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Abstract: This 2-year study (2013–2014) assessed the efficacy of an odor-baited “trap bush” approach
to aggregate plum curculio, Conotrachelus nenuphar, adult injury, i.e., number of oviposition-scared
fruit, in four commercial highbush blueberry farms in New Jersey (USA). In each farm, we compared
fruit injury in bushes baited with grandisoic acid and benzaldehyde along the perimeter of trap-bush
plots versus unbaited bushes in control plots. We also measured the amount of fruit injury in
neighboring bushes (i.e., spillover effect) and in the plots’ interior. In both years, the amount of fruit
injury by C. nenuphar adults was greater on and near odor-baited bushes in trap-bush plots compared
with those on and near unbaited bushes in control plots, indicative of aggregation. Injury in unbaited
bushes neighboring trap bushes was often greater than unbaited bushes in control plots, providing
some evidence for a spillover effect. However, no difference in fruit injury was found between
interior trap-bush and control plots. Therefore, odor-baited trap bushes can be used in blueberries to
manipulate C. nenuphar foraging behavior, i.e., aggregate adults, without compromising injury in
field interiors. Under this approach, insecticides could then be targeted at only a few (perimeter-row)
bushes within fields rather than entire fields.

Keywords: Conotrachelus nenuphar; Vaccinium corymbosum; weevil; semiochemicals;
aggregation pheromone

1. Introduction

Native to North America, the plum curculio, Conotrachelus nenuphar (Herbst) (Coleoptera:
Curculionidae), is a key pest of stone and pome fruits (e.g., apples, peaches, nectarines, and cherries) and
blueberries in the eastern United States [1–4]. Damage from this pest can reach nearly 100% annually in
apples if left unchecked [5]. Conventional growers have relied upon broad-spectrum insecticides like
organophosphates to provide commercially acceptable levels of control [6–8]. In New Jersey (USA),
C. nenuphar is considered one of the most important fruit-feeding pests of blueberries [9]. Adults move
into blueberry fields in early spring (mid-April through May) from nearby overwintering sites and
their activity peaks during bloom [9], when bees are active. This limits the use of conventional control
tactics until bee removal and makes early and mid-season varieties more susceptible to oviposition
injury [10]. Therefore, if needed based on numbers of adults on bushes and injured fruit, a single
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post-bloom insecticide application is typically directed at the adults of this pest [10,11]. A single egg is
laid on young, green blueberry fruit, larvae develop inside the fruit, and then exit the fruit to pupate in
the soil [9]. The next-generation adults emerge in July–August and soon after move out of the fields to
overwinter in the surrounding wooded habitats [9].

In blueberries, the use of broad-spectrum insecticides, i.e., organophosphates, is being reduced as
a result of the food quality protection act (FQPA) and due to maximum residue limits (MRLs) set for
exporting fruit [12]. Growers are, to varying degrees, reducing the amount of these insecticides applied
and/or replacing them with newer reduced-risk materials that, while effective, are more costly [13].
For example, two reduced-risk insecticides, novaluron (Rimon®; Makhteshim Agan of North America,
Inc., Raleigh, NC, USA) and indoxacarb (Avaunt®; DuPont, Wilmington, DE, USA), have recently
been registered for pre-bloom and post-bloom control of C. nenuphar, respectively, in blueberries [11].
More precise management strategies based on behavior manipulation of C. nenuphar can be critical for
successful implementation of a narrow-spectrum, reduced-spray program as opposed to conventional,
whole-field insecticide applications.

