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Simple Summary: Elevated carbon dioxide concentrations (eCO2) have a significant direct effect
on herbivorous insects during their host seeking and oviposition. On the other hand, eCO2 could
dramatically alter leaf chemistry of plants, especially in C3 plants (such as wheat), which in turn
is likely to affect the population performance of insects that feed on the host plant. However, the
effects of eCO2 on host adaptability and insecticide resistance in the fall armyworm, Spodoptera
frugiperda, are unclear. In this study, we demonstrate that elevated CO2 concentrations increased the
population performance of S. frugiperda on wheat and reduced the susceptibility of S. frugiperda to
chlorantraniliprole by inducing the expression of detoxification enzyme genes. This report warns
that S. frugiperda may continue to be a major global pest through better host adaptation and increased
insecticide resistance in the future as atmospheric CO2 continues to rise.

Abstract: Elevated atmospheric carbon dioxide concentrations (eCO2) can affect both herbivorous
insects and their host plants. The fall armyworm (FAW), Spodoptera frugiperda, is a highly polyphagous
agricultural pest that may attack more than 350 host plant species and has developed resistance to
both conventional and novel-action insecticides. However, the effects of eCO2 on host adaptability
and insecticide resistance of FAW are unclear. We hypothesized that eCO2 might affect insecticide
resistance of FAW by affecting its host plants. To test this hypothesis, we investigated the effect of
eCO2 on (1) FAW’s susceptibility to chlorantraniliprole after feeding on wheat, (2) FAW’s population
performance traits (including the growth and reproduction), and (3) changes in gene expression in
the FAW by transcriptome sequencing. The toxicity of chlorantraniliprole against the FAW under
eCO2 (800 µL/L) stress showed that the LC50 values were 2.40, 2.06, and 1.46 times the values at the
ambient CO2 concentration (400 µL/L, aCO2) for the three generations, respectively. Under eCO2,
the life span of pupae and adults and the total number of generations were significantly shorter than
the FAW under aCO2. Compared to the aCO2 treatment, the weights of the 3rd and 4th instar larvae
and pupae of FAW under eCO2 were significantly heavier. Transcriptome sequencing results showed
that more than 79 detoxification enzyme genes in FAW were upregulated under eCO2 treatment,
including 40 P450, 5 CarE, 17 ABC, and 7 UGT genes. Our results showed that eCO2 increased
the population performance of FAW on wheat and reduced its susceptibility to chlorantraniliprole
by inducing the expression of detoxification enzyme genes. This study has important implications
for assessing the damage of FAW in the future under the environment of increasing atmospheric
CO2 concentration.

Keywords: carbon dioxide; Spodoptera frugiperda; host adaptability; chlorantraniliprole; detoxification

1. Introduction

Carbon dioxide (CO2) levels in the atmosphere have risen dramatically as a result of
the Industrial Revolution. Today, the concentration of atmospheric CO2 is about 400 parts
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per million (www.esrl.noaa.gov/gmd/ccgg/trends/, accessed on 11 March 2022), but it
could be twice as high by the end of the century [1].

High atmospheric CO2 levels could have a significant effect on insects. A number
of hematophagous arthropods respond directly to the level of CO2 during host seeking
and oviposition [2,3]. Research on Frankliniella occidentalis (Pergande) and Frankliniella
intonsa (Trybom) have shown that elevated CO2 concentration (800 µL/L, eCO2) decreases
development duration and increases the fecundity and daily eggs laid per female [4],
implying more severe damage in the future. Nevertheless, most studies have focused
only on the direct effects of eCO2 on insects. The amount of plant material consumed by
phytophagous insects is inextricably linked to their suitability and nutritional quality. In
addition to increasing growth rates, eCO2 in the atmosphere dramatically alters these plant
traits, such as leaf chemistry [3]. The effect is especially noticeable for C3 plants, such as
wheat [5]. Half of all insects, including most Orthoptera, Hemiptera, and Lepidoptera,
feed on plants as larvae. Therefore, the amount of plant material taken up by insects is
mainly determined by the nutrient composition of the plant. Among a variety of factors
that influence plant nutritional quality, nitrogen is the most important [6,7]. In some cases,
it is very common for the carbon/nitrogen (C:N) ratio in the leaf tissue to greatly increase,
implying a reduction in food quality. According to the compensatory feeding theory,
insects may need to eat more foliage to obtain enough nitrogen-based nutrition (mainly
proteins). Therefore, phytophagous insects are indirectly affected by changes in their host
plants [8]. The development, egg laying capacity, reproduction, and adult longevity of
insect herbivores may be influenced by changes in host plant quality and quantity as a
result of eCO2 [9].

