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Simple Summary: In this study, based on known distribution points and climate variables, we used
the MaxEnt model to predict and analyze the potential geographical distribution of W. auropunctata
in China and study the relationship between the distribution of W. auropunctata and environmental
variables. The performance level of the model was “good”. The results showed that most of the
area south of the Yangtze River is potentially suitable for W. auropunctata, and temperature is the
main factor affecting its distribution. The contemporary total suitable living area of W. auropunctata is
1,954,300 km2, accounting for 20.36% of China’s total land area. In future climate-change scenarios,
the low-impact areas were widespread. Based on our results, we recommend that the government
carry out W. auropunctata monitoring as soon as possible to determine the specific distribution and
occurrence of W. auropunctata in the country.

Abstract: Invasive ants are some of the most destructive species in ecosystems and can have serious
ecological and socioeconomic impacts. The little fire ant, Wasmannia auropunctata, is native to Central
and South America and was listed as one of the 100 most threatening major invasive organisms in the
world by the International Union for Conservation of Nature (IUCN). The presence of W. auropunctata
was first reported on the Chinese mainland in January 2022, but its distribution in China is still unclear.
In this study, MaxEnt was used to predict the potential distribution of W. auropunctata in China based
on known distribution points and climatic variables. The prediction results showed that most of the
area south of the Yangtze River is potentially suitable for W. auropunctata, and temperature is the
main factor affecting its distribution. The contemporary total suitable living area of W. auropunctata is
1,954,300 km2, accounting for 20.36% of China’s total land area. Further attention should be given to
the potential impact of W. auropunctata invasions, and effective measures should be taken to eliminate
the introduced population in China.

Keywords: potential distribution; Wasmannia auropunctata; MaxEnt

1. Introduction

With the development of geographic information systems (GISs) and computer sta-
tistical techniques, the potential geographical distribution of species can be inferred by
analyzing climatic conditions in suitable areas [1]. A species distribution methodology
uses algorithms to link the known distribution point data of the target species to related
environmental variables, constructs a model to determine the ecological requirements
required for species distribution, and projects the results of the operation to predict the
potential distribution of species in a specific period and region in the future [2,3]. In recent
years, a variety of species distribution models have emerged, such as BIOCLIM, ENFA,
CART, MaxEnt, GAM, and GLM, and have been widely applied in the fields of ecology,
conservation biology, and biogeography [4]. MaxEnt exhibits good stability; even if the
distribution data information and environmental variables of the distribution area are
incomplete, the potential distribution area of the species can be accurately predicted [5–8].
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Invasive alien species (IASs) are one of the most important threats to native species,
with serious ecological and socioeconomic impacts [9]. Together with other invasive ants,
such as Anoplolepis gracilipes, Solenopsis invicta, Linepithema humile, and Pheidole megacephala,
the little fire ant Wasmannia auropunctata was listed as one of the 100 most threatening
major invasive species in the world by the International Union for Conservation of Na-
ture (IUCN). W. auropunctata originated in Central and South America and is currently
distributed in South America, North America, Australia, Italy, Israel, West Africa, the West
Pacific Islands, and other regions [10,11]. W. auropunctata was found in the Wuri District,
Taichung City, Taiwan Province, China, in 2021, and in Shantou City, Guangdong Province,
in January 2022, which was the first time that the invasion of W. auropunctata was reported
on the Chinese mainland [12,13]. In invasive areas, W. auropunctata is polygyne, exhibits
supercolonial social organization, high interspecific aggression, strong thermal tolerance
plasticity and adaptability, and has a huge impact on native species [11,14,15]. W. auropunc-
tata lives in reciprocal symbiosis with invasive hemipteran insects (e.g., aphids), which can
provide edible honeydew; the small fire ants provide protection for aphids, increasing the
population of hemipteran pests and indirectly endangering agricultural production [16,17].

The growth and reproduction of plants and animals are closely related to climatic
factors, and climate change may affect the pattern of biodiversity [18,19]. Global climate
change makes a difference in temperature and precipitation patterns, and global warm-
ing and other climate-change processes will make its original habitat unable to provide
stable living conditions, forcing species to migrate to other habitats with suitable climatic
conditions for their survival and reproduction [20]. Models based on temporal and spa-
tial aspects can establish monitoring procedures that act as early warning signals during
climate change [21].