Currently, in blueberries, C. nenuphar adults are monitored using beat-sheet sampling [9]. However,
adults are cryptically colored and active mainly at night [4,14–16], which makes it difficult to monitor
them using this method. Recently, Hernandez-Cumplido et al. [17] showed that pyramid traps
baited with a synergistic two-component lure, comprised of the synthetic host plant-derived volatile
benzaldehyde [18] and the synthetic male-produced aggregation pheromone grandisoic acid [19],
are effective for monitoring C. nenuphar adults in blueberries. In apple orchards, an effective monitoring
approach has been the “trap-tree” method [20–22], which is based on baiting selected perimeter row
apple tree canopies with the synergistic lure composed of benzaldehyde and grandisoic acid [23].
This method results in aggregation of C. nenuphar adults within the canopies of odor-baited trees.
These trap trees are subsequently monitored for signs of fresh oviposition injury, thereby allowing
growers to determine the need for, and timing of, insecticide applications [20,21]. The effectiveness of
this approach for monitoring oviposition activity within trap trees as a biological trigger for insecticide
applications has been validated in seven northeastern states [22]. Based on these studies, the odor-baited
trap-tree approach was also applied as a management tool for C. nenuphar in apples [24]. In this case,
the trap-tree approach is used to aggregate C. nenuphar adults in specific baited perimeter-row trees.
Then, insecticides are applied only to those baited trap-trees located on the periphery of apple orchards,
rather than the entire perimeter row or the entire orchard (after petal fall) [24]. Prior to our research,
however, the trap-tree approach had never been tested in fruit crops other than apples.

Studies were conducted in 2013 and 2014 in commercial highbush blueberry, Vaccinium corymbosum
L., farms in New Jersey to test the trap-tree (referred to here as “trap bush”) approach for aggregating
C. nenuphar oviposition activity. We hypothesized that this approach will result in aggregated
oviposition injury in and around odor-baited perimeter blueberry bushes, resulting in reduced fruit
injury in field interiors. Specifically, we addressed whether the presence of synthetic baits in blueberry
bushes results in: (1) significant aggregation of fruit injury in these specific bushes compared with
unbaited bushes; (2) greater fruit injury in neighboring bushes compared with unbaited bushes as a
result of a spillover effect [24]; and (3) lower C. nenuphar fruit injury in baited field interiors compared
with unbaited fields.

2. Materials and Methods

2.1. Sites and Study Design

The study was conducted in 2013 and 2014 in eight experimental plots across four commercial
blueberry farms (two paired plots per farm) located in Hammonton, New Jersey (Farm A: 39◦33′23.48′′

N, 74◦46′35.64′′ W; Farm B: 39◦32′45.06′′ N, 74◦47′19.47”W; Farm C: 39◦35′37.50′′ N, 74◦46′21.21′′ W;
Farm D: 39◦38′35.37′′ N, 74◦40′22.14′′ W). These plots had the early blueberry variety “Duke” and
were chosen based on the previous history of C. nenuphar infestation. Each plot was ~2.5 ha, with one
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of the perimeter rows bordering a wooded edge. Both plots within each farm were managed in the
same manner, and decisions regarding insecticides followed recommendations by the Commercial
Blueberry Pest Control Recommendations for New Jersey [11]. Within each farm, one of the plots was
randomly assigned as the “trap-bush” plot; while the other plot was the “control.” In the trap-bush
plots, nine perimeter row bushes (three bushes in each of the three perimeter rows of the plot not shared
with the control plot; Figure 1A) were baited with one dispenser of benzaldehyde and one dispenser of
grandisoic acid. A single benzaldehyde was used because of the smaller canopy size of blueberries
compared to apples (in apple, four benzaldehyde dispensers are used per trap tree; e.g., [22,24]).
The benzaldehyde dispenser consisted of 15-mL capped polyethylene vials (PGC Scientific Corp.,
Gaithersburg, MD, USA) containing 8 mL of a 9:1 solution of benzaldehyde: 1,2,4-trichlorobenzene
(Sigma-Aldrich, St. Louis, MO, USA), as a stabilizing agent [25], for a release rate of ~10 mg/d [23].
Each vial was suspended inside an inverted colored (red) plastic drinking Solo® cup (266 mL; Solo Cup
Co., Urbana, IL, USA) to protect the stability of benzaldehyde from the potential negative impact of UV
light. The pheromone dispenser contained 35 mg of grandisoic acid (ChemTica, San Jose, Costa Rica),
with a release rate of ~0.14 mg/d [26]. The benzaldehyde dispensers were deployed at the center of each
bush and left for the entire season, while the pheromone dispenser was also deployed near the center
of the bush but replaced once after ~3 weeks. Within trap-bush plots, the first trap bush was deployed
~25 m from the end of the row, and trap bushes were separated by ~50 m within the row (Figure 1A).
Bushes in control plots did not receive either benzaldehyde or pheromone dispensers. All trap-bush
treatment plots were established during the 1st week of May, which coincided with mid-bloom and
C. nenuphar adult peak activity in blueberries [17]. The same farms and plots were used in both years.

Figure 1. Layout of paired odor-baited trap-bush and unbaited (control) plots in commercial highbush
blueberry farms (A). Sampling regimes used to compare fruit injury in trap bush and control plots.
Each plot was ~2.5 ha.

2.2. Fruit Evaluation

We collected fruit samples to address: (1) whether trap bushes result in significant aggregation of
fruit injury in the specific trap bushes compared with control bushes, (2) whether fruit injury is greater
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in bushes neighboring trap bushes compared with control bushes (i.e., spillover effect), and (3) whether
injury in plot interiors differs between trap-bush and control plots. For #s 1 and 2, the total number of
fruit with oviposition scars was recorded from a sample of six random clusters per bush ( ~40 berries
per bush) from odor-baited trap bushes in the trap-bush plots and from unbaited bushes in the control
plots, and from six peripherally located trees surrounding each trap bush and control bush (Figure 1B),
for a total of approximately 2500 fruit per plot. Three of the sampled peripheral bushes were next to
the trap bush (“near” neighbors; i.e., 1.5–3 m away from the trap bush), while the other three were
two bush-lenghts away (“far” neighbors; i.e., 4-6 m away from the trap bush) (Figure 1B). In both
years, fruit samples were taken in two dates: the 1st (pre-spray) samples were taken at early fruit set
and before any insecticide application; the 2nd (post-spray) samples were taken 10–14 days later and
after a post-bloom insecticide application of phosmet (Imidan®; Gowan Co., Yuma, AZ, USA). In 2013,
fruit injury evaluations were made on 21–23 May (pre-spray samples) and on 4–6 June (post-spray
samples); while in 2014, fruit injury evaluations were made on 23–27 May (pre-spray samples) and on
3–6 June (post-spray samples). Prior to bloom, all plots were treated with novaluron (Rimon®) on
17–18 April. All plots were also treated with phosmet post-bloom on 28–30 May, after honeybee hives
had been removed from the fields. Phosmet has both curative, i.e., reduces larval emergence rates,
and adulticidal activity, while novaluron has anti-ovipositional/ovicidal activity [27,28]. Timing of the
post-bloom insecticide application was based on injury data obtained from fruit samples across both
plots within farms.

Additional fruit samples were taken to determine if aggregation of injury in trap bushes results
in lower fruit injury in the interiors of trap-bush plots compared with the interiors of control plots.
For this, approx. 360 berries were sampled from nine interior bushes (Figure 1A) in the trap-bush and
control plots. Therefore, a combined total of ~5760 berries was taken from trap-bush and control plots
(40 berries × 18 bushes × 4 plots) for each of the two sampling dates and the two years.

2.3. Data Analyses

Prior to analyses, the proportion of scarred fruit per bush was calculated. Data were analyzed
separately for each of the two years (2013 and 2014) and for each of the two fruit sampling dates
(pre- and post-sprays). Data were analyzed separately for each sampling date within year because,
although not significant, the mean proportion of oviposition-scarred fruit was 32% higher before than
after the post-bloom insecticide sprays (pre-spray: 2.49% ± 0.38% injured fruit; post-spray: 1.88% ±
0.28% injured fruit; Welch t-test244.94 = −1.33, p = 0.186). We also combined data from all neighboring
bushes prior to analysis because only in one out of the four sampling dates was the amount of injured
fruit significantly higher in neighboring bushes “near” the trap bushes than in neighboring bushes
“far” from the trap bushes (mean ± SE percent of injured fruit in “near” and “far” neighbors for: 2013
pre-spray sample = 3.21 ± 0.34 and 2.41 ± 0.32, respectively (Welch t-test411.86 = 1.71, p = 0.044); 2013
post-spray sample = 1.28 ± 0.17 and 1.1 ± 0.15 (Welch t-test412.95 = 0.78, p = 0.218); 2014 pre-spray
sample = 0.94 ± 0.14 and 0.79 ± 0.14 (Welch t-test419.61 = 0.78, p = 0.217); 2014 post-spray sample = 0.96
± 0.16 and 0.98 ± 0.15 (Welch t-test419.12 = −0.08, p = 0.534).

First, we used Generalized Linear Models (GLMs) to determine the effects of baiting a bush with
our synergistic lure and its proximity to the forest on the proportion of scarred fruit. Our full models
included the independent variables: “Treatment” (trap bush versus control), “Location” (forest edge
versus interior edge), “Farm”, and the 2- and 3-way interactions among them. “Farm” was included as
a random effect. Second, to specifically address our hypotheses that the trap bush approach results in
aggregated oviposition injury in (Hypothesis 1) and around (Hypothesis 2) baited blueberry bushes,
which results in reduced fruit injury in field interiors (Hypothesis 3), we used Welch’s two-sample t-tests
to compare the following: (1) whether the mean proportion of scarred fruit in trap bushes differs from
the mean proportion of scarred fruit in control bushes (Hypothesis 1); (2) whether the mean proportion
of scarred fruit in bushes neighboring trap bushes differs from the mean proportion of scarred fruit
in bushes neighboring control bushes (as further evidence for a spillover effect) (Hypothesis 2a);
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(3) whether the mean proportion of scarred fruit in trap bushes differs from the mean proportion
of scarred fruit in bushes neighboring trap bushes in trap bush plots (as evidence for an spillover
effect) (Hypothesis 2b). For comparison, we also determined if the mean proportion of scarred fruit in
unbaited bushes differs from the mean proportion of scarred fruit in bushes neighboring unbaited
bushes in control plots; (4) whether the mean proportion of scarred fruit in interior bushes from
trap-tree plots differs from the mean proportion of scarred fruit in interior bushes from control plots
(Hypothesis 3).

These comparisons were done separately for each sampling date in both years. We also used Welch
tests to test for differences in the levels of fruit injury between “near” and “far” bushes neighboring the
trap bushes. The Welch tests account for unequal variances. As data on the proportion of scarred fruit
per fruit were close to zero values, there was no need to use the arcsine square root transformation [29].
For clarity, data are shown as percentages (instead of proportions) in Results and Figures. All analyses
were performed in R software version 3.4.3 [30].

3. Results

Across all plots, the mean proportion of C. nenuphar oviposition-scarred fruit was three times
higher in 2013 than in 2014 (2013: 3.26% ± 0.38% (mean ± SE) injured fruit; 2014: 1.12% ± 0.23% injured
fruit; Welch t-test216.18 = 4.73, p < 0.001).

3.1. Does Fruit Injury Differ Between Trap and Control Bushes (Hypothesis 1)?

Baiting blueberry bushes with the combination of grandisoic acid and benzaldehyde had a
significant effect on the mean proportion of C. nenuphar oviposition-scarred fruit in 2013 (post-spray
sample) and 2014 (pre- and post-spray samples) (significant “Treatment” effect; Table 1). The level of
injured fruit was 2 and 4.5 times higher in trap bushes than in unbaited bushes in the 2013 (Welch
t-test63.67 = −1.82, p = 0.037) and 2014 (Welch t-test45.75 = −2.59, p = 0.006) post-spray samples,
respectively (Figure 2). In the 2014 pre-spray sample, injured fruit was only detected in trap bushes
and not in unbaited bushes (Welch t-test36 = −3.21, p = 0.001) (Figure 2).

Bushes along plot edges facing the forest also had more fruit injury than interior bushes in
the 2013 pre-spray sample, but not in any of the other sampling dates (significant “Location” effect;
Table 1). In 2013 (post-spray sample), there was a 3-way interaction between “Treatment,” “Location,”
and “Farm” (Table 1), indicating that the proportion of scarred fruit was higher in odor-baited bushes
but this effect was influenced by both the proximity to the forest and the farm.

Table 1. Statistical output for the main and interactive effects of baiting blueberry bushes with
the aggregation pheromone grandisoic acid and the hostplant odor benzaldehyde (Treatment),
their proximity to the forest (Location), and farm on the proportion of oviposition-scarred fruit
by Conotrachelus nenuphar adults.

Sampling
Year/Date 1 Variables 2 Df 3 F p 4

2013/pre-spray Treatment 1 0.58 0.451
Location 1 12.72 <0.001

Farm 3 2.18 0.101
Treatment × Location 1 0.92 0.342

Treatment × Farm 3 0.32 0.805
Location × Farm 3 0.46 0.714

Treatment × Location × Farm 3 1.11 0.352
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Table 1. Cont.

Sampling
Year/Date 1 Variables 2 Df 3 F p 4

2013/post-spray Treatment 1 4.19 0.046
Location 1 2.48 0.121

Farm 3 4.20 0.009
Treatment × Location 1 2.06 0.157

Treatment × Farm 3 0.29 0.832
Location × Farm 3 0.61 0.610

Treatment × Location × Farm 3 4.28 0.009

2014/pre-spray Treatment 1 8.45 0.005
Location 1 0.00 0.985

Farm 3 2.43 0.075
Treatment × Location 1 0.06 0.802

Treatment × Farm 3 1.54 0.216
Location × Farm 3 0.53 0.665

Treatment × Location × Farm 3 0.40 0.754

2014/post-spray Treatment 1 5.18 0.027
Location 1 0.33 0.569

Farm 3 0.36 0.779
Treatment × Location 1 0.48 0.492

Treatment × Farm 3 0.85 0.475
Location × Farm 3 0.79 0.506

Treatment × Location × Farm 3 0.49 0.694
1 Data were analyzed separately for each year (2013 and 2014) and sampling date (pre- and post-insecticide spray).
2 Treatment and location were treated as fixed factors, while the effect of farm was treated as a random factor.
3 Residuals df = 51. 4 Significant p values (p ≤ 0.05) are shown in bold.

Figure 2. Percent (mean± SE) of oviposition-scarred fruit by Conotrachelus nenuphar adults in odor-baited
trap bushes and unbaited bushes in trap-bush and control plots, respectively, in 2013 (A) and 2014
(B). Fruit injury was assessed before and after a post-bloom insecticide application. Asterisks indicate
significant differences according to Welch’s two-sample t-test (* = 0.01< p ≤ 0.05; ** = p ≤ 0.01); n.s. =

not significant (p > 0.05).
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3.2. Does Fruit Injury Differ Between Bushes Neighboring Trap Bushes and Those Neighboring Control Bushes
(Hypothesis 2a)?

Two analyses were conducted to address the question of a potential spillover effect, i.e., whether
trap bushes increase levels of fruit injury in neighboring unbaited bushes. First, we compared the mean
proportion of C. nenuphar-scarred fruit in bushes neighboring trap bushes with the mean proportion of
scarred fruit in bushes neighboring control bushes. Here, if the proportion of scarred fruit is greater in
baited neighbors than in unbaited neighbors then there is evidence for spillover. Although injured
fruit was 10% higher in bushes neighboring trap bushes than those neighboring control bushes in 2013,
this difference was not significant (pre-spray sample: Welch t-test342.5 = −0.57, p = 0.284; post-spray
sample: Welch t-test340.9 = −0.49, p = 0.309) (Figure 3A). We found, however, significant evidence of
spillover in 2014: injured fruit was 4.4 and 1.6 times higher in bushes neighboring trap bushes than
those neighboring control bushes in both sampling dates, pre-spray (Welch t-test291.5 = −5.36, p < 0.001)
and post-spray (Welch t-test346.05 = −2.06, p = 0.019), respectively (Figure 3B). These data indicate that
unbaited bushes neighboring baited bushes tended to be more susceptible to injury by C. nenuphar
than those near unbaited bushes, providing evidence for a potential spillover effect.

Figure 3. Percent (mean ± SE) of oviposition-scarred fruit by Conotrachelus nenuphar adults in unbaited
bushes neighboring odor-baited trap bushes in trap-bush plots and in unbaited bushes neighboring
unbaited bushes in control plots in 2013 (A) and 2014 (B). Fruit injury was assessed before and after
a post-bloom insecticide application. Asterisks indicate significant differences according to Welch’s
two-sample t-test (* = 0.01< p ≤ 0.05; ** = p ≤ 0.01); n.s. = not significant (p > 0.05).

3.3. Does Fruit Injury Differ Between Trap Bushes and Their Neighboring Bushes (Hypothesis 2b)?

We compared the mean proportion of C. nenuphar-scarred fruit in trap bushes with the mean
proportion of scarred fruit in unbaited bushes neighboring trap bushes. In this analysis, no differences
between these means indicate a possible spillover effect. In the 2013 post-spray sample, the mean
proportion of scarred fruit was 2 times higher in trap bushes than in their neighboring bushes (Welch
t-test42.53 = 2.72, p = 0.005) (Figure 4A). This difference was only marginally significant for the 2013
pre-spray sample (Welch t-test51.69 = 1.56, p = 0.063) and for the 2014 post-spray sample (Welch t-test42.3
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= 1.47, p = 0.075) (Figure 4). There were, however, no differences in the proportion of scarred fruit
between trap bushes and their neighboring bushes for the 2014 pre-spray sample (Welch t-test48.66 =

−0.03, p = 0.512) (Figure 4B), or between unbaited bushes and their neighboring bushes for all sampling
dates (all p values > 0.1). These results indicate that in 3 out of 4 sampling dates the proportion of
scarred fruit was significantly or marginally higher in trap bushes than in their neighboring bushes,
suggesting that injury by C. nenuphar in trap-bush plots tended to be greater in the baited bushes than
in their neighbors.

Figure 4. Percent (mean ± SE) of oviposition-scarred fruit by Conotrachelus nenuphar adults in trap
bushes and in bushes neighboring trap bushes in 2013 (A) and 2014 (B). Fruit injury was assessed before
and after a post-bloom insecticide application. Asterisks indicate significant differences according to
Welch’s two-sample t-test (** = p ≤ 0.01); n.s. = not significant (p > 0.05).

3.4. Does Fruit Injury Differ Between Interior Bushes from Trap-tree Plots and Interior Bushes from Control
Plots (Hypothesis 3)?

In general, fruit injury by C. nenuphar adults in all plot interiors was relatively low (<1.5%). In both
years and sampling dates, there were no significant differences in the proportion of C. nenuphar-injured
fruit between bushes from the interior of the trap-bush plots and the interior of control plots (2013
pre-spray sample: Welch t-test130.1 = 0.22, p = 0.415; 2013 post-spray sample: Welch t-test125.7 = −1.78,
p = 0.961; 2014 pre-spray sample: Welch t-test123.9 = 1.15, p = 0.126; 2014 post-spray sample: Welch
t-test128.2 = −0.29, p = 0.618) (Figure 5).
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Figure 5. Percent (mean ± SE) of oviposition-scarred fruit by Conotrachelus nenuphar adults in interior
trees within plots containing odor-baited trap bushes (trap-tree plots) or unbaited bushes (control plots)
in 2013 (A) and 2014 (B). Fruit injury was assessed before and after a post-bloom insecticide application.
n.s. = no significant differences according to Welch’s two-sample t-test (p > 0.05).

4. Discussion

This 2-year study demonstrated that: (1) commercial lures for C. nenuphar adults containing
the aggregation pheromone grandisoic acid together with lures containing the host-plant volatile
benzaldehyde successfully aggregate fruit injury when deployed within the canopy of highbush
blueberries; (2) injury to fruit was greater in the baited bushes (referred to as trap bushes) than in
unbaited bushes, but could also extend at least 3 bushes away (~9 m) from the baited bushes. As such,
fruit injury among bushes could be ranked as follows: trap bushes ≥ neighboring trap bushes >

unbaited bushes, providing some evidence for a spillover effect; and, (3) there was no difference in %
infestation in fruit sampled from the interior of trap bush plots and from the interior of control plots.

Our study supports the hypothesis that baiting blueberry bushes with an attractive lure, i.e.,
a combination of aggregation pheromone and host-plant odors, results in aggregated oviposition
injury by C. nenuphar adults. This method of luring weevils to specific host-plants, so-called trap
tree, was successfully tested previously in apple orchards [20–22]. The trap-bush method developed
here assumes that growers are willing to sacrifice some fruit from (perimeter) bushes due to injury.
Similar to an “attract-and-kill” trap crop scenario [31], these bushes could then be specifically targeted
for a post-bloom insecticide application [24], instead of applying an insecticide to an entire field;
therefore saving application costs and providing an environmentally-friendlier tactic for managing
this pest. In fact, Leskey et al. [24] reported a ~70% and 93% reduction in the total percentage of
trees treated with insecticides under this trap-tree approach compared with perimeter row sprays and
standard whole-orchard sprays, respectively, without compromising C. nenuphar control. In our study,
growers were provided with recommendations on when to spray based on injury data. We basically
compared two programs, one that relied solely on chemical control and one that, in addition to
chemical control, uses trap bushes for monitoring C. nenuphar injury. In our case, chemical control
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consisted of a pre-bloom spray of novaluron (an insect growth regulator) and a post-bloom spray
of phosmet (an organophosphate) to target three stages of the weevil, i.e., egg, larval, and adult
growth and survival [28]. These programs resulted in a 3-fold reduction of fruit injury (to about
1%) in 2014. This is comparable to the level of fruit injury observed in apple orchards managed
using the trap tree strategy or perimeter row treatments [24]. Needless to say, participating growers
were very happy with our results. In fact, there is a zero tolerance for larval infestation for berries
that are exported to other regions [12]; thus, management practices that closely achieve this goal are
desirable to growers. However, recent studies have reported negative effects of novaluron on bee
brood development [32–34], so care needs to be taken when using this insecticide pre-bloom. Targeting
insecticide sprays to just the trap bushes and a few neighboring bushes could mitigate these negative
effects on bees. As this insect pupates in the soil, there is also the possibility of integrating biological
control through the use of entomopathogenic nematodes to target C. nenuphar larvae in the soil [35,36].
Targeted applications of nematodes to perimeter trap bushes could greatly reduce costs and provide an
eco-friendly alternative to the current reliance on broad-spectrum insecticides. Integrating behavioral
and biological control strategies constitutes a novel multi-faceted approach for managing C. nenuphar
in highbush blueberries that may reduce the use of broad-spectrum insecticides while also providing
options to organic blueberry growers who currently lack reliable control tools against this pest.

Location of the trap bush, whether along perimeter rows facing wooded habitats or along perimeter
rows inside the field, did not seem to strongly influence the level of fruit injury by C. nenuphar adults.
We expected to see higher oviposition activity along rows facing wooded habitat; however, this was
true only in the 2013 pre-spray sampling. A likely explanation is that overwintered adults move into
blueberry fields early in the spring prior to bloom, i.e., in April [9], while oviposition activity happens
at fruit set, i.e., in mid- to late-May through early June. Hernandez-Cumplido et al. [17] reported an
edge effect on adult captures in pyramid traps early in the season but this effect disappeared by May.
Thus, by the time that susceptible fruits are available, C. nenuphar adults have already penetrated into
the field interiors. This same phenomenon was reported by Piñero and Prokopy [37] in apple orchards
in MA; on average 57% of C. nenuphar had entered orchards and potentially colonized apple trees by
petal fall based on a 6-year study. Mark-recapture studies, like those done by Leskey and Wright [38],
could help understand the response of C. nenuphar adults to trap bushes and how these odor-baited
bushes affect their movement within blueberry fields. These data will aid at defining the size of a
perimeter zone to target insecticide applications.

Our study also found some evidence of a spillover effect: unbaited blueberry bushes neighboring
odor-baited trap bushes tended to have more fruit injury by C. nenuphar adults than those neighboring
unbaited control bushes; although the level of injury in trap bushes tended to be higher than in their
surrounding unbaited bushes. Prokopy et al. [21] noted that injury to trap trees was five-fold greater
than in neighboring unbaited trees located 6–8 m away in apple orchards. Bushes in blueberry fields
are, however, planted much closer together than trees in apple orchards. In fact, the distance between
an odor-baited bush and its near neighboring unbaited bushes in our fields was ≤3 m, which means that
the farthest distance between the trap bush and the unbaited neighboring bushes was ≤9 m (Figure 1).
Our results are closely in line with the study of Leskey et al. [24] who found that injury around trap
trees was greater than trees around unbaited (control) trees but found no difference between injury in
the trap trees and injury in the nearest neighboring trees in apple orchards, indicative of spillover to
trees adjacent to the trap trees. Altogether, our data suggest the potential of a spillover effect occurring
at least 9 m from the trap bush in highbush blueberries. Recently, Hernandez-Cumplido et al. [17]
found a greater number of C. nenuphar adults in blueberry bushes near odor-baited pyramid traps than
unbaited traps early in the season but this aggregation of adults did not lead to greater oviposition
injury to bushes later in the season. A likely explanation is that Hernandez-Cumplido et al. [17] used
traps to collect and remove weevils from the blueberry fields prior to fruit set whereas in the present
study weevils remained in the field which allowed them to move freely from trap bushes to neighboring
unbaited bushes until a post-bloom insecticide application was allowed. Using mass trapping for
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C. nenuphar is impractical and cost prohibitive because of the size and price of current traps, as well as
overall efficiency, particularly when developing fruit appears to compete with trap-based stimuli [38].
However, finding methods that limit weevil movement from trap bushes could help reduce spillover
injury to adjacent unbaited bushes; thus, restricting insecticide use to even fewer bushes. It is possible,
for example, to improve C. nenuphar attraction to, and retention on, trap bushes by improving the
attractive lure (e.g., Reference [39]). Bee-safe methods to kill adults, such as insecticidal nets [40],
could also be placed around the base of trap bushes for an “attract-and-kill” strategy to manage
these weevils.

We predicted that trap bushes located around the perimeter of a blueberry field may reduce the
level of fruit injury by C. nenuphar in the interior of fields, by retaining weevils in and around the trap
bushes (i.e., plot perimeters) and thus reducing their numbers inside fields. We found that the amount
of fruit injury did not differ between interior bushes in trap-bush plots and interior bushes in control
plots. Similarly, Piñero et al. [22] and Leskey et al. [24] used perimeter-row, odor-baited trap trees to
monitor oviposition activity and manage C. nenuphar adults in apple orchards and found no differences
in levels of injury to fruit sampled from interior trees in plots managed under a trap tree regime, where
insecticide applications were directed at trap trees only, and plots managed under conventional sprays
or perimeter row sprays. Therefore, a similar (trap bush) strategy could be used in blueberries to
monitor fruit injury or to manage C. nenuphar (i.e., attract-and-kill) without compromising fruit injury
within fields.

5. Conclusions

This study examined the possibility of integrating behavioral and chemical control for the
management of C. nenuphar in highbush blueberries. So far, programs for management of this pest
have been limited to monitoring adults using ineffective, labor-intensive beat-sheet sampling methods
and chemical control. Our study used trap bushes to monitor C. nenuphar injury to berries. Based on
these data, participating growers responded to our 2013 recommendations with post-bloom insecticide
applications that greatly decreased injury the subsequent year. Our results not only indicate that the
trap bush method can be used to effectively monitor C. nenuphar injury but could also be used for
site-specific applications to reduce insecticide use.
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