suitable for nanoparticles lager than
50 nm size. The high curvature of nanoparticles smaller than 30 nm leads to poor grafting density
of silane [125]. This poor grafting density causes the low steric repulsion force, and the dispersion
stability is reduced.

The chemical composition of the interface between nanoparticles and grafted layers can
influence the grafting density and the stability of nanolubricants. Nanoparticles modified with
silane provide overall better dispersion [16,19,21,40,41] compared with nanoparticles modified with
surfactant [10,53,57,67,74,106]. Both silane and surfactant can react with the hydroxyl group to form
a bond with the nanoparticle surface [115,116,149,151,152]. However, compared with surfactant, silane
can fully react with the hydroxyl group on the surface of nanoparticles. In the case of silica nanoparticle
treatment, the research using an oleic acid surface modification of the hydroxyl group did not fully
react even with the excess amount of reactant [115]. In contrast, the silica nanoparticles modified
with silane coupling agent have almost no hydroxyl group left after the reaction [151]. Moreover,
the conformation of the grafted layer changes when the surface density increases [153]. The grafted
layer had a “mushroom-like” conformation when the grafting is low but changes to “brush-like” with
a high grafting density [153]. This results in a higher ∆F(H) value in Equation (4), increasing the steric
repulsive force.

Another factor affecting suspension is the chemical composition of the grafted molecule chain.
Steric stabilization is far more effective when the dispersant is a good solvent of the molecules grafted
on the nanoparticle [138,139]. A good solvent can also expand the grafted layer beyond the θ-condition,
resulting in a thicker layer with a higher interaction force [139]. The nanoparticles grafted with the
alkyl group show better stability compared to nanoparticles grafted with the amino, phenyl or carboxyl
groups [16,40]. This is due to the high-solubility of the alkyl group in the hydrocarbon lubricant [116].
Even changing the property of the end group of the grafted layer can alter the nanoparticles’ dispersion
ability. Fe3O4 modified with oleic acid can disperse well in a non-polar solvent, but not in a polar
solvent. Changing the end group of oleic acid to oleate reverses the dispersion behavior, resulting in
a good dispersion in polar solvent instead of non-polar solvent [149].

According to Equation (3) and previous analysis of particle sizes, the thick surface layer is
beneficial to the stability of nanoparticles (Figure 8). The study on TiO2 with amine surfactant found
that increasing the number of carbon atoms in grafted surfactant from 3 to 12 increaseds the dispersity
in a non-polar solvent [114]. However, both the surfactant surface modification method and the surface
modification method result in a surface layer with similar thickness [122,149]. The only method which
has significantly thicker surface layer is the SI-ATRP method. This method can graft the longest chain
on the surface of nanoparticles [11,14]. This explains the high stability of nanoparticles modified by
this method. Even in temperatures lower than −20 Celsius, the nanoparticle dispersion can stay stable
for more than 2 months [11,14].

4. Conclusions

In this review, the approach and theory of nanoparticle dispersion in lubricant oils were
critically analyzed. Dispersion of nanoparticles was studied using colloidal theory. The influence
of material, particle size, and surface modification on dispersion were examined. The findings are
summarized below.

Surface modification is essential to disperse nanoparticles into a lubricating oil. Theoretical
analysis indicated that steric stabilization played important roles in oils, more so than other mechanisms
due to the non-polar nature. Steric stabilization is promoted by formulating oil with a dispersant
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or particle modification to form an organic surface layer. However, the use of dispersant is limited
because it hinders the friction modification of nanoparticles.

To obtain a stable suspension, it is essential for the surface of nanoparticles to have long alkyl
chains with sufficient grafting density and thickness-to-size ratio. For particles with sizes under
50 nm, using surfactants to modify their surfaces results in desirable suspension. For oxide particles
larger than 10 nm, surface silanization has a clear advantage because of its higher grafting density
and versatility.
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