Predicting the future distribution of invasive species is critical to prioritization, early
detection, and control. This study of the potential geographical distribution of W. aurop-
unctata is expected to provide a reference for the prediction, forecasting prevention, and
control of W. auropunctata.

2. Materials and Methods
2.1. Species Occurrence Data for W. auropunctata

Distribution data on W. auropunctata were obtained by retrieving data and information
from the Global Biodiversity Information Facility (GBIF) (https://www.gbif.org, accessed
on 7 July 2022) and the literature database (CNKI, Springer, ScienceDirect, and Web of
Science). The latitude and longitude of distribution points without coordinate information
were obtained from a Baidu map (https://api.map.baidu.com/lbsapi/getpoint/index.html,
accessed on 7 July 2022). Then, the data statistics function of Excel was used to remove
duplicate and widely marked distribution points, and the longitude and latitude data were
converted to decimals.

Through the spatial analysis function of ArcGIS (version 10.8), redundant distribution
point data were deleted using fishnet to reduce the impact of spatial autocorrelation [22],
and 85 effective distribution points were obtained (Figure 1 and Table S1). These distribu-
tion points had corresponding climate variables.

https://www.gbif.org
https://api.map.baidu.com/lbsapi/getpoint/index.html
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Figure 1. Species occurrence records on W. auropunctata. Notes: The red triangles indicate distribu-
tion points.

2.2. Environmental Variable Screening and Data Processing

We initially downloaded current conditions (1970–2000) and future climate data (2030s:
2021–2040, 2050s: 2041–2060, 2070s: 2061–2080, and 2090s: 2081–2100) and 19 bioclimatic
variables (BIO01–BIO 19, 2.5 arc–min resolution, ~5 km) from the WorldClim website (https:
//www.worldclim.org/data/index.html, accessed on 16 July 2022). These variables are
often used in many ecological and biogeographic studies for modeling species distribution.
First, the 85 worldwide location data and 19 bioclimatic variables for W. auropunctata were
imported into ArcGIS. The climate variables corresponding to the distribution points were
extracted through the spatial analysis function of ArcGIS, and the Pearson correlation
coefficient between the climate variables was calculated using SPSS (version 25) software
(Table S2). If the correlation between the two climate variables was greater than 0.8, only one
climate variable was selected for use in the model. We converted them to the ASCII format
by using ArcGIS as the Maxent layer for predicting W. auropunctata distributions. The
climate variables together with the 85 distribution point data were imported into MaxEnt
(version 3.4.4; https://biodiversityinformat-ics.amnh.org/open_source/maxent/, accessed
on 18 July 2022) to produce preliminary models, and the initial percentage contribution,
impermissibility importance, and jackknife analysis were calculated. Then, climate factors
with very-low-percentage contributions were removed [23].

2.3. Species Distribution Model Establishment, Optimization, and Evaluation

In this study, we predicted the potential distribution of W. auropunctata assuming
four different shared socioeconomic pathway scenarios (SSP1-2.6: Low forcing category,
radiative forcing reaches 2.6 W/m2 in 2100; SSP2-4.5: Medium forcing category, radiative
forcing reaches 4.5 W/m2 in 2100; SSP3-7.0: High forcing category, radiative forcing reaches
7.0 W/m2 in 2100; SSP5-8.5: High forcing category, radiative forcing reaches 8.5 W/m2 in
2100) for different periods (present, 2030s, 2050s, 2070s, and 2090s) [24].

We used the ENMeval package in R v3.6.1 to optimize the MaxEnt model and set the
regulatory multiplier (RM) to 0.1–4, and each interval was 0.1, for a total of 40 regulatory
multipliers. We used 15 feature classes (FCs): L, Q, P, H, LQ, LP, LH, QP, QH, PH, LQP,
LQH, LPH, QPH, and LQPH. The model provides 5 features: Linear features (L), quadratic
features (Q), product features (P), segmented features (H), and threshold features (T) [25,26].
The ENMeval data package was used to test the 600 parameter combinations, and we
ultimately used the Akaike information criterion (AIC) model of the Akaike information
criterion and used a 5% training omission rate (OR5) and the difference between the
AUC values (AUCDIFF) to check the fit and complexity of the model [27]. By optimizing

https://www.worldclim.org/data/index.html
https://www.worldclim.org/data/index.html
https://biodiversityinformat-ics.amnh.org/open_source/maxent/
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the model, we finally chose the characteristic class (FC) = LQ, regularization multiplier
(RM) = 0.2, and ∆ AICc = 0 to build the best candidate model.

