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Simple Summary: North America is considered as an area likely to be significantly affected by global
warming, with climate change causing markedly warmer winter temperatures in the United States in
recent decades. Ticks are sensitive to changes in ambient abiotic conditions and, therefore, climate:
they are poikilothermic, with the life stages of each species requiring specific sets of environmental
conditions for successful development and survival. Our review focuses on (1) identifying and
exploring suitable areas for the eight medically important vector tick species in North America;
(2) exploring whether and how species’ distributions are likely to shift in coming decades in response
to climate change, and in what ways; (3) and providing a picture on the status of the tick-associated
diseases in North America from the present to the future.

Abstract: Ticks rank high among arthropod vectors in terms of numbers of infectious agents that
they transmit to humans, including Lyme disease, Rocky Mountain spotted fever, Colorado tick
fever, human monocytic ehrlichiosis, tularemia, and human granulocytic anaplasmosis. Increasing
temperature is suspected to affect tick biting rates and pathogen developmental rates, thereby
potentially increasing risk for disease incidence. Tick distributions respond to climate change,
but how their geographic ranges will shift in future decades and how those shifts may translate
into changes in disease incidence remain unclear. In this study, we have assembled correlative
ecological niche models for eight tick species of medical or veterinary importance in North America
(Ixodes scapularis, I. pacificus, I. cookei, Dermacentor variabilis, D. andersoni, Amblyomma americanum,
A. maculatum, and Rhipicephalus sanguineus), assessing the distributional potential of each under both
present and future climatic conditions. Our goal was to assess whether and how species’ distributions
will likely shift in coming decades in response to climate change. We interpret these patterns in terms
of likely implications for tick-associated diseases in North America.

Keywords: potential geographic distribution; ecological niche modeling; current and future scenarios;
Mexico; United States; Canada

1. Introduction

Ticks spend parts of their life cycle on and off of their blood-meal hosts, and are
obligate blood feeders [1]. Since ticks spend much of their life cycle exposed to the
environments, they must respond to local conditions including abiotic (e.g., humidity,
temperature, soil moisture) and biotic factors (e.g., humid leaf, dense vegetation, dense
shade, host interaction) [2]. Given that the ticks need a blood meal at each stage (larva,
nymph, adult), the effects of abiotic factors on tick populations and distributions are often
more immediate than biotic factors [3]. North America is considered as an area likely to be
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affected significantly by global warming, with climate change causing markedly warmer
winter temperatures in the United States [4], Canada [5], and Mexico [6] in recent decades.
The increasing temperature trends as a result of climate change will probably lead to the
expansion of and/or shifts in the potential distributions of several tick species, generally
towards higher latitudes and higher elevations (Figure 1) [7].
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representative concentration pathway (RCP 4.5 and RCP 8.5) for the year 2050.

The geographic ranges of 25 tick species of medical and veterinary importance have
been described for regions globally [2]. Ten species of hard and soft ticks are known to
bite and transmit disease to humans in the United States [7]. The U.S. Centers for Disease
Control and Prevention (CDC) has developed risk maps for different tick species based on
a regional scale [8]; however, only a few, scattered studies have investigated distributional
changes that would be expected under climate change of these species [9–14].

In recent years, several new tick-associated pathogens have been documented, and tick
vectors and tick-associated diseases have expanded geographically into new areas around
the world [15]. In the United States, cases of tick-associated diseases (including Lyme
disease, spotted fever group rickettsiosis or SFGR, babesiosis, Powassan virus, anaplasmo-
sis/ehrlichiosis, and tularemia) totaled 48,610 cases in 2016 and 59,349 in 2017, which were
the highest numbers of cases recorded since recording began [16]. Seven new pathogens
(Borrelia mayonii, B. miyamotoi, Ehrlichia ewingii, E. muris eauclairensis, Heartland virus, Rick-
ettsia parkeri, and Rickettsia species 364D) have been discovered in the United States in the
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last two decades by using advanced molecular detection (AMD) program that detects DNA
of new pathogens in humans and animals [16]. In Canada, B. miyamotoi and B. mayonii
were identified as new disease agents in 2013 and 2014, respectively [17]. In Mexico, docu-
mentation of cases of the most common tick-associated disease, Rocky Mountain spotted
fever (RMSF), has expanded from northern Mexico into 30 states across the country [18].

The purpose of this paper is to explore and highlight potential distributional changes
of tick species of medical or veterinary importance under climate change in North America
(Figure 1). Our goal is to illuminate possible cross-species trends in the distribution and
status of tick-associated diseases across the region, particularly as regards the hypotheses
that climate warming will shift species’ distributions to higher latitudes and higher ele-
vations. We selected tick species that are known to bite humans and transmit diseases to
people based on information from the U.S. Centers for Disease Control and Prevention
(CDC) [19]. Tick species analyzed herein include Western blacklegged tick (Ixodes paci-
ficus), Blacklegged tick (I. scapularis), Groundhog tick (I. cookei), Rocky Mountain wood
tick (Dermacentor andersoni), American dog tick (D. variabilis), Gulf coast tick (Amblyomma
maculatum), Lone star tick (A. americanum), and Brown dog tick (Rhipicephalus sanguineus).

2. Tick-Associated Diseases of Humans in North America
2.1. Lyme Disease

Borrelia burgdorferi sensu stricto is the causative agent of Lyme disease, transmitted
by Ixodes pacificus and I. scapularis [20]. Lyme disease was recognized as an important
infectious disease in the late 20th century; since that time, CDC reported an increase in
Lyme disease cases in several parts of the United States. For example, in 2000, 18,000 cases
of Lyme disease were documented [21]; however, numbers of cases of the disease reached
42,743 in 2017 and 33,666 in 2018 [22]. In the United States, risk of Lyme disease increased
300% in the northeastern and midwestern parts of the country [23]. Canada has also seen
increased Lyme case rates, rising from 144 in 2009 to 917 in 2015, respectively, all reported
from eastward of Manitoba [24]. In Mexico, although Lyme disease is not well studied in
terms of its biogeography and epidemiology [25], human cases have been documented in
the northeastern part of the country and in Mexico City [26].

2.2. Babesiosis

The protozoan genus Babesia (e.g., species B. microti, B. duncani, B. divergens, and B.
venatorum) is the causative agents of babesiosis, which can cause influenza-like symptoms
(chills, fever, headache, fatigue, and body aches) and thrombocytopenia [27]. It is transmit-
ted by bites of the ixodid tick Ixodes scapularis [28–30]. In the United States, this disease is
found in the Northeast and Midwest, with a total of 7612 cases documented in the period
between 2011 and 2015; highest incidence rates of babesiosis (7194 of the total 7612 cases)
were in seven states (Massachusetts, Connecticut, New York, Rhode Island, Wisconsin,
New Jersey, and Minnesota), whereas Maine and New Hampshire documented <200 cases
over 5 years [31]. In 2016, 2017, and 2018, across the United States, CDC documented 1910,
2368, and 2160 new cases, respectively [22]. In Canada, babesiosis is not a nationally notifi-
able disease; however, 1119 cases were reported between 2011 and 2017 in many provinces
(Alberta, British Columbia, Manitoba, New Brunswick, Nova Scotia, Newfoundland and
Labrador, Ontario, Prince Edward Island, Québec, Saskatchewan) [32]. In Mexico, babesio-
sis is poorly studied; however, since the first reported human case in 1976, only four cases
were reported in 2015 in Yucatán state [33].

2.3. Anaplasmosis and Ehrlichiosis

Anaplasma phagocytophilum and Ehrlichia species (e.g., E. chaffeensis) are bacterial
pathogens that threaten human health [34]. Anaplasmosis and ehrlichiosis are the sec-
ond most frequently recorded tick-associated diseases (after Lyme disease) in the United
States [22], but carry higher fatality rates (2–5%) than Lyme disease [17,35]. For ehrlichiosis,
numbers of documented cases rose from 338 in 2004 to 1377 in 2006, with 7309 cases between
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2013 and 2017, most from four states (New York, Virginia, Missouri, and Arkansas) [36].
Anaplasmosis cases also rose from 537 in 2004 to 4151 cases in 2016 [36], most from eight
states (Vermont, Maine, Rhode Island, Minnesota, Massachusetts, Wisconsin, New Hamp-
shire, and New York) [37]. Numbers of anaplasmosis and ehrlichiosis cases have also
increased in Canada since 2013, although relatively few cases have been recognized com-
pared to numbers in the United States [38].

2.4. Spotted Fever Rickettsiosis (SFR)

Some members of the bacterial genus Rickettsia cause disease in humans, including R.
rickettsii which causes Rocky Mountain spotted fever (RMSF) and is transmitted by several
tick species, such as Dermacentor variabilis, D. andersoni, and Rhipicephalus sanguineus [39];
Rickettsia parkeri, which causes disease similar to RMSF but milder, is transmitted by
Amblyomma maculatum [40]. In 2010, CDC included all rickettisial diseases (RMSF, Rickettsia
parkeri rickettsiosis, Pacific Coast tick fever, and rickettsialpox) in a single category called
spotted fever rickettsiosis (SFR) [41]. The states most affected by SFR, with 50% of all cases,
are Oklahoma, Missouri, Arkansas, North Carolina, Virginia, and Tennessee; Arizona
became a new state under consideration with >360 cases and 21 deaths between 2003
and 2016 [41]. Between 1997 and 2002, 3600 RMSF cases were documented in the United
States [42]. CDC reported 6248 and 5544 spotted fever rickettsiosis cases in 2017 and 2018,
respectively. In Canada, although R. rickettsii was isolated from D. andersoni in Alberta and
British Columbia in 1942 [43], SFR is less well documented compared to in the United States,
perhaps as a function of lower vector species diversity [44]. Several studies have reported
that R. rickettsii transmission is low given the low frequency of detection of the bacterial
agent in tick vectors [45,46]. In Mexico, RMSF was identified after outbreaks in Sonora,
Sinaloa, Coahuila, and Durango in the 1940s, with fatality rates of 30–80% of reported
cases [47]. Those outbreaks continued to happen across northern Mexico thanks to the
presence of the host tick Rhipicephalus sanguineus sensu lato; in 2003–2016 and 2009–2016,
the states of Sonora and Baja California registered 1394 and 967 RMSF cases, and 247 and
132 deaths, respectively [47].

2.5. Tularemia

Tularemia is a disease caused by the bacterium Francisella tularensis, which can cause
health problems related to the skin, eyes, lungs, and lymph nodes [48]. Five subspecies
of F. tularensis have been described, but only subspecies F. t. tularensis and F. t. holarctica
cause human disease in North America [49]. This disease can be transmitted by bites
of insects such as ticks (Dermacentor variabilis, D. andersoni, and Amblyomma americanum),
deer flies (Chrysops spp.), physical contact with infected animals, or drinking contaminated
water [50]; in the central United States, biting flies are relatively rare, so most risk is related
to tick bites (particularly D. andersoni) and animal contact [51]. In the 1930s and 1940s,
tularemia cases numbered >1000 cases per year in the United States [52]. Problems emerged
when tularemia was removed from the list of nationally reportable diseases (it came back
on the list in 2000 out of concern about the possibility of bioterrorism) [53]. In recent years,
however, numbers of tularemia cases in the United States reached >200 cases/year [22];
tularemia is rare in Canada, with 6–22 cases documented yearly during 2005–2011 [54].
Tularemia cases were originally concentrated in the south-central United States, yet since
1965, it expanded to more northern states [55]. In the United States, through 2001–2010
and 2010 surveys, 59% and 65% (respectively) of total tularemia cases were documented in
six states (Arkansas, Kansas, Missouri, Oklahoma, Massachusetts, and South Dakota) [51];
by 2015, four states (Wyoming, Colorado, Nebraska, and South Dakota) documented in-
creasing numbers of cases [56]. A detailed analysis of the geography/environment of these
case distributions indicated that the range-shift trends were consistent with expectations
deriving from observed climate trends across the United States [57].



Insects 2021, 12, 225 5 of 25

2.6. Powassan Virus

Powassan virus (genus Flavivirus) group is one of the tick-borne encephalitis viruses,
and causes severe neurological damage with high case fatality rates [58]. In 1958, the first
human case was documented from Powassan, Ontario, Canada [59], with the virus isolated
from brain tissue of a 5-year-old boy, after he died from severe encephalitis [60]. The main
enzootic cycle for Powassan virus involves Ixodes cookei as the vector, and groundhogs
(Marmota monax) or striped skunks (Mephitis mephitis) as reservoir hosts [61]. Although
POWV is rare, numbers of cases have increased in recent years; in all, 13 states reported
POWV cases during 2010–2019: Connecticut, Indiana, Maine, Massachusetts, Minnesota,
New Hampshire, New Jersey, New York, North Carolina, North Dakota, Pennsylvania,
Rhode Island, and Wisconsin. Minnesota, Massachusetts, Wisconsin, and New York have
had highest numbers of POWV cases in recent years [62]. In Canada, 21 cases have been
reported since 1958, and most recorded POWV cases were from the Great Lakes Region,
and fewer cases were from the Maritime Provinces [63]. No cases have been documented
from Mexico.

3. Methods

This contribution aims to provide an overview of present and likely future geographic
distributions of medically important tick vector species. To that end, we take advantage of
several papers that are already published by our research group [12–14], and add several
additional analyses for other tick species that are at various stages of preparation for
publication. The advantage of using a suite of studies that comes from a single research
group is that the methods are mostly coincident, although a few improvements and
modifications have certainly been added along the way in the process of assembling this
body of work [64]. As such, we offer here a broad outline of the methods that we used and
refer the reader to the original publications [12,14] and to the Supplementary Information
for more details.

We chose tick species for analysis based on their known or suspected roles as vectors
in transmitting tick-borne pathogens to humans (Table 1) [19]. We obtained occurrence
data for each tick species of interest from online sources including the Global Biodiversity
Information Facility (http://www.gbif.org, accessed on 20 January 2020), VectorMap
(http://vectormap.si.edu/, accessed on 20 January 2020), and BISON (https://bison.usgs.
gov, accessed on 20 January 2020); we also surveyed the relevant scientific literature for
additional occurrence data [65–74]. To relate known occurrences of each tick species to
current environmental conditions, we obtained climate average data from WorldClim (http:
//www.worldclim.org, accessed on 20 January 2020). We characterized scenarios of future
climate conditions via multiple general circulation models (GCMs; data layers from Climate
Change, Agriculture and Food Security, CCAFS; http://www.ccafs-climate.org/data_
spatial_downscaling, accessed on 20 January 2020) and two representative concentration
pathways (RCP 4.5, which is a more optimistic view of climate change future, and RCP 8.5,
which is less optimistic, and anticipates more severe climate change effects).

We created species-specific model calibration areas that are based on detailed as-
sumptions about the set of areas to which each species has had access over relevant
time periods; this set of areas is termed M in the biotic-abiotic-mobility (BAM) frame-
work for distributional ecology [75]. Ecological niche modeling was done in R ver-
sion 3.5.1 [76] using Maxent 3.4.1 [77], via the kuenm package [64] (available at https:
//github.com/marlonecobos/kuenm, accessed on 20 January 2020). Models were evalu-
ated in terms of statistical significance compared to null expectations [78], performance
in terms of omission rate, and low model complexity [79]. For full details on the methods
used, see published studies [12,14] and the Supplementary Materials (File S1).

http://www.gbif.org
http://vectormap.si.edu/
https://bison.usgs.gov
https://bison.usgs.gov
http://www.worldclim.org
http://www.worldclim.org
http://www.ccafs-climate.org/data_spatial_downscaling
http://www.ccafs-climate.org/data_spatial_downscaling
https://github.com/marlonecobos/kuenm
https://github.com/marlonecobos/kuenm
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Table 1. Summary of the seasonal activity, geographic distribution, and habitat of the eight tick species.

Tick Species Primary Active Season Geographic Distribution Primary Habitat Source

Ixodes
scapularis

spring, summer,
and fall

widely distributed across
eastern United States

wooded vegetation,
and sandy soils [8,80]

I. pacificus spring, and summer Pacific coast of North America.
gambel oak, juniper

(Juniperus spp.), sagebrush,
and mixed grass habitat

[81,82]

I. cookei summer northeastern United States,
southeastern Canada. host’s nest or burrow [83,84]

Rhipicephalus sanguineus all seasons broad, worldwide in the
tropics and subtropics

diverse habitats,
can live indoor [14,85,86]

Amblyomma maculatum spring and summer

Caribbean, south and central
United States, Mexico,
West Indies, Colombia,

Venezuela, Peru

grasslands [87,88]

A. americanum summer and fall
Coastal areas along the

Atlantic Ocean and Gulf
of Mexico.

oak and pine forests [8,87,89,90]

Dermacentor andersoni spring

Southwestern Canada; Rocky
Mountain states in the United

States, at high elevations
(1300–3000 m)

wooded habitat, grassland,
low-growing vegetation [8,91,92]

D. variabilis spring and summer Eastern United States,
Pacific coast

mixed upland and
mixed-oak,

hickory-dominant forest
[93]

To provide an empirical basis for assessing model predictions for tick vectors, as they
relate to transmission of pathogens to humans, we sought disease case-occurrence data
for the regions of interest. We were successful in obtaining detailed data (i.e., county-level
totals of case numbers) for five tick-associated diseases for 2017—these data were kindly
provided by Kristen Nichols Heitman, and Amy Schwartz (Centers for Disease Control
and Prevention, pers. comm.). We visualized predictions and data on maps using ArcMap
version 10.5.

4. Results
4.1. Geographic Distribution of Tick Vector Species
4.1.1. Ixodes scapularis (Black-Legged Tick)

Historically (i.e., in the late 1800s and early 1900s), the geographic distribution of I.
scapularis was restricted in the eastern United States in the face of widespread deforestation
and reduced deer populations [94]. In the 20th century, however, with reforestation
efforts and increasing deer populations, this species spread broadly to occupy much of the
eastern United States and southern Canada [94,95]. Eisen et al. [72] depicted I. scapularis as
established in 842 counties in 35 states [72]; a new report from CDC showed new counties
in the northern United States (especially in North Dakota and Minnesota) as established to
increase the number from 842 to 975 counties between 2016 and 2019 [73].

Our model results showed a broad potential geographic distribution, including the
documented distribution across the eastern United States, and some areas in western
United States and Canada not known to hold populations in those areas and that are
likely outside of the species’ dispersal reach (Figure 2A). In our modeling results, areas of
potential range expansion were in areas of northern Minnesota, North Dakota, and South
Dakota, as well as areas of northern and western Canada (Figure 2A). Range reductions
were anticipated along the southwestern parts of the species’ range, in Texas, as well as in
restricted areas of western Kansas, Oklahoma, and Mexico (Figure 2A).
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We compared case distributions of tick-borne pathogens known to be associated at
least in part with this species (Lyme disease, anaplasmosis, and babesiosis) with the mod-
eled suitable areas of I. scapularis. For Lyme disease cases, our predictions coincided closely
with documented cases: highest numbers of cases were in eastern states (Pennsylvania,
New Jersey, Connecticut, Delaware, New Hampshire) and the Midwest (Wisconsin and
Minnesota; Figure 3). Anaplasmosis cases show a similar pattern, with highest incidence
rates in New England and Wisconsin (Figure 3). Babesiosis cases showed a scattered
pattern of occurrence across the United States, coinciding with the potential geographic
distribution of I. scapularis in the eastern and midwestern states (Figure 3).
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4.1.2. Ixodes pacificus (Western Blacklegged Tick)

Ixodes pacificus is a known vector of Lyme disease, anaplasmosis, and tick-borne
relapsing fever in the western United States [96]. This species can be found along the
Pacific Coast, in Washington, Oregon, and California, as well as in parts of Arizona, Nevada,
and Utah. The species has established populations in 106 (3.6%) of 3141 continental United
States counties [72]. The latest update on populations of this species indicated that this
number has decreased to 95 counties [73].

Our models showed suitable areas around the states mentioned above, and broadly
in the southern states, from New Mexico to Florida, but without any documented pres-
ence of this species in those areas (Figure 2B). In Canada, only restricted suitable areas
were indicated, in southern British Columbia (Figure 2B). This species seems to have little
potential for expansion, with only minor improvements in suitability in eastern Wash-
ington, Oregon, California, and northern Arizona, Washington, Idaho, and into Canada.
Only highly restricted areas showed anticipated reductions in suitability in New Mexico,
Texas, and southeastern states, which means that this species will see mostly stable envi-
ronmental conditions in areas where it currently has established populations (Figure 2B).
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Reported Lyme disease cases showed patterns similar to the model-predicted geo-
graphic distribution of I. pacificus in California, Oregon, Washington, and Arizona (Figure 4).
Anaplasmosis appeared to have less frequent occurrence in the western states compared
to eastern states (Figures 3 and 4). Babesiosis showed high concentrations in areas where
I. pacificus was modeled as seeing suitable conditions (and where it is known to occur) in
California, Oregon, Washington, and Arizona (Figure 4). However, we also noted that
neighboring states documented babesiosis cases, even though the vector tick species is
ostensibly absent.
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4.1.3. Ixodes cookei (Groundhog Tick or Woodchuck Tick)

Ixodes cookei is found broadly in eastern North America, in temperate broadleaf
and mixed forests [97]. Based on virus isolations from ticks in eastern North Amer-
ica, this species is known to serve as a significant vector of Powassan encephalitis virus
(POWV) [59]. However, I. scapularis and I. marxi are also considered to be vectors of
POWV [62].

Our models showed that the southern range limit of I. cookei is in restricted areas
of northern Tennessee and North Carolina, and the species is anticipated to occur in
southeastern Canada. Missouri and Wisconsin appear to constitute the western limit of the
distribution of the species (Figure 2C). Our model predictions identified suitable areas in
western Canada and the western United States, where I. cookei has been documented as a
newly established species in southwestern British Columbia [74]. Our models showed that
this species will see a shifting distributional potential extending farther northward into
new areas in Michigan and southern Canada (Figure 2C).

Reported cases of Powassan encephalitis virus showed a generally close correspon-
dence with the modeled potential distribution of I. cookei, particularly across the north-
eastern United States (Figure 5). However, the high observed incidence in Minnesota
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and Wisconsin fell in areas not identified by our models as suitable for I. cookei (Figure 5).
This latter outcome supports the idea that another tick species (perhaps I. scapularis) might
be serving as the primary vector of POWV in those areas.
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4.1.4. Rhipicephalus sanguineus (Brown Dog Tick)

Rhipicephalus sanguineus is a vector of many pathogens, including bacteria, viruses,
protozoa, and helminths [98]. The best-known pathogens that R. sanguineus transmits
include Coxiella burnetii, Ehrlichia canis, Rickettsia conorii, and R. rickettsii [99]. In North
America, this species is also responsible for transmission of RMSF in the southwestern
United States and in northern Mexico [8]. This species is among the best-studied species
thanks to its zoonotic concern; its uses dogs and other animals including humans as
hosts [86].
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Rhipicephalus sanguineus can be found in many habitats across its broad, near-global
distribution [86]. A recent CDC map indicated that this species occurs pretty much ubiqui-
tously across the United States [8]. A recent analysis by Alkishe et al., (2020) found suitable
areas for R. sanguineus from the southwestern to northeastern United States; most of Mexico
is also apparently suitable for this species (Figure 2D). Under future conditions, the mod-
eled potential distribution of this species showed different results between RCP 4.5 and
RCP 8.5: the species is anticipated to lose suitable area under RCP 4.5, but to gain suitable
area northward in the Midwest and southern United States under RCP 8.5 (Figure 2D and
Figure S2).

Rhipicephalus sanguineus is the prime vector of RMSF in the western states (California,
Nevada, Arizona, and New Mexico). Our models showed similar patterns with those
spotted fever group rickettsiosis cases that derived from CDC in west and southwest states
(Figure 6).
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4.1.5. Amblyomma maculatum (Gulf Coast Tick)

Amblyomma maculatum can cause spotted fever by transmitting the causative agent,
Rickettsia parkeri [100], and tularemia by transmitting the bacterium Francisella tularensis [50].
This species is found in coastal areas of the southern United States, as well as regions bor-
dering the Gulf of Mexico and the Caribbean [101]. The geographic distribution of A.
maculatum extends west to southwestern Tennessee, Kansas, and Oklahoma, potentially
thanks to cattle importations from established range areas [102]. Birds may also play a
crucial rule in dispersing this species by carrying immature ticks into new areas during mi-
gration; such areas may include South and North Carolina, Virginia, Delaware, and eastern
Maryland [103].

Our model projections showed suitable areas to include the species’ known range,
and rather overly broadly northward to Missouri, Kentucky, southern Illinois, Ohio, and In-
diana (Figure 2E). Under future conditions, models suggested that this species will see
a range that is mostly stable in its presently suitable areas, with restricted areas of antic-
ipated range reduction in Texas. Range expansions were anticipated by model transfers
that would suggest the potential for range expansion along the entire northern edge of
the species’ distribution, but the significance of these results is unclear given the general
overprediction in the models for this species (Figure 2E).

Known cases of spotted fever group rickettsiosis were concentrated in Arkansas,
Alabama, Tennessee, Oklahoma, Missouri, and North Carolina, all in regions known to
hold populations of A. maculatum. Our models predicted all of those areas as suitable for
the tick (Figure 7). Tularemia cases were more narrowly distributed, with most cases in
Oklahoma, Arkansas, Kansas, and Missouri (Figure 7), although in large part farther north
than the distribution of this tick species.

4.1.6. Amblyomma americanum (Lone Star Tick)

Amblyomma americanum is a vector of ehrlichiosis (Ehrlichia chafeenisis and E. ewingii),
tularemia (F. tularensis), viral diseases (e.g., heart virus, and Bourbon virus), and proto-
zoans [104]. This species is apparently also associated causally with the poorly understood
red meat allergy [105]. This species is considered as the most aggressive and important dis-
ease vector tick in the United States in view of its high population densities and nonspecific
feeding habits [104].

The geographic distribution of this species covers much of the eastern United States.
The species was first documented as occurring in New York in 1969, with small established
populations on Long Island; after two decades, however, the species’ distribution had
expanded rapidly to cover 46 of 62 New York’s counties [106]. By the end of the 1990s,
its range had expanded to cover much of the northeastern United States [107], and in the
Midwest to include Missouri, Nebraska, and Oklahoma [87,108,109]. Springer, Eisen [110]
demonstrated that A. americanum is established in 653 counties across the southeastern and
southcentral states, to include 32 states; 647 counties in 36 states reported (not necessarily
established) the presence of this species.

Raghavan, Peterson (12) estimated the geographic distribution of A. americanum using
ecological niche modeling in the context of current and future climate data. The current
distribution of the species ranges from the east coast west to Kansas, Missouri, Oklahoma,
Texas, southern Iowa, and Illinois (Figure 2F). Transferring models to future conditions,
range expansions are anticipated in the northern United States, including in Iowa, Wiscon-
sin, Michigan, and New England; southeastern and southern states are anticipated to see
reductions in suitability, particularly in Florida, Alabama, Mississippi, Louisiana, western
Texas, western Oklahoma, and Kansas (Figure 2F).
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The geographic distribution of known tularemia cases was closely similar to the
geographic distribution of A. americanum (Figure 8). However, this pathogen species also
overlapped broadly with A. maculatum (Figure 2E).
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4.1.7. Dermacentor andersoni (Rocky Mountain Wood Tick)

Dermacentor andersoni is a known vector of Rocky Mountain spotted fever (caused
by Rickettsia rickettsii) [111], bovine anaplasmosis (caused by Anaplasma marginale) [112],
Colorado tick fever (caused by Coltivirus) [113], and tularemia (caused by Francisella tularen-
sis) [114]. This species can be found in the western United States and Canada at elevations
of 1200–3000 m or higher [115].

Based on an approximate map provided by the CDC, this species is found in Washing-
ton, Oregon, California, Idaho, Montana, Wyoming, Nevada, Utah, and Colorado, as well
as more restricted areas of North Dakota, South Dakota, and Nebraska [116]. Our models
showed that suitable areas for this species extend from western and Midwestern states,
and central and western Canada, where the species is known to have populations. Mod-
eled, climate-based predictions extended into the eastern United States as well, however,
although no records of this species are available from those areas (Figure 2G). Modeled
transfers to future conditions suggest potential for range expansion in more northern parts
of Canada, and into more restricted areas in the eastern United States (Figure 2G). Potential
for reduction in suitable areas was mostly in the Midwest, including Kansas, Missouri,
Nebraska, and South Dakota; in the Southeast, including Arkansas, Tennessee, Kentucky,
Louisiana, Mississippi, and Alabama; and restricted areas in the west, including parts of
New Mexico, Arizona, Utah, Nevada, California, Oregon, and Washington (Figure 2G).

Reported cases of spotted fever rickettsiosis showed patterns coincident with the
southern portion of the modeled potential geographic distribution of D. andersoni (Figure 9).
Similarly, tularemia cases showed general coincidence with the southern portion of the
suitable areas of this species (Figure 9).

4.1.8. Dermacentor variabilis (American Dog Tick)

Dermacentor variabilis is the vector of Rickettsia rickettsii, which causes Rocky Mountain
spotted fever; it can also transmit Francisella tularensis and Coxiella burnetii [117]. Derma-
centor variabilis uses particular species of small mammals as hosts for larval and nymph
stages [2]; however, this species uses numerous hosts in the adult stage, including dogs,
white-footed mice (Peromyscus leucopus), deer mice (P. maniculatus), and meadow voles
(Microtus pennsylvanicus). This species does not have the ability to survive at mean tem-
perature below 0 ◦C during December to February [118]. James and colleagues found that
both elevation and temperature impact the presence of D. variabilis [119].

Boorgula et al. (2020) models showed suitable areas for this species including almost
all of the United States except parts of northwestern and southwestern states. Model-
predicted expansion areas are along the northern range limit, including some northwestern
states in the United States and across Canada. Wood et al. (2016) reported that the
geographic distribution of this species has expanded northward into Canada, particularly
in Saskatchewan and Manitoba. Reductions in suitability were anticipated in model outputs
in restricted areas across the Midwestern United States (Figure 2H).

The potential geographic distribution of this species coincided reasonably closely with
the known distribution of cases of spotted fever rickettsiosis and tularemia (Figure 10).
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5. Discussion

This contribution is designed to provide a broad overview of climate change impli-
cations for tick-associated disease risk across the United States and adjoining regions of
southern Canada. Our work included reviewing and revisiting results of three published
papers from our group, on A. americanum [12], Rhipicephalus sanguineus [14], and D. vari-
abilis [13]. For a further five species, we present results herein from our modeling efforts.
In all cases, our models took advantage of all occurrence data for the species that we found
to be available as digital accessible knowledge [120,121]. We followed the most up-to-date
methods in ecological niche modeling to assess potential geographic distributions, using
detailed model-selection approaches implemented in the kuenm R package [64]. Our model
transfers all included multiple GCMs and RCPs, to allow detailed consideration of model
uncertainty, as well as analysis of extrapolative conditions via the MOP metric [122].

The proposition that continued temperature rise would expand suitable ranges for
many species northward is a useful general guide. Here, we considered only climatic factors
(temperature and precipitation) as crucial factors that may affect geographic distributions
of tick species [2], and may influence ticks’ development, activity, and behavior [123–126].
Diyes et al. [125] for example showed that oviposition period for female D. variabilis can
be 10–21 days at 25 ◦C and 95% relative humidity, and that larvae can survive under
temperatures of 32 ◦C for 100 days but only 25 days at 5 ◦C. However, other factors will
certainly also modify, enable, or slow range shifts of ticks and tick-associated disease risk
such as availability and abundance of hosts [17], human-mediated movements of animals
from established distributional areas [102], human-mediated land-use change, and human
outdoor activities that may or may not lead them to interact with tick habitats [127].
Our models showed that most of the tick species will show a dominant pattern of range
stability (Figure 2), but with a tendency to advance northward (Figure 11). In a few species,
we also noted a tendency to retract from southern portions of the range or from interior
sectors of the species’ ranges; a few species (e.g., I. cookei, and A. americanum) are expected to
be more affected by temperature increases in terms of range retractions along the southern
limits of their ranges (Figures 1 and 2, Figures S1 and S2).

The eastern United States appears to hold more medically important tick species,
which may make it present higher risk of tick-associated disease transmission than in the
central and western United States. For instance, in this study, four tick species had closely
similar geographic distributions in the eastern United States: I. scapularis, A. americanum,
A. maculatum, and D. variabilis; I. cookei coincides partly with the other four species in the
northeastern United States (Figure 2 and Figure S1). These overlaps can cause difficulties to
public health in terms of controlling different tick populations and discovering the source
of the pathogens.

One of the most tick-associated disease that caught our attention as an exception to
the basic patterns was babesiosis. For this disease, the case-occurrence data showed a
geographic distribution that covered broad areas, including areas that are not known to
hold either of the vector ticks (I. scapularis or I. pacificus), especially in Montana, Wyoming,
Colorado, and New Mexico [73] (Figures 2–4). Those cases may therefore represent trans-
mission by other tick species, such as I. dammini, or by contaminated blood transfusion [128].
Similarly, we noted POWV cases documented from areas that are apparently not suitable
for the main vector tick I. cookei (Figure 5). These discords between human case distribu-
tions and vector species’ geographic distributions echo previous work with poorly known
sandfly species that are vectors of leishmaniasis in Mexico [129].

Recent years have seen increased awareness of the dangerous potential impacts of
various tick-borne pathogens transmitted by the eight hard tick species analyzed herein
(and probably several others) on human health. Clearly, awareness and prior knowledge
by medical personnel lend considerable impetus to diagnosis and documentation of cases
of those diseases. For example, increasing numbers of cases of babesiosis in Maine and
New Hampshire (from 909 in 2012 to 2074 in 2015; [130]) may reflect increased awareness
in the public health system as regards this disease, or it may reflect real geographic or
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population expansion of the tick vector. These questions also underline the importance
of case documentation of such diseases including the place where the patient is exposed,
any travel history, and blood transfusion history, which provide crucial details on the
geographic provenance of the infection [131].
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Figure 11. Summary of the potential expansion in geographic distribution of eight medical important
ticks using five GCMs (CCCMA-CANESM2, CESM1-BGC, GISS-E2-R, IPSL-CM5A-MR, CCSM4)
(under RCP4.5). Dark red indicates high agreement among models GCMs. (A) Ixodes scapularis, (B) I.
pacificus, (C) I. cookei, (D) Rhipicephalus sanguineus, (E) Amblyomma maculatum, (F) A. americanum,
(G) Dermacentor andersoni, (H) D. variabilis.
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Although ecological niche modeling is considered a powerful tool in understanding
the geography of pathogens, vectors, and hosts, some caveats and limitations should be
considered. Specifically, complications in their use include (1) nonequilibrium distributions,
such that a species does not occupy the full extent of its climatically suitable area owing to
dispersal limitations or biotic interactions; the effect of this situation is that models can be
mis-tuned, and often will be overly restricted in their predictions of distributional potential.
Additionally, (2) biases in sampling among the input occurrence data, such that the data
are concentrated in some regions more than other regions, can bias model results. Finally,
(3) occurrence data can show considerable variation in their spatial resolution, which again
can cause difficulties in model outputs. These complications indeed can compromise
ecological niche model outputs [78,132], but have been mitigated to every extent possible
in the methodologies employed in developing the models discussed in this contribution.

Supplementary Materials: The following are available online at https://www.mdpi.com/2075-445
0/12/3/225/s1, File S1. Full details on the methods. Figure S1. Summary of the potential geographic
distribution of eight medical important ticks (under RCP4.5). Gray represents stable suitable areas.
Red indicates expansion suitable areas under future conditions (Dark red = high model agreement,
light red = low model agreement). Blue and green indicates suitable in current time, but not suitable in
future (Dark blue = high model agreement, light blue = low model agreement). Figure S2. Summary
of the potential reduction in geographic distribution of eight medical important ticks (under RCP4.5).
Dark blue indicates high agreement among models GCMs. (A) Ixodes scapularis, (B) Ixodes pacificus,
(C) Ixodes cookei, (D) Rhipicephalus sanguineus, (E) Amblyomma maculatum, (F) Amblyomma americanum,
(G) Dermacentor andersoni, (H) Dermacentor variabilis.
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