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Simple Summary: Culiseta longiareolata (Macquart 1838) is a cosmopolitan mosquito species and is
considered to be an important vector in the transmission of avian malaria, tularemia, and arboviruses.
The present study investigates the population structure of Cs. longiareolata from different bioclimatic
and larval habitat types using a wing geometric morphometric approach. The main findings of
our study showed that these environmental factors shape the population structure of Cs. longiare-
olata, most especially in male mosquitoes. This further deepens our understanding of how vector
mosquitoes such as Cs. longiareolata adapt and thrive in different environmental conditions.

Abstract: The application of geometric morphometry on mosquito wings (Culicidae) is considered a
powerful tool for evaluating correlations between the phenotype (e.g., shape) and environmental
or genetic variables. However, this has not been used to study the wings of the avian malaria
vector, Culiseta longiareolata. Therefore, the goal of this study is to investigate the intra-specific wing
variations between male and female Cs. longiareolata populations in different types of larval habitats
and climatic conditions in Algeria. A total of 256 Cs. longiareolata mosquito samples were collected
from January 2020 to July 2021 in three cities (Annaba, El-Tarf, and Guelma) of northeastern Algeria
that have two distinct climatic condition levels (sub-humid and sub-arid) and different types of larval
habitats (artificial and natural). Nineteen (19) wing landmarks (LMs) were digitized and analyzed
based on geometric morphometry. Our results revealed differences in the wing shape of female and
male mosquito populations, indicating sexual dimorphism. Moreover, canonical variance analysis
(CVA) showed that factors, such as climatic conditions and type of larval habitats, also affect the wing
shape of female and male Cs. longiareolata mosquito populations. Furthermore, the wing shape of
male populations was more distinct compared with female populations.

Keywords: Culicidae; geometric morphometrics; Algeria; larval habitats; climate

1. Introduction

The mosquito Culiseta longiareolata (Macquart 1838) was first reported in Algeria
(North Africa) at the beginning of the 20th century [1]. It was found in all types of natural
habitats (e.g., lagoon depressions, valleys, ditches) throughout the country [2]. It is widely
distributed in the south of the Palearctic and Mediterranean regions, as well as in Europe
and Asia [3,4]. More specifically, they have been found in diverse locations, from freshwater
rocks and pools to plastic containers, casks, tire basins, and fountains [5]. They are easily
distinguished from other Culiseta species because of their white stripes and the points
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on their legs, head, and thorax [6]. They aggregate in agricultural and urban areas and
have been described as an ornithophilic species that rarely bite humans [7-10]. However,
previous studies have reported that this mosquito species could be a possible vector of the
bacteria that cause Malta fever (brucellosis) [11] and westernencephalitis virus [12].

Environmental conditions, including important climatic variables, affect the distri-
bution and abundance of many mosquito species, including those of concern to human
health [13]. For example, Aedes albopictus mosquitoes found in urban sites were observed to
have decreased larval survival, smaller body sizes, and lower per capita growth rates com-
pared with those in rural sites [14]. On the other hand, Culex pipiens mosquitoes were seen
to have an increased adult density and longer breeding season in areas that have higher
temperatures [15]. To date, there is little information about the impact of environmental
factors on the growth and phenotype of emerging Cs. longiareolata adults when compared
with other mosquito species. Therefore, knowledge regarding the relationship between
habitats, environmental factors, and mosquito plasticity is essential for developing effective
mosquito control methods.

Shape analysis is an approach that allows for a better understanding of the different
causes of variation and morphological transformation [16] in organisms. Studying the
biological shape or phenotype of these insects will allow us to understand the ecological,
developmental, and genetic alterations of insects in changing environmental conditions.
Previous studies have demonstrated that insect wings provide a link between phenotype
and the environment using geometric morphometry [17,18]. More specifically, studies on
Aedes albopictus [19], Anopheles darling [20], and Aedes aegypti [21] have all demonstrated that
there are variations in mosquito populations that are influenced by environmental factors,
manifesting in sexual dimorphism, differences in wing shape, and variations in size.

There are limited studies on the avian malaria vector, Cs. longiareolata. This study is
the first to report its microevolution using geometric morphometry. The primary aim of
the study is to determine the intra-specific wing variation between male and female Cs.
longiareolata mosquitoes in different climatic and larval habitat types.

2. Materials and Methods
2.1. Study Area

Algeria is in the north of Africa, with a surface of 2382 million km?2. The collection
of mosquito samples was conducted between January (2020) and July (2021) in thirteen
areas distributed in three cities: Annaba (36°54’ N, 07°44’ E), El-Tarf (36°45’' N, 8°18' E),
and Guelma (36°14’ N, 07°15’ E) (Figure 1). The country has six different climatic zones:
hyper-humid, humid, sub-humid, sub-arid, arid, and Saharian [22-24]. Table S1 shows the
information regarding mosquitoes collected by locality, geographic coordinates, climate,
weather data from actual sampling year, larval habitat nature, and sex.

The city of Guelma is considered sub-arid. The mosquito samples were taken in Ain
Makhlouf, where temperatures reach 10.33 °C and 26.1 °C in the winter and summer,
respectively [25], while the annual precipitation is 484.37 mm, and the average humidity
is 63%.

The cities of Annaba and El-Tarf are considered sub-humid. Annaba has an average
temperature of 18.4 °C throughout the year, The warmest month is August (30.3 °C),
and the coldest month is February, with an average temperature of 14.3 °C. The average
humidity is 70.41%, and its precipitation averages 712 mm (650 and 1000 mm /year) per
year [26]. On the other hand, El-Tarf has a mean temperature of 12 °C and 28 °C during
winter and summer, respectively, and its mean annual precipitation reaches 700 mm [27].
The average humidity is 70%. The month with the highest relative humidity is March (76%),
and the month with the lowest relative humidity is July (60%).
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Figure 1. Geographic map of Algeria (left) and its study area as well as sampling sites indicating the
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2.2. Mosquitoes Sampling and Identification

For this study, 256 immature stages were sampled simultaneously from 35 collection
sitesfrom January (2020) until July (2021) in two different climatic zones using a standard
dipper described by Papierok et al. [28] in artificial and natural larval habitats. Artificial
larval habitats included animal water dishes, bottles, and 200 L tanks, while natural larval
habitats included ground pools, ditches, and swamps. The average distance between the
collection sites in the two sub-humid and sub-arid bioclimatic zones is between 80 and
110 km, respectively. L4 larvae and pupae were selected and placed in a plastic pan (500 mL)
with their original water containing organic material until reared to adults. No additional
larval food was introduced for rearing. Species identification and sex determination were
performed using the Mediterranean African Culicidae software [29] and the dichotomous
key of the Culicidae of Morocco [30].

2.3. Wing Preparation

The rightwing of each male and female mosquito was detached from the thorax
and processed following the protocol described by Lorenz and Suesdek [31], with some
modifications. Each wing was bathed using 3% sodium hypochlorite (NaClO) for 20 min.
The scales were removed from the wings using cotton swabs, followed by a 99.5% ethanol
wash. Afterward, the wings were bathed in an acid fuchsin solution for 1 h and then
washed with 70% ethanol twice. Finally, the wings were mounted between a slide and a
cover slip with a drop of Euparal© mounting medium (Carl Roth, Karlsruhe, Germany).
The mounted wings were photographed using a camera(SI 3000 version I8, Warpsgrove Ln,
Chalgrove OX44 7XZ, UK) with a 10 x magnification on a stereoscopic microscope (CETI
Steddy Stereo Trinocular Microscope, Warpsgrove Ln, Chalgrove OX44 7XZ, UK). In total,
19 landmarks (LMs) [32] were identified and digitized using Tps Dig2 (V2.31) software [33]
to generate the Cartesian coordinates in two dimensions for each individual mosquito
(Supplemental Table S2, Supplemental Figure S1).

2.4. Data Analysis

The measurement error was tested by comparing three sets of digitization as described
by Arnqvist [34]. This test was performed on 256 individual wing images three times by the
same researcher. The analysis of variance (ANOVA) and multivariate analysis of variance
(MANOVA) tests were applied to compute the variation among replicate measurements
and to evaluate the computed wing size and shape of Cs. longiareolata varied across the
three landmark collections.
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To determine the wing size variation, an isometric estimator, known as the centroid
size, was computed from the 19 landmarks [35]. The centroid sizes between males and
females based on their climatic and larval habitat factors were subjected to comparative
analysis using a parametric T-test, Kruskal-Wallis test with a post hoc analysis, and a Mann—
Whitney test with Bonferroni correction using the SPSS V23.0 software [36]. Centroid sizes
were visualized by using a box-and-whisker diagram to indicate the significant differences
among the comparisons. An allometric effect of the wing size on the wing shape was
also performed for both males and females using a multivariate regression analysis of the
Procrustes coordinate of wing centroid size. The statistical significance of the allometric
effect was determined by non-parametric permutation testing with 10,000 randomizations.

To determine the wing shape variation, a generalized least-squares Procrustes su-
perimposition algorithm was performed [37]. Covariance matrices were generated for
each superimposed dataset to allow for the exploration of variations via the principal
component analysis (PCA). The canonical variate analysis (CVA) with a permutation of
10,000 randomizations was carried out to test the pairwise Mahalanobis distances (MD)
between or among the different groups of males and females based on their climate and
larval habitats. Thin-plate spline and wireframe diagrams [35,38] were generated to explore
the intra-specific wing shape variation influenced by climate and natural larval habitats
in male and female mosquito populations. The analyses of wing size and shape were all
conducted using the Morpho] software version 1.07 [39].

3. Results
3.1. Repeatability of Landmarks and Test for Allometry

Three measurements of the size and shape of male and female Cs. longiareolata wings
showed good precision in the digitization of the landmarks: size (Male: F = 0.04; P = 0.95;
Female: F = 0.69; P = 0.59) and shape (Male: F = 0.44, Pillai’s trace = 0.33, P = 1.00; Females:
F =0.79, Pillai’s trace = 0.39, P = 0.79). This indicates that the differences found in the
morphology of the wings are due to climatic and habitat factors, not from measurement
error. Moreover, the results of the allometry indicate that the wing shape variance explained
by size was 23.21% for female and 19% for male mosquitoes. Lastly, our analysis revealed
the contribution of the centroid size to the variation in the wing shape of Cs. longiareolata
was significant (p < 0.0001) for both sexes. Therefore, we removed the allometric effect from
all analyses to analyze the wing size and shape separately.

3.2. Sexual Dimorphism

The wing centroid size in the male mosquito population varied from 3.21 mm to 4.92 mm,
while the female mosquito population varied from 3.81 mm to 6.72 mm (Figure 2a). Fur-
ther analysis also showed that the wing centroid sizes between male and female mosquito
populations were significantly different from each other (t = 10.24; p < 0.0001).
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Figure 2. (a) Box diagram of centroid sizes for all females and males; (b) wing shape diagram of first
canonical variable from the comparison of all males (blue) and females (red).
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Figure 2b shows the canonical variate analysis (CVA) plot where the wing shape of
male and female mosquito populations was distinctly separate (MD = 7.42; p < 0.0001).
Additionally, thin-plate splines (Figure 3a) demonstrated that the shape of the male wings
was narrow and lengthened, while the female wings were wider and shorter (Figure 3b).
Landmarks 2 (intersection of costa), 16 (radio-sectoral vein), and 19 (origin of radius
branches 2 and 3) appeared to be the most important landmarks in the shape difference
between males and females.

Figure 3. Wireframe diagram from PCA displaying the mean value of wing shape variation in
(a) male and (b) female Cs. longiareolata mosquitoes. The light-colored wireframe represents the mean
wing shape, while the dark-colored wireframe represents generated principal component analysis for
the wing shapes.

3.3. The Effect of Sub-Arid and Sub-Humid Climatic Conditions

Figure 4a shows the centroid sizes of sub-arid and sub-humid female mosquito pop-
ulations. Further analysis showed that there was no significant difference in the female
wing centroid sizes between the two climatic conditions. However, the CVA plot indicated
that the wing shape of female mosquitoes in sub-arid and female mosquitoes in sub-humid
climatic conditions was distinct (MD = 1.57; p < 0.0001) (Figure 4b).

The results were the same with the male populations. No significant differences were
found in their wing centroid sizes between sub-arid and sub-humid climatic conditions
(Figure 4c), and the CVA plot indicated a degree of distinction between the two climatic
conditions (MD = 2.81; p < 0.0001) (Figure 4d).
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Figure 4. Boxplots of wing centroid size and wing shape diagram of the first canonical variable
between sub-humid and sub-arid climatic conditions in female (a,b) and male (c,d) Cs. longiareolata

mosquitoes.

3.4. The Effect of Natural and Artificial Larval Habitats

No significant differences were found in the wing centroid sizes between female
mosquito populations from natural and artificial larval habitats (Figure 5a). However, the
CVA plot revealed significant differences in the wing shape of females from natural and
artificial larval habitats (MD = 1.68; p < 0.0001) (Figure 5b).On the other hand, there were
no significant differences in the wing centroid sizes between male mosquito populations
from natural and artificial larval habitats (Figure 5c). However, a significant distinction
in wing shape was found in males from natural and artificial larval habitats (MD = 2.12;
p <0.0001) (Figure 5d).
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Figure 5. Box plots of wing centroid size and wing shape diagram of the first canonical variable
between natural and artificial breeding sites in female (a,b) and male (c,d) Cs. longiareolata mosquitoes.
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3.5. Combined Effect of Larval Habitat and Climatic Conditions in the Wing Size and Shape

In females, it was revealed that there were significant differences in wing sizes de-
pending on the factors of climatic patterns and type of larval habitats (X = 74.48, df = 3,
p < 0.000) (Figure 6a). Post hoc analysis showed significant differences among all groups ex-
cept for female populations from artificial larval habitats in the sub-arid climate (A.A) and
natural larval habitats in the sub-humid climate (N.H). In males, the results also showed
that there were significant differences in wing sizes (X? = 32.58, df = 3, p < 0.000) (Figure 6b)
depending on the factors of climatic patterns and type of larval habitats. Post hoc analysis
showed significant differences among all groups except for male populations from artificial
larval habitats in the sub-arid climate (A.A) and natural larval habitats in the sub-humid
climate (N.H).

0 = 4 Female AA
[7=)
@3
6.001 W
E + % 2 Female N.H
£ ®
3 5001 % £o
o = -
b= L .
S 4.004 o
£ s 2
(=]
3 S
3.004 3 B ;
Femalé AA Fen'\ale N.A Fémale AH léemale N.H -4 -2 o 2 4 6
Groups Canonical variate 1(52.75%)
(a) (b)
5.004 = 4
i BN Male A A
<
L2}
4504 @ & 2l
E & Male N H
£ @
o 4.00 =
& S 0
d 5 5
=] -
'S 3.504 g
‘E S _2 {
S s
3.00 (&} s
MaleAA MaleNA MaleAH Male NH -6 -4 -2 0 2 4 6
Groups Canonical variate 1(49.27%)

(c) (d)

Figure 6. Boxplots of wing centroid size and wing shape diagram of the first two canonical variables
between the interaction of climate and breeding sites in female (a,b) and male (c,d) Cs. longiareolata
mosquitoes. Group A.A: Artificial Breeding site, Climate Sub-Arid; Group N.A: Natural Breeding site,
Climate Sub-Arid; Group A.H: Artificial Breeding site, Climate Sub-Humid; Group N.H: Natural Breeding
site, Climate Sub-Humid.

The results for wing shape showed significantly structured populations based on
climatic patterns and type of larval habitats in female (F = 2.05; Pillai’s trace = 1.02;
p < 0.0001) and male (F = 1.82; Pillai’s trace = 1.67; p < 0.0001) mosquitoes. Further-
more, CVA plots indicated that the wing shape of male populations based on the two
factors was more distinct compared with that of females (Figure 6¢,d).

4. Discussion
4.1. Sexual Dimorphism

Previous studies have demonstrated the sexual dimorphism of wing size and shape
analyses in insects [40-42], especially in the Culicidae species [19,43-48]. However, this is
the first study that demonstrated sexual dimorphism in Cs. longiareolata using wing size
and shape. More specifically, the wing shape of male Cs. longiareolata was narrow and long,
while female wings were wider and shorter. The highest differences between female and
male wing shapes were found in the middle and distal regions of the wing (LMs2, 16, and
19) based on thin-plate splines. Our findings are consistent with the observation of other
mosquito species such as Aedes [19,43,49-51], Anopheles [52], and Culex [44,53,54].

These differences could be attributed to the important role of wing shape in reproduc-
tive functions in that it increases performance in flight-based mating tactics [55]. As evi-
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denced by scrambling damselflies (Lestes sponsa), males with broader and shorter forewings
had better mating success [56]. Moreover, mosquito wing geometry is involved in species-
specific wing beat frequencies that mediate different mating behaviors [57], as seen in the
production of courtship sounds in Orthoptera species [58]. Changes in wing shape are
also influenced by the environment and impact their ability to locate oviposition sites [59],
which affects their reproductive capacity.

The adaptation of each sex to various reproductive functions is reflected in sexual
size dimorphism [60]. A female mosquito’s big wings could be attributed to long-distance
dispersal because of its host-seeking behavior. Interestingly, the average wing length
of nulliparous host-seeking females was significantly smaller than the wing length of
parous host-seeking females [59,61]. On the other hand, the small-sized wing in males
could be attributed to their short development time, resulting in smaller body size [19]
and their short-distance dispersal by remaining near larval habitats in seeking mating
partners [45,49,51,62]. The female body size has also been associated with its capacity as
a vector for diseases [60], and it has been shown that a population of mosquitoes with a
large average body size may have a higher vector capacity than a population with a small
average body size.

4.2. Effects of the Climatic Conditions and Larval Habitats

In both sexes, our study showed that the wing shape of Cs. longiareolata in sub-arid
populations was distinct from that in sub-humid populations. The influence of climatic
conditions could be attributed to one or a combination of several factors, including tem-
perature, humidity, and precipitation. Other environmental factors such as different mi-
crohabitats [63], environmental heterogeneity of the geographical area [50], and climatic
effects (such as temperature) [64] could have also influenced these results. Studies on
damselflies [65], Drosophila melanogaster [66], and Drosophila willistoni [67] have reported
that temperature has a strong influence on the wing shape of these insects. Other studies on
other mosquito species such as Cx. coronator [68], Anopheles albimanus [69], An. funestus [70],
and An. superpictus [71] also support this notion that climate plays a role in shaping the
wings of many insect populations.

In addition, our results indicated that there were no significant changes in wing sizes
between the two climatic conditions for both sexes despite the differences in rainfall and
mean air temperature. This may be due to the latitude of the locations where the mosquitoes
originated. Generally, insects react to environmental conditions according to James’s rule
(increase in body size with latitude or decrease in temperature) or Bergmann'’s rule (the
size decreases with latitude, as a consequence of a shorter favorable season and an increase
in developmental metabolism) [19]. In our study, the sampling sites had two different
bioclimatic levels but belonged to the same latitude. Unfortunately, our analysis only
measured the mosquito’s wings. As a result, we were unable to verify this claim, leaving
the door open for future research. However, Gomez and Marquez [68] posited that relative
humidity (RH) and elevation could explain the variation in centroid sizes. For various
mosquito models, the influence of RH on centroid size has been described [72,73]. Rainfall
differences have also been reported to alter the centroid size of An. colzzii in Burkina
Faso [74] and Aedes albopictus in central Argentina [75]. These studies all support the claim
that RH (and possibly, elevation) can affect centroid size.

On top of that, larval habitats and larval competition have been reported to affect
the body size of mosquitoes [71,73,76]. In this study, differences were observed in male
and female wing shapes between mosquitoes found in natural and artificial larval habitats,
which is consistent with Anopheles cruzii [77], Ae. albopictus, and Ae. aegypti [78,79]. The
density, plant material, and competitive pressure in urban larval habitats can likewise
affect the development of the larvae. This is supported by a study that showed that water
containing more plant material accelerates Ae. albopictus larvae development [80,81].In
this study, no significant differences in the Cs. longiareolata wing sizes were found between
natural and artificial larval habitats for both sexes. Stephens and Juliano [82] suggested that
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the relationship between size and rearing conditions differed between the species and that
size could not be used to determine larval rearing conditions. However, Oliveira-Christe
and Wilke [83] suggested that the variations found in wing size may be related to the
intrinsic characteristics of larval habitats, such as temperature, water physicochemical
parameters, and food availability. The temperature during rearing could also likely affect
the survival and development of immature larvae and adults [84].

Furthermore, our findings indicate that there were significant differences in wing sizes
and shapes depending on the factors of climatic patterns and type of larval habitats for both
sexes, except between male and female populations from artificial larval habitats in the
sub-arid climate (A.A) and natural larval habitats in the sub-humid climate (N.H). This may
be related to several ecological, morphological, and physiological factors specific to Diptera
in general. Rapid deformations in wings would surely affect the rate and distance of insect
dispersion and would exert pressure on the energy required for flying. This could then
impact other ecological parameters, such as the success of finding mates, the kinematics of
flying, dispersal, and pressure from predators [71].

4.3. Limitations

This study revealed phenotypic variations among the populations of Cs. longiareolata
located in sub-humid and sub-arid regions including its larval habitat variability factors;
however, there were several limitations that should be considered. First is the uneven
number of mosquito samples of each sex and its corresponding environmental factors.
The study tested a small number of male mosquitoes (8—42 individuals), compared with
their female counterparts (18-76 individuals). The uneven sample sizes were also found in
natural larval habitat mosquitoes (8-38 individuals) and artificial larval habitat mosquitoes
(20-76 individuals) as well as sub-arid mosquitoes (8-35 individuals) and sub-humid
mosquitoes (18-76 individuals). Therefore, the results inferred by this study could likely
affect the phenotypic diversity of each population. The authors suggest that future studies
should consider even sample sizes to validate our findings. Moreover, no information about
factors such as larval density, water temperature, and availability of food was collected
from larval habitats; therefore, we were unable to predict or estimate the magnitude of the
effect of these variables on wing size. It should be noted that future studies should take
into consideration these other factors as well.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/insects13111031/s1, Figure S1: Digitization of 19 landmarks of
the rightwing of a female Culiseta longiareolata using software Tps-Dig2 2.31; Table S1: Information of
Cs. longiareolata mosquito samples from each study area. The weather data from the actual sampling
year, altitude, geographic coordinates, type of climate, type of habitat, and the number of mosquito
individuals per sex; Table S2: Corresponding description and location of the wing and landmark
positions in Cs. longiareolata.
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