Based on these parameter settings, the selected distribution data, and environmental
variables, we used MaxEnt to predict the modern potential distribution area, and the model
was established and run 10 times. To ensure that the probability of the W. auropunctata
distribution appeared close to reality, we selected 75% of the data for model training and
the remaining data for model testing.

The proportion of test data was set as ‘Random seed’, the replicated run type was
set as ‘Subsample’, the maximum iterations was set to 5000, the importance of climatic
variables was measured by a ‘Jackknife test’, the impact of variables on the distribution of
W. auropunctata was analyzed by creating response curves, the output format was logistic,
and other settings were set to the default values in the software [28]. After the selection of
the best model, the model results were transferred to the China region for four different
shared socioeconomic pathway scenarios based on the 6th assessment report of the IPCC.

The receiver operating characteristic (ROC) curve and area under the ROC curve
(AUC) were used to assess the accuracy of the MaxEnt predictions. The AUC is a threshold-
independent metric that measures the models’ ability to distinguish between random and
background points. The range of AUC was from 0 to 1, and the closer the value was
to 1, the greater the probability of species presence; an AUC of less than 0.7 indicated
poor reliability, 0.7–0.8 indicated fair reliability, 0.8–0.9 indicated good reliability, and
0.9–1 indicated excellent reliability [29–31].

2.4. Hierarchical Classification and Geospatial Analyses of Species Distribution

We used DIVA-GIS v7.5 (http://www.diva-gis.org/, accessed on 20 July 2022) to
average the predictions that corresponded to different atmospheric circulation models in
the same era and reclassified them for measurement of the geographical area of the species
and then divided the W. auropunctata suitable region into four grades: The unsuitable region
(0–0.1069); the low-suitability region (0.1069–0.4046); the moderately suitable region (0.4046–
0.7023); and the highly suitable region (0.7023–1) [32]. We calculated the suitable areas and
the rate of change in the suitable areas under four different shared socioeconomic pathway
scenarios in present and future periods. The distribution area of the binary suitable region
under the same socioeconomic pathway scenarios of the current and next four periods was
superimposed by DIVA-GIS to obtain a low-impact area by taking the minimum value.
Low-impact areas refer to areas where species are suitable for distribution in all ages, that
is, they are relatively less affected by climate change [33].

3. Results
3.1. Analysis of the Accuracy of the Model

Based on 85 distribution points and 9 climate variables for W. auropunctata, the AUC
values of the training data and test data of the initial model were 0.844 and 0.8864 (Figure 2),
respectively, and the performance level of the model was “good”, indicating that the
prediction model was accurate. The difference between the training set and the test set
AUC values was 0.0425.

3.2. Selection of Key Variables in the Model

The Pearson correlation coefficient, initial percentage contribution, permutation im-
portance, and importance of climatic variables in the distribution of W. auropunctata based
on jackknife analysis were used to filter 19 climate variables. Ultimately, nine variables
used to build the final model remained (Table 1): Mean diurnal range (BIO02), isothermal-
ity (BIO03), max temperature of the warmest month (BIO05), annual temperature range
(BIO07), mean temperature of the wettest quarter (BIO08), precipitation in the wettest
quarter (BIO16), precipitation in the driest quarter (BIO17), precipitation in the warmest
quarter (BIO18), and precipitation in the coldest quarter (BIO19).

http://www.diva-gis.org/
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Figure 2. ROC curve and AUC values for the model. The average test AUC for the replicate runs was
0.844, and the standard deviation was 0.012.

Table 1. Climate variables and their contributions.

Variable Environmental
Variable Percent Contribution Permutation

Importance

BIO07 Annual temperature
range 58.8 53.9

BIO02 Mean diurnal range 12 2.2

BIO17 Precipitation of driest
quarter 7.3 2.7

BIO18 Precipitation of
warmest quarter 6.1 1.5

BIO03 Isothermality 5.5 10.1

BIO19 Precipitation of
coldest quarter 4.5 4.9

BIO08 Mean temperature of
wettest quarter 2.3 9.7

BIO05 Max temperature of
warmest month 2.1 14.1

BIO16 Precipitation of
wettest quarter 1.5 0.9

Temperature and precipitation are the main variables affecting the distribution of W.
auropunctata, and the annual temperature range (BIO07) plays a crucial role. The environ-
mental envelope test evaluated the impact of precipitation and temperature variables on
the distribution of W. auropunctata using DIVA-GIS software (Figure S1). The generated
graph indicated that the temperature variables show a greater contribution to the W. au-
ropunctata distribution, as 85.9% of all records used in the model occur on the envelope,
which has the expanded range of annual precipitation (Bio 12), in contrast to the narrow
range of the annual mean temperature (Bio 1). Among all the components, the top three
contributors of the final model were BIO07 (58.3%), BIO02 (12%), and BIO17 (7.3%). The
top three permutation importance levels are BIO07 (53.9%), BIO05 (14.1%), and BIO03
(10.1%) (Table 1). When using only a single variable, the variable with the greatest gain
to the model is still BIO07, followed by the mean diurnal range (BIO02) (Figure 3). The
response curve between environmental variables and the probability of species presence
reflects the relationship. As shown in Figure 4, with the increase in the annual temperature
change range, the probability of the occurrence of W. auropunctata gradually decreases, and
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when the temperature change range is greater than 25 ◦C, the probability of occurrence
is only 10%. When the mean diurnal range (BIO02) reaches 12 ◦C, the probability of W.
auropunctata occurrence is only 30% (Figure 4).

Figure 3. Jackknife test gain for W. auropunctata. Blue, green, and red bars represent running the
MaxEnt model with the variable alone, without the variable, and with all variables, respectively.

Figure 4. Response curve (BIO07, annual temperature range; BIO02, mean diurnal range).
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In summary, the main factors affecting the geographical distribution range of W.
auropunctata are the annual temperature range and the mean diurnal range.

3.3. Potential Distribution of W. auropunctata in China

The potential suitable distribution area of W. auropunctata obtained from MaxEnt is
shown in Figure 5. The total suitable area based on present climatic conditions includes the
provinces south of the Yangtze River, including Hainan Province, Guangdong Province,
Guangxi Province, Chongqing Municipality, Yunnan Province, Guizhou Province, Hunan
Province, Hubei Province, Fujian Province, Zhejiang Province, Jiangsu Province, Anhui
Province, Taiwan Province, central, eastern and southern Sichuan, and a small part of
southeastern Tibet (Figure 5). The moderately and highly suitable areas are distributed
in Hainan Province, Taiwan Province, southern Guangdong Province, southern Guangxi
Province, southwestern Yunnan Province, and southeastern Tibet (Figure 5). The unsuitable
areas, the low-suitability area, the moderately suitable area, and the highly suitable area
encompass 764.56 × 104 km2, 164.86 × 104 km2, 28.76 × 104 km2, and 1.82 × 104 km2,
respectively. The total suitable area comprises 195.43 × 104 km2, representing 20.36% of
China’s total land area (Figure 5).

Figure 5. Potential distribution map of W. auropunctata in the current climate environment.

In addition, the results show that the predicted suitable area is highly consistent with
the area currently occupied by W. auropunctata in the Americas, but in regions such as
western Europe, sub-Saharan Africa, and Southeast Asia where the current W. auropunctata
distribution area is sporadically distributed, it also has a wide range of potential suitable
habitats (Figure S2).

In the context of climate change, we predicted the potential distribution of W. aurop-
unctata under four different shared socioeconomic pathway scenarios (SSP1-2.6, SSP2-4.5,
SSP3-7.0, and SSP5-8.5) for different future periods (2030s, 2050s, 2070s, and 2090s) and
conducted a comparative analysis (Figures 6 and 7). Based on the emission scenario of
SSP1-2.6, the total and low-suitability areas were first reduced, and in the 2050s, both areas
were the smallest and then continued to increase. Under the SSP2-4.5 scenario, the total
suitable area reached a maximum in the 2050s and then decreased. Under the SSP5-8.5 and
SSP3-7.0 scenarios, the forecast results showed that from the 2030s to the 2090s, the total
suitable area of W. auropunctata in China shows an overall decreasing trend.
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Figure 6. Present and future (2030s, 2050s, 2070s, and 2090s) suitable habitat area under four climate
scenarios: (a) SSP1–2.6, (b) SSP2–4.5, (c) SSP3–7.0, and (d) SSP5–8.5. TS, LS, MS, and HS represent
total suitable, low-suitability, moderately suitable, and highly suitable regions, respectively.

Figure 7. Maps of the W. auropunctata distribution in different climate scenarios and periods (2030s,
2050s, 2070s, and 2090s) of the 21st century. The shared socioeconomic pathways (SSPs) 1–2.6,
SSP2–4.5, SSP3–7.0, and SSP5–8.5 represent four climate scenarios.
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The results show that under the emission scenarios of SSP3-7.0-2090S, SSP5-8.5-2070s,
and SSP5-8.5-2090S, compared with the current era, the total suitable area changes by
more than 10%, decreasing by 225,300 km2, 239,000 km2, and 491,100 km2, respectively.
Habitat loss was mainly concentrated in the western part of Sichuan Province, Hubei
Province, Hunan Province, Anhui Province, Jiangsu Province, and north-central Zhejiang
Province. Based on the emission scenario of SSP5-8.5-2090S, the habitats in Anhui and
Jiangsu Provinces were almost completely depleted (Figures 6 and 7). The highly suitable
areas continued to increase based on the scenario of SSP1-2.6 (2030S: 16,600 km2; 2050S:
20,400 km2; 2070S: 22,500 km2; 2090S: 22,800 km2) (Figures 6a and 7).

In other scenarios, the total suitable areas did not change much and remained large
south of the Yangtze River (Figures 6 and 7). For example, under the SSP1-2.6-2030s, SSP2-
4.5-2030s, SSP2-4.5-2090s, SSP3-7.0-2030s, SSP3-7.0-2070s, and SSP5-8.5-2050S scenarios, the
variation in the total suitable areas was less than 3% (Figures 6 and 7).

3.4. Low Impact Area

The low-impact area (LIA) was obtained by superimposing the binary prediction
map of the suitable region of different eras and identifying the completely overlapping
section (Figure 8). This was a relatively small area affected by climate change. The low-
impact area based on different shared socioeconomic paths varied greatly, representing
91.77%, 92.86%, 83.53%, and 69.43% of the contemporary suitable areas. Based on different
scenarios, Hainan Province, Guangdong Province, Guangxi Province, Yunnan Province,
Guizhou Province, Taiwan Province, and the southeastern region of Tibet were considered
low-impact areas. Under the SSP5–8.5 scenario, the low-impact area decreased significantly
(Figure 8).

Figure 8. Prediction of low-impact areas (LIAs) for W. auropunctata under climate scenarios.

4. Discussion

The construction of ecological niche models has been widely used in the study of
invasion biology and conservation biology. The sampling range and sample size are the
key factors that determine the reliability of the simulation results of the species distribution
model. To improve the accuracy of the model, we called upon 600 feature combinations in
the ENMeval packet in R software. The results showed that the AUC given FC = LQ and
RM = 0.2 for the parameter ROC curve was 0.844, indicating that the simulation effect of
the MaxEnt model of the potential geographical area of the W. auropunctata distribution
was accurate and reliable. In similar previous studies, ENMeval packets were rarely used
for model optimization, and even studies using ENMeval packets generally considered
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fewer combinations of parameters [31,34]. Therefore, after comparing 600 optimization
combinations, the conclusions were relatively accurate.

W. auropunctata was first discovered in the Chinese mainland in January 2022, but its
exact distribution in China is unclear. In this study, the potential area of the W. auropunc-
tata distribution in China was predicted by combining climatic variables and distribution
data through MaxEnt, and the results showed that the contemporary suitable habitat was
mainly distributed in the provinces south of the Yangtze River; the northern boundary
reached the central part of Jiangsu Province, the central part of Anhui Province, the north-
ern part of Chongqing, and the northeast of Sichuan, with a total suitable living area of
195.43 × 104 km2, accounting for 20.36% of China’s land area. The range of suitable habitats
was narrower than that based on Federan’s predictions, which may be related to the choice
of thresholds [35]. Carolina Coulin’s predictions of W. auropunctata’s habitat showed that it
can survive north of South Latitude 40 and along the Mediterranean coast, and the greatest
probability was between latitudes of 20 to 30 degrees north [15], which was consistent with
the highly suitable region (Taiwan Province) we predicted. All these findings indicate that
W. auropunctata has a wide range of suitable distribution areas.

Based on the Maxent model, four representative greenhouse gas emission scenarios
were considered in this study. Under the high-emission scenarios (SSP 3-7.0 and SSP 5-8.5),
projections show that from the 2030s to the 2090s, the total suitable area of W. auropunctata
in China decreases, which is consistent with Bertelsmaier’s results that the potential dis-
tribution of most invading ants decreases with climate change [36]. Additionally, under
SSP3-7.0 and SSP5-8.5, the relatively stable suitable area is greatly reduced compared with
the low (SSP1-2.6) and medium (SSP2-4.5) emission scenarios (Figure 8). This suggests that
a sustained increase in temperature may have a negative impact on the species [37].

The occurrence, reproduction, and spread of invasive insects are closely related to
climatic conditions, and temperature is a major factor explaining the distribution of insect
species [38]. In addition, other climatic conditions, such as precipitation and radiation,
also have a significant impact on species distributions [39]. In this study, the relationship
between key climate variables and the probability of occurrence of W. auropunctata was an-
alyzed, and the corresponding response curve was obtained. The main factor affecting the
geographical distribution range of W. auropunctata was the annual temperature range, and
the response curve showed that the probability of occurrence of W. auropunctata gradually
decreased with the increases in the annual temperature change range. Carolina Coulin’s
research showed that after 10 days of low-temperature (15 ◦C) stress, little fire ant’s CTmin
(critical thermal minimum) reached 4.2 ◦C; after 10 days of high-temperature (35 ◦C) stress,
CTmax (thermal critical maximum) reached 43 ◦C, and its workers began to move at a tem-
perature slightly higher than the temperature of CTmin. W. auropunctata is geographically
distributed in areas where the hottest months have the highest temperatures well below
their CTmax. As a result, the workers’ activity is largely influenced by temperature. This
may be related to the fact that little fire ant nests are superficial nests, generally under dead
branches and stones [11].

Niche models are often used to describe the basic niches of species distribution rather
than the actual niches. The prediction capability of the model is excellent, but similar to
other species distribution models, there are some inevitable limitations. Due to a variety of
biological and abiotic factors, the actual ecological niche is usually smaller than the basic
ecological niche [40]. In this study, we used MaxEnt to predict the potential distribution of
W. auropunctata in China accounting for climate change. Although the prediction model
result was “good”, it only took into consideration the climate factors that impact the
distribution of W. auropunctata, and other biological factors (such as competitors) were
not analyzed. In addition, factors such as soil type, topographic and geomorphological
features, human interference, dispersal ability, and physiological characteristics also affect
the geographical distribution of species [41–44]; these factors may bias the predictions.

Based on the results of this study, W. auropunctata has a vast suitable area in China.
To prevent the invasion and spread of W. auropunctata, monitoring points should be set
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up in suitable areas according to the occurrence patterns and biological characteristics of
W. auropunctata. In Hainan Province, Guangdong Province, Guangxi Province, Yunnan
Province, Guizhou Province, Taiwan Province, and the southeastern region of Tibet and
other low-impact areas that are less affected by climate change, it is recommended that the
relevant governments carry out W. auropunctata monitoring as soon as possible to determine
the specific distribution and occurrence of W. auropunctata in the country. Taking active
and effective measures to prevent and control damage, reduce the economic losses caused
by W. auropunctata, and respond to their presence may effectively slow the spread of the
species, especially in regions of Taiwan and Shantou in Guangdong Province, where they
have been discovered.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/insects13111008/s1, Table S1: Species occurrence data for W.
auropunctata. Table S2: Pearson correlation coefficient. Table S3: Prediction of suitable areas under
the present and future climate. Figure S1: Environmental envelope model of recorded points of
W. auropunctata, the envelope showing the wide range of annual precipitation (Bio 12) against an
effective small range of annual mean temperature (Bio 1). Figure S2: Potential distribution map of W.
auropunctata in the world under the current climate environment.
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