The fall armyworm (FAW), Spodoptera frugiperda (Lepidoptera: Noctuidae), is an invasive
species native to North America and is currently distributed in Asia [10], Africa, Oceania,
Central America and South America (https://gd.eppo.int/taxon/LAPHFR/distribution,
accessed on 11 March 2022). The FAW is regarded as a super pest because of its superior
biological characteristics (including being highly polyphagous, and rapidly developing
resistance to insecticides) [11–13]. In China, FAW causes serious damage to crop yield
both directly or indirectly. The four provinces most affected by FAW in China are Yunnan
($830.51 M), Guangxi ($346.09 M), Sichuan ($116.87 M), and Shandong ($116.43 M) [14].
However, as a super-invasive pest, the impacts of eCO2 on the FAW in the future have not
yet been predicted.

eCO2 could directly amplify the effect of insecticides on insects that feed only under
eCO2 stress. Previous studies have shown that combining methyl bromide with an increase
in 20% CO2 concentration increases the susceptibility of adult Sitophilus oryzae to methyl
bromide by 1.5-fold [15]. eCO2 amplifies the efficacy of spinetoram on Frankliniella occi-
dentalis and F. intonsa [16], which indicates that eCO2 increases the insecticidal activity of
spinetoram against F. occidentalis and F. intonsa compared with aCO2. In the field, however,
eCO2 tends to have a combination effect on herbivorous insects and host plants at the
same time, rather than only having direct effects on insects. Therefore, it is important
to study the comprehensive effects of eCO2 on insects and plants, as both insects and
their host plants are exposed to eCO2 stress. Rao et al. found that in the Spodoptera litura
Fab–peanut system, eCO2 caused a higher LC50 value of spinosad and deltamethrin with a
comprehensive impact, showing a ‘reduction of toxicity’ [17]. In addition, the susceptibility
of the brown plant hopper Nilaparvata lugens to triazophos was significantly decreased in
eCO2 compared to aCO2 levels [18]. Thus, the efficacy of insecticides on insects at different
CO2 concentrations depends on the experimental treatment. The direct and combined
effects of CO2 may result in different insecticidal efficacies in pesticides. To date, the effect
of eCO2 on the efficacy of insecticides against the FAW remains unclear. Previous studies
have reported that elevated CO2 increases the activity of detoxifying enzymes such as car-
boxylesterases (CarEs) and glutathione S-transferases (GSTs) [16]. Detoxification enzymes
play essential roles in the survival of insects exposed to adverse environments [19–21],
therefore, higher detoxifying enzymes activity indicate that those enzymes may be involved
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in anti-eCO2 stress, thereby changing the insecticide susceptibility in insect. However,
the exact mechanism is still unclear. Chlorantraniliprole is a diamide insecticide that has
high efficacy against lepidopteran insects, low toxicity to mammals and beneficial insects,
and absence of cross-resistance with traditional insecticides. Chlorantraniliprole has been
shown to have a high effect on FAW control and is widely used to control the FAW in many
commercial crops worldwide [22–25]. Therefore, it is important to determine the effect of
eCO2 on the chlorantraniliprole susceptibility of the FAW.

eCO2 concentrations tend to have a combined effect on herbivorous insects and host
plants, but most of the current studies only consider the effect in a direct or indirect way.
The FAW is a devastating pest, and it is necessary to predict its potential damage in the
future after the atmospheric CO2 concentration increases. To test the hypothesis that eCO2
might affect insecticide resistance of FAW by affecting its host plants, in this study, we first
investigated how eCO2 affects the susceptibility of the FAW to chlorantraniliprole, then
calculated the growth and reproduction of the FAW to analyse its population performance
traits under eCO2. Finally, we used transcriptomic analysis and qRT-PCR to identify
detoxification genes in the FAW induced under eCO2 stress.

2. Materials and Methods
2.1. Plant Materials and Insect Stocks

Wheat (Huai mai 36), Triticum aestivum L, is a C3 plant susceptible to eCO2, and is
one of the FAW’s favourite host plants. Wheat was grown hydroponically in two sepa-
rate climate chambers with two CO2 concentrations (400 and 800 µL/L) under the same
temperature, light intensity, and humidity regimes at Yunnan Agricultural University, Kun-
ming, Yunnan Province, China (25◦07′ N, 102◦44′ E). Wheat leaves under both treatment
conditions were selected for FAW feeding when each plant was at least 8 days old. Wheat
was watered every day, and no chemical fertilizer or insecticide was used throughout the
experiment. The two treatments on wheat were named WA (wheat that grew at aCO2) and
WE (wheat that grew at eCO2).

The tested FAWs were collected from Yuanjiang, Yunnan Province, China
(23◦35′59.52′′ N, 101◦58′39.64′′ E) in May 2019. The larvae were reared on an artificial
diet without exposure to any pesticides since then [26], and the adults were fed with a 10%
honey/water solution in the laboratory under the conditions of 27 ± 0.5 ◦C, 70 ± 5% RH
and a photoperiod of 16 h:8 h (L:D).

2.2. Effect of eCO2 on FAW Population Performance

To accurately record the effect of eCO2 on the FAW, two levels of atmospheric CO2
concentration, eCO2 (800 µL/L, the predicted level at the end of this century) and aCO2
(400 µL/L, the current atmospheric CO2 level), were set up in two artificial climate chambers
(LTC-1000, SANTN, Shanghai, China), with 16 h light at 27 ◦C and 8 h dark at 25 ◦C, and
70% relative humidity (RH). CO2 gas was supplied to the climate chamber all day, and the
CO2 concentrations were monitored and adjusted automatically once every 20 min. Eggs
laid by the same female were separately placed into two climate chambers with different
CO2 concentrations. Newly hatched larvae were randomly selected and reared individually
in glass vials (d = 2.5 cm, covered with circular filter paper at the bottom of the vial). We set
up three treatments: FAWs grown at 400 µL/L CO2 fed with wheat grown at aCO2 (named
FAWA), FAWs grown at 800 µL/L CO2 fed with wheat grown at aCO2 (named FEWA),
and FAWs grown at 800 µL/L CO2 fed with wheat grown at eCO2 (named FEWE). Each
treatment had three replicates, and each replicate contained 25 individual larvae. Larval
instar and body weight changes were recorded daily, all vials were cleaned, and leaves
were replaced daily until the larvae pupated.
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2.3. Effect of eCO2 on the Chlorantraniliprole Susceptibility of the FAW

The toxicity effect of chlorantraniliprole on the FAW under the three treatments men-
tioned above (FAWA, FEWA, and FEWE) were assessed and adapted from a previous
study [16]. Chlorantraniliprole was diluted with distilled water to five concentrations.
A larval rearing box (18 cm × 12 cm × 8 cm) and wheat leaves that grew under two
carbon dioxide concentrations (elevated and ambient) were dipped for 2 h and 15 s in a
chlorantraniliprole suspension and dried at room temperature. The control treatments
were dipped in distilled water. Thirty random fourth larvae were selected and placed in
three rearing boxes (each rearing box placed 10 larvae). The mortality rate of the FAWs was
assessed after 48 h. The experiments were performed in triplicate. FAWs were presumed
dead when they showed no reaction when touched with a brush. The concentration mor-
tality regression equation and LC50 of chlorantraniliprole against the FAWs were derived
and calculated. The above experiments were performed under eCO2 and aCO2. The same
bioassay was performed in three generations of larvae.

2.4. Effect of eCO2 on Wheat

To investigate the influence of two CO2 concentrations on wheat (WA and WE), the
length of wheat shoots and roots were measured after eight days of cultivation, after which
those shoots and roots were oven-dried at 80 ◦C for 72 h. The dry biomass of the roots and
shoots was recorded to determine the ratio of roots to shoots, and the relative biomass of
the roots and shoots. For each treatment, data on the weight of the total dry plant were
used to represent their biomass.

2.5. RNA Isolation, Transcriptome Library Preparation and Sequencing

To understand how eCO2 affects FAW gene expression, comparative transcriptomic
analyses were carried out on larvae FAWA and FEWE. Larvae at the fifth instar were selected
from three treatments. Five larvae were selected as one sample for the experiment, and
three biological replicates of each concentration were performed. A total RNA extraction
kit (RNeasy Mini Kit, Qiagen, Hilden, Germany) was used for RNA extraction. RNase-free
agarose gel was used to check for contamination. RNA integrity and purity were measured
using an Agilent 2100 Bioanalyzer system (Agilent, Santa Clara, CA, USA) and Nano Drop
Spectrophotometer (THERMO, Waltham, MA, USA), respectively. The extracted RNA was
reverse transcribed to cDNA for library preparation. The libraries were prepared following
the manufacturer’s instructions using the BGISEQ-500 sequencing platform. Pair-end
sequencing with 100 bp in length was performed using a BGISEQ-500 sequencer with the
processed libraries.

The sequencing data were filtered with SOAPnuke (v1.5.2, Source: https://github.
com/BGI-flexlab/SOAPnuke, accessed on 20 August 2021) by removing reads (1) con-
taining a sequencing adapter, (2) whose low-quality base ratio (base quality less than
or equal to five) was more than 20%, and (3) whose unknown base (‘N’ base) ratio was
more than 5%; afterwards, clean reads were obtained and stored in FASTQ format [27].
The clean reads were mapped to the reference genome using HISAT2 (v2.0.4, Source:
http://www.ccb.jhu.edu/software/hisat/index.shtml, accessed on 27 August 2021) [28].
The clean reads were aligned to the reference genome [12]. Bowtie2 (v2.2.5, Source: http:
//bowtiebio.sourceforge.net/%20Bowtie2%20/index.shtml, accessed on 28 August 2021)
was applied to align the clean reads to the reference coding gene set, then expression level
of gene was calculated by RSEM (v1.2.12, Source: https://github.com/deweylab/RSEM,
accessed on 31 August 2021) [29,30]. The heatmap was drawn with pheatmap (v1.0.8,
Source: https://cran.r-project.org/web/packages/pheatmap/index.html, accessed on
1 September 2021) according to the gene expression in different samples [31]. Differen-
tial expression analysis was performed using DESeq2 (v1.4.5, http://www.bioconductor.
org/packages/release/bioc/html/DESeq2.html, accessed on 1 September 2021) with a
Q value ≤ 0.05 [32]. Genes that were differentially expressed in each comparison group
with |log2(fold change in a comparison group) > 1 and adjusted p value ≤ 0.001 were
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considered differentially expressed genes (DEGs). To compare the changes in pheno-
type, GO (http://www.geneontology.org/, accessed on 1 September 2021) and KEGG
(https://www.kegg.jp/, accessed on 1 September 2021) enrichment analysis of annotated
DEGs was performed using Phyper (https://en.wikipedia.org/wiki/Hypergeometric_
distribution, accessed on 2 September 2021) based on the Hypergeometric test. The sig-
nificance levels of terms and pathways were determined by a Q value with a rigorous
threshold (Q value ≤ 0.05).

2.6. qRT-PCR

Two micrograms of total RNA of each sample were used for qRT-PCR cDNA synthesis
using a FastKing RT Kit (with gDNase) (KR116, TIANGEN, Beijing, China). The TransStart®

Tip Green qPCR SuperMix (AQ141, TransGen Biotech, Beijing, China) was used for qRT-
PCR in a 10 µL reaction solution on a LighCycler480 II machine (Roche, Basel, Switzerland).
qRT-PCR proceeded as follows: one cycle of denaturation at 94 ◦C for 3 min, followed by
40 cycles of denaturation at 94 ◦C for 10 s, annealing at 60 ◦C for 10 s, and elongation at
72 ◦C for 20 s, followed by melting curve analysis. Two reference genes, RPL10-insects and
RPL13-JIA, were selected for normalisation of the qRT-PCR results. mRNA levels were
analysed using the 2−44CT method [33]. Each assay was repeated three times. Primers
were designed using Primer 5.0 software. The primer sequences are listed in Supplementary
Table S1.

2.7. Data Analyses

Each experiment was conducted with three biological replicates, and all data were
expressed as the mean ± standard error (SE). The larvae weight and development pe-
riod of the FAW, wheat shoot and root length, and dry biomass were analysed in a data
analysis model based on an independent sample t-test (DMRT) (p < 0.05) in SPSS 24.0.0
(IBM, Armonk, NY, USA). Heatmaps were plotted using Origin Pro 2021b (64-bit) SR1
(9.8.5.204 Learning Edition). Bar graphs were plotted using GraphPad Prism version 8.0.0
for Windows (GraphPad Software, San Diego, CA, USA, www.graphpad.com, accessed on
15 March 2022) and Excel 2019.

3. Results
3.1. Effect of eCO2 on the Susceptibility of the FAW to Chlorantraniliprole

Log-probit regression analyses for the toxicity of different chlorantraniliprole concen-
trations against the FAW showed that the insecticidal activity of chlorantraniliprole was
higher for FAWA than FEWE (Table 1). The LC50 values for FEWE were 2.40, 2.06, and
1.46 times that for FAWA (Table 1). The results showed that FAWA was more susceptible to
chlorantraniliprole than FEWE in all three generations.

To clarify the direct effect of eCO2 on the FAW, the toxicity of chlorantraniliprole
against FEWA treatment was determined in the first generation (Supplementary Table S2),
and the results showed that the insecticidal activity of chlorantraniliprole was 1.84 times
higher for FEWA than FAWA, indicating that FEWA was more susceptible to chlorantranilip-
role than FAWA.
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Table 1. Toxicity effect of chlorantraniliprole on 4th larvae of the FAW under eCO2 and aCO2.

Generation Treatment
Concentration

Response Regression
Equation

χ2 p
LC50

(mg L−1)
95% CI

1st
FAWA y = 4.2826 + 0.7447x 51.97 0.0001 9.19

(1.57−59.67)

FEWE y = 2.6994 + 1.7117x 33.90 0.0001 22.08
(9.00−64.63)

2nd
FAWA y = 3.4718 + 1.5021x 40.16 0.0001 10.41

(4.25−27.20)

FEWE y = 3.9791 + 0.7667x 8.71 0.0334 21.45
(13.49−39.63)

3rd
FAWA y = 4.2871 + 0.5890x 23.20 0.0001 16.82

(13.44−51.72)

FEWE y = 3.5639 + 1.0336x 7.99 0.0463 24.52
(12.96−71.98)

Note: 95% CI, 95% confident intervals; LC50, the concentration of chlorantraniliprole that is lethal to 50% of FAWs.
The fall armyworm grown at 400 µL/L CO2 fed with wheat grown at ambient CO2 concentration (400 µL/L,
aCO2) was named FAWA, and FAWs grown at 800 µL/L CO2 fed with wheat grown at elevated atmospheric
carbon dioxide concentrations (800 µL/L, eCO2) were named FEWE, similarly hereinafter.

3.2. Effect of eCO2 on FAW Population Performance in Wheat

To examine the effect of eCO2 on the FAW, FAWA and FEWE were reared. Compared
with FAWA, the pupae, adult, and total generation durations of FEWE were significantly
shorter (Figure 1A). Compared with the FAWA, fourth instar larvae of FEWE and the pupae
were heavier (Figure 1B). The average female fecundity of FAWA and FEWE was 918.70
and 811.80, respectively (Figure 1C); though FEWE had a lower fecundity, there was no
significant difference.
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3.3. Effect of eCO2 on Wheat Biomass

The biomass of wheat was affected by the CO2 level. Overall, the weight and length
of wheat shoots grown at eCO2 were significantly higher than those grown at aCO2
(Figure 2A–C). The root weight and length of wheat nurtured at eCO2 were higher than
those nurtured at aCO2. Wheat grown at a high CO2 concentration had a lower root-to-
shoot ratio (Figure 2D).
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The same is true for the following figures.

3.4. Effect of eCO2 on the DEGs of FAW

To investigate the transcriptomic profiles of the FAW under different CO2 conditions,
the treatment (FAWA) and control (FEWE) larvae groups were used for transcriptomic
analyses (Supplementary Table S3). The expression of all identified genes obtained through
RNA sequencing was compared for FAWA and FEWE. There were 1542 DEGs between
the two groups, with 897 upregulated and 645 downregulated genes in FEWE (Figure 3).
Among the upregulated genes, 78 genes belonged to detoxification enzyme-related genes;
these DEGs may lead to changes in insect tolerance to insecticides.
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lated are represented by blue dots; genes with no significant differences in expression are represented
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3.5. GO and KEGG Analyses

DEGs in the 2 comparison groups were annotated using the Gene Ontology (GO)
function database, which divided them into three macroscopic groups, namely: biological
process, cellular component, and molecular function (Supplementary Figure S1). For FAWA
versus FEWE, DEGs were assigned to 1594 GO terms enriched in 893 terms of biological
process, 212 terms of cellular component, and 489 terms of molecular function, respec-
tively (Figure 4). Among these enriched GO terms, many have growth and development-
and detoxification and metabolism-related functions, including monooxygenase activity,
oxidoreductase activity, carbohydrate transport, chitin binding, cholinesterase activity,
response to stress, UDP-glucose 4-epimerase activity, and so on.
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Note: The length of the X-axis column represents the size of the Q value (−log10(Q value)), and the
value of the point on the polyline on the upper X is the number of differential genes annotated to the
GO term.

Unigenes with KEGG annotations were classified into five major categories
(Supplementary Figure S2). For the secondary categories, the pathways of carbohydrate
metabolism, global and overview maps, and lipid metabolism were ranked as the top
three subcategories in each category. There are a series of DEGs related to carbohydrate
metabolism, energy metabolism, environmental adaptation, and lipid metabolism in cate-
gories. A total of 20 signalling pathways (Table 2) were enriched in FAWA compared to
FEWE, and a number of DEGs related to glutathione metabolism, fatty acid metabolism,
ABC transporters and peroxisome were also enriched.

3.6. Detoxification Enzyme Gene Differentially Expression and Validation

Among the 897 upregulated DEGs, many detoxification genes were upregulated,
including 40 genes encoding cytochrome P450 monooxygenases (P450s) (Figure 5A),
17 ATP-binding cassette transporters (ABCs) (Figure 5B), five carboxylesterases (CarEs)
(Figure 5C), 7 UDP glucosyltransferases (UGTs) (Figure 5D), four acetylcholinesterase
(AchEs) (Figure 5E), and five glutathione S-transferases (GSTs) (Figure 5F).
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Figure 5. Heatmap of differentially expressed genes of FAWA versus FEWE. (A) Heatmap of cy-
tochrome P450 monooxygenase (P450) DEGs. (B) Heatmap of ATP-binding cassette transporter
(ABC) DEGs. (C) Heatmap of carboxylesterase (CarE) DEGs. (D) Heatmap of UDP glucosyltrans-
ferase (UGT) DEGs. (E) Heatmap of acetylcholinesterase (AchE) DEGs. (F) Heatmap of glutathione
S-transferase (GST) DEGs. Note: Heatmaps show the average values of FPKM. The x-axis shows the
different treatments (FAWA and FEWE). The colour represents the fold change of DEGs; red indicates
upregulation, and blue indicates downregulation.
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Table 2. KEGG pathway enrichment results of DEGs in FAWA versus FEWE.

Pathway ID Pathway Name p Value Q Value

ko00563 Glycosylphosphatidylinositol
(GPI)-anchor biosynthesis 0.000000001 0.0000000581

ko00965 Betalain biosynthesis 0.000000001 0.0000000581

ko00950 Isoquinoline alkaloid
biosynthesis 0.000000016 0.0000006040

ko00790 Folate biosynthesis 0.000015700 0.0004409770
ko00350 Tyrosine metabolism 0.000021100 0.0004722640

ko03450 Non-homologous
end-joining 0.000074600 0.0013931500

ko03420 Nucleotide excision repair 0.000169718 0.0027154880
ko00310 Lysine degradation 0.000531000 0.0074340010
ko00052 Galactose metabolism 0.000914600 0.0113816900

ko00590 Arachidonic acid
metabolism 0.001703890 0.0173487000

ko00561 Glycerolipid metabolism 0.002804281 0.0261732900
ko03060 Protein export 0.005070793 0.0436868300

Note: Enriched signalling pathways with Q < 0.05 were considered statistically significant.

To confirm the results of the transcriptomic analyses, 16 detoxification enzyme genes
were selected for qRT-PCR validation. The expression patterns of the selected 14 detoxi-
fication enzyme genes significantly upregulated expression in FEWE based on qRT-PCR
analysis (Figure 6). The changes in gene expression levels based on qRT-PCR were largely
consistent with the transcriptomic data.
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Figure 6. Quantitative real-time PCR (qRT-PCR) data of selected genes. Sixteen upregulated DEGs
were selected for PCR analysis. RPL10-insects and RPL13-JIA were used as reference genes for
qRT-PCR normalisation. The mRNA expression levels of the selected genes were calculated using the
2−44CT method. Note: Asterisks denote significant difference between ambient and elevated CO2

by the independent-sample t-test at p < 0.05, ns indicates insignificant.

4. Discussion

In addition to the evolution of pest resistance to insecticides, conditional resistance can
result from the reduction of insect’s susceptibility to insecticides under changed environ-
mental conditions [34]. Rao et al. found that in S. litura, higher CO2 concentrations caused
higher LC50 values for spinosad and deltamethrin, while it caused lower LC50 values for
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flubendiamide, emamectin benzoate, and quinalphos, indicating that the comprehensive
influence of eCO2 on insect resistance depends on the pesticide type [17]. In this study,
FAWA was more susceptible to chlorantraniliprole than FEWE in three generations (Table 1).
Similarly, the susceptibility of N. lugens to triazophos was significantly decreased in eCO2
compared to aCO2 levels. Ge et al. suggested that this is because eCO2 accelerates the
dissipation of triazophos in rice [18]. However, how pests resist pesticides at eCO2 is also
important. Recently, transcriptomic analysis has become a routine method for identifying
DEGs in insects in response to environmental stress [35,36]. We screened expanded gene
families in the FAW to determine how eCO2 affects the susceptibility of the FAW to pesti-
cides. We compared RNA transcription levels using RNA-seq. We determined the DEGs
among FAW treated by FAWA (FAW grown at 800 µL/L CO2 fed with WA) and FEWE
(FAW grown at 400 µL/L CO2 fed with WE). Our results show that there were 1542 DEGs,
with 897 upregulated and 645 downregulated genes in FAWA compared to FEWE (Figure 3),
and that a large number of DEGs were involved in metabolic detoxification, including
P450s, ABCs, CarEs, UGTs, and GSTs (Figure 5). This indicates that eCO2 can induce the
expression of detoxification enzyme genes, which is most likely caused by changes in the
concentration of chemical substances in wheat leaves.

Some studies have found that eCO2 can amplify the effect of chemicals on insects.
For instance, eCO2 inhibits respiratory enzymes, such as malic enzymes and succinate
dehydrogenase, resulting in decreased adenosine triphosphate (ATP) generation. Insects
may die as a result of insufficient energy supply. eCO2 levels may increase membrane
permeability, allowing more insecticides to enter the insect’s body [37–40]. Compared to
aCO2, high atmospheric CO2 can directly amplify the effect of spinetoram insecticidal
activity against Thysanoptera pest F. occidentalis and F. intonsa [16]. In this study, when FAW
was only directly affected by eCO2 (FEWA), it was more susceptible to chlorantraniliprole
than FAWA (Supplementary Table S2); this conclusion is consistent with Fan et al. [16].

Previous studies suggest that the CO2 increase may affect plants, as it alters the chemi-
cal composition of the air, leading to modifications in plants’ secondary metabolism. In-
creases in the C:N ratio have been seen in plants growing at high CO2 concentrations, which
are expected to affect carbon-based secondary chemistry. As a result of these changes, plant
tissue nutritional quality is reduced, resulting in an increase in phenolics and a decrease
in nitrogen in the plants [8,41–44]. Under elevated CO2, the reduction in N concentration
across a broad range of species can exceed 14%, with C3 plants responding more than C4
plants [3]. To find out how eCO2 affects insecticide resistance of FAW by affecting its host
plants, wheat (one of the FAW’s favourite C3 plants) biomass was measured. In this study,
wheat biomass at two CO2 concentrations suggests its tissue nutritional quality, C:N ratio,
secondary metabolism and defence chemistry content were changed (Figure 2) [3,45,46].
Similarly, many studies have shown that eCO2 increases secondary metabolism and defence
chemistry content in plants. A review by Robinson reported that plants grown in eCO2
environments increased total phenolics and condensed tannins and flavonoids by 19%, 22%,
and 27%, respectively [8]. eCO2 increased the concentration of quercetin, kaempferol, and
fisetin in leaves and rhizomes of two ginger varieties, and exhibited more enhanced free
radical scavenging power [47]. In soybean (Glycine max), quercetin-to-kaempferol ratios
increase as a result of a strong increase in aliphatic glucosinolates and the methylsulfiny-
lalkyl glucosinolates glucoraphanin and glucoiberin [48]. The total glucosinolate content
increased in broccoli (Brassica oleracea) and Arabidopsis thaliana cultivated at eCO2 [49,50].
When insects feed on plants with altered secondary metabolism and defence chemistry, the
expression of detoxification enzyme genes will change, which will affect their susceptibility
to insecticides. Lu et al. found that in Spodoptera litura, pre-exposure to flavone induced
detoxification gene expression and effectively increased larval tolerance to multiple syn-
thetic insecticides [51]. After dietary exposure to xanthotoxin, the 20E signalling pathway
and detoxification enzyme genes were modulated by the ROS/CncC pathway to improve
tolerance of Spodoptera litura larvae to λ-cyhalothrin [52]. The activities of Spodoptera litura
P450 and CYP6AB60 transcription levels were significantly elevated after exposure to an
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artificial diet supplemented with the plant secondary metabolites coumarin, xanthotoxin,
or tomatine [53]. Therefore, we speculated that eCO2 not only changes the growth, devel-
opment, and reproduction of FAW, but also enhanced biodegradation of xenobiotics by
overproduction of a complex array of detoxification enzymes, such as cytochrome P450
monooxygenases (P450s), carboxy/cholinesterases (CCEs), ATP-binding cassette trans-
porter (ABCs), and glutathione S-transferases (GSTs) [54–57]. Therefore, eCO2 increases
wheat’s secondary metabolism and defence chemistry content to induce FAW detoxification
enzyme gene upregulation, thereby decreasing FEWE susceptibility to chlorantraniliprole.

Insect’s growth, fecundity, occurrence, and population distribution could change with
environmental stress as a result of metabolic rate fluctuation [4]. Elevated atmospheric
CO2 concentration may have effects on insects directly or indirectly [3]. The oviposition
period, sex ratio, net reproductive rate, intrinsic rate of increase, and finite rate of increase
of F. occidentalis increased under eCO2 conditions, while larval duration, survival rate,
mean generation time, and population doubling time decreased [58]. For the cotton
bollworm, Helicoverpa armigera (Hubner), the direct effects of eCO2 significantly increased
mortality and decreased fecundity [59]. When the Asian corn borer, Ostrinia furnacalis
(Guenee), was fed an artificial diet under eCO2 conditions, it had a longer larval and
pupal development time and decreased rates of survival and mean relative growth [60].
In terms of indirect effects, Qian et al. found that after feeding on plants grown under
eCO2, acetylcholinesterase, carboxylesterase, and mixed-function oxidase activity in thrips
increased to counter plant defences. Greater thrip densities induced stronger plant defences
and, in turn, detoxifying enzyme levels in thrips increased [19]. In this study, the larval,
pupae, adult, and total generation duration of the FAW between FAWA and FEWE were
significantly different; larvae and pupae weight were also different, but average female
fecundity between the two treatments was not significantly different (Figure 1), indicating
that eCO2 results in faster population outbreak and more serious damage (heavier larvae
and pupae) with no change in fecundity of FAW. In the future, the damage caused to crops
by the FAW may increase due to a shorter developmental duration, a heavier body weight,
and no difference in fertility.

5. Conclusions

In conclusion, we found that eCO2 could upregulate many detoxification genes in the
FAW Spodoptera frugiperda, which were likely to be involved in insecticide susceptibility of
FAW at eCO2. Furthermore, eCO2 increased the population performance of the FAW on
host plants. These two responses of the FAW to eCO2 may further cause a FAW population
outbreak and increase the damage caused by the FAW in the future.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/insects13111029/s1, Figure S1: GO gene function classifications of DEGs in comparison groups,
Figure S2: KEGG gene function classifications of DEGs in comparison groups. Table S1: Primers
of detoxification enzyme genes used in the quantitative real-time PCR, Table S2: Toxicity effect of
Chlorantraniliprole on 3rd larvae of S. frugiperda under elevated CO2 and ambient CO2, Table S3:
Summary of the transcriptome sequencing data.
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