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Simple Summary: Rickettsia is a maternally transmitted endosymbiotic bacterium that infects most
insect species. In the current study, we investigated the biological and physiological effects of Rickettsia
infection on whitefly, Bemisia tabaci. Our results revealed that infection with Rickettsia increased the
fertility, survivorship, and shortened the nymphal developmental duration of whitefly Bemisia tabaci.
Rickettsia infected B. tabaci had significantly higher glycogen, soluble sugar and trehalose contents
than those of Rickettsia negative B. tabaci individuals. When exposed to the entomopathogenic fungus
Akanthomyces attenuatus and the insecticides imidacloprid and spirotetramat, Rickettsia infested B.
tabaci had lower mortality rates and higher semi-lethal concentrations (LC50). The parasitism by
Encarsia formosa was also reduced by Rickettsia infection.

Abstract: Endosymbionts play an essential role in the biology, physiology and immunity of insects.
Many insects, including the whitefly Bemisia tabaci, are infected with the facultative endosymbiont
Rickettsia. However, the mutualism between Rickettsia and its whitefly host remains unclear. This
study investigated the biological and physiological benefits of Rickettsia infection to B. tabaci. Results
revealed that infection of Rickettsia increased the fertility, the survival rate from nymph to adult
and the number of female whiteflies. In addition, this facilitation caused a significant reduction in
nymphal developmental duration but did not affect percentage rate of egg hatching. Rickettsia infected
B. tabaci had significantly higher glycogen, soluble sugar and trehalose contents than Rickettsia
negative B. tabaci individuals. Rickettsia also improved the immunity of its whitefly hosts. Rickettsia
infested B. tabaci had lower mortality rates and higher semi-lethal concentrations (LC50) when
exposed to the fungus Akanthomyces attenuatus and the insecticides imidacloprid and spirotetramat.
The percentage of parasitism by Encarsia formosa was also reduced by Rickettsia infection. Overall,
Rickettsia infection benefits B. tabaci by improving the nutritional composition of its host, and also
protects B. tabaci by enhancing its resistance towards insecticides (imidacloprid and spirotetramat),
entomopathogenic fungi (A. attenuatus) and its main parasitoid (E. formosa); all of which could
significantly impact on current management strategies.

Keywords: Bemisia tabaci; endosymbiont; entomopathogenic fungus; parasitoid; insecticide

1. Introduction

Endosymbiotic bacteria are prevalent within invertebrates. Some of them supply diet
limited nutrients to their insect hosts [1,2], some can alter their host’s tolerance to extreme
environmental stress [3,4], while others are reproduction manipulators [5]. Insects form a
substantial part of many ecological networks and often close associations with maternally
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inherited, intracellular bacteria. Insect facultative symbionts are often reproduction manip-
ulators and the diversity by which intracellular bacteria manipulate their host reproduction
is considerable and ranges from parthenogenesis, male-killing, cytoplasmic incompatibility
to the functional feminization [6–8]. It is important to explore both the advantages and
disadvantages of a symbiotic relationship between insects and symbionts, since some
relationships could aid in the management of insect pests, while others may facilitate the
host and significantly reduce the effectiveness of a given pest management strategy.

Whitefly Bemisia tabaci is a destructive pest containing more than 40 cryptic species
including two invasive populations, the Middle East-Asia Minor 1 (MEAM1, formerly
B biotype) and the Mediterranean (MED, formerly Q biotype) [9,10]. Apart from direct
feeding, it causes serious crop losses worldwide by indirectly transmitting viruses [11]. In
China, B. tabaci MEAM1 and MED are well distributed across 31 Provinces and have caused
significant economic losses since the mid-1990s and early 2000s, respectively. Whitefly is
the major pest of many glasshouse vegetables, ornamentals and field crops in China [12,13].
Various characteristics of the whitefly including rapid reproduction, production of wax
powder and rapid development of chemical resistance have led to great challenges in their
control and management [14].

Regarding the endosymbionts of B. tabaci, in addition to the primary symