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1. Ideal wing shape and Betz-Prandtl approximation

Prandtl [1] suggested that an elliptical wing produces minimum induced drag during
translational motion. He argued that an elliptical distribution of circulation produces uniform
downwash and thus minimizes the wake’s kinetic energy. While elliptical wings face uniform inflow
during forward motion, the inflow velocity in revolving and flapping wings increases with increasing
distance from wing hinge to tip. This phenomenon requires adjustments in the ideal wing shape. The
ideal circulation distribution for a revolving wing was first approximated by Betz and Prandtl [2] and
later derived as a numerical exact solution by Goldstein [3] and Modarres and Peters [4]. For our review,
we recalculated the ideal wing shape from Betz-Prandtl’s approximation for propellers and compared
the results with the solution by Goldstein. In our numerical framework we used Prandtl’s lifting line
theory of an inviscid fluid, and assumed a propeller with 2 blades and without geometrical twist in
the spanwise direction. As hovering conditions cannot be considered by this approach, we calculated
the ideal wing shape for small forward, v, and wake velocities, w.

According to Betz and Prandtl, circulation can be written as:
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with I'e/ zev the velocity-normalized, nondimensional circulation, @ the angular velocity of the
propeller, u the translational speed of a wing blade normalized to forward speed, and f a correction
factor (Fig. S1). The latter factor is defined as:
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with p, the translational speed of the wing tip normalized to forward speed. The terms u and

o were derived from angular speed of the propeller, wing length, R, and the distance, r, between

wing hinge and wing blade, and are written as:
wR wr
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As the terms p and p, are equal to the reciprocals of advance ratio, they are infinite at hovering

conditions when forward speed is zero. In our calculations we thus allowed some forward speed,
setting v=10.75 ms™ at a wake velocity behind the blade w=2.0 ms ( 1y =10). Sectional inflow velocity



in a revolving wing is u(r) = @r and calculated using values from the flight apparatus of Calliphora
with R=0.01 m and 120 Hz flapping frequency ( @ =754 rad s, Fig. S2).
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Figure S1. Spanwise distribution of normalized circulation (eq. 1) in a propeller with two blades, plotted
against normalized blade velocity p with py =10. Results are approximated using Prandl-Betz (black) or
exactly derived using Goldstein’s framework (red).
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Figure S2. Oncoming air velocity (inflow) and squared inflow velocity in the revolving propeller is plotted as a
function of the distance between wing blade and rotor axis (wing hinge).

2. Sectional lift production and wing chord

According to Kutta-Joukovski, lift per unit span (L, sectional lift) is proportional to the product
between sectional circulation, velocity, and air density p, and is written as:

L' =pu(r)[(r). (5)

Replacing circulation in equation 5 by the estimate of Prandtl and Betz, we may write equation 5
as:
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To estimate sectional wing chord, ¢, for an ideal revolving wing, we compared the above
relationship with a conventional quasi-steady model for lift production, i.e.:

L(r)= %p L2 (r)e(r), ™

and replaced the sectional lift coefficient, c;, by the theoretical value for a thin air foil that is

¢, =27a with a,; the wing’s effective angle of attack (Fig. S3). Combining equations 6 and 7, and

solving it towards c(r), sectional wing chord equals to (Fig. S4):
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Figure S3. Spanwise distribution of sectional lift with py =10, v = 0.7535ms ™! Jandw =2ms ™" .
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Figure S4. Sectional wing chord according to Prandtl-Betz and Goldstein. This wing shape is thought to produce

an uniform vertical downwash in the wake. Effective angle of attack is 11.67° and the wing’s aspect ratio is 3.44.
See legends to figure S3 for other details.



3. Sectional lift production and wing chord

Prandtl and Betz did not show how the distribution of sectional wing chord leads to the
planform of a wing [5]. We thus reconstructed the wing shape by distributing the ideal sectional
chords above and below the wing’s longitudinal axis (zero in Fig. 54). Previous data has shown that
in Calliphora this axis lies approximately 10% behind the leading edge [6] and thus 10% of the
sectional wing chord was distributed above the longitudinal axis rotational and 90% below. This

procedure generated the final wing planform while maintaining the wing’s aspect ratio of 3.44 (Fig.
S4).
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Figure S5. Wing planform using sectional chord values from figure S3 and assuming the rotational longitudinal
wing axis 10% behind the leading edge. See figures S2 and S3 for more details on the numerical assumptions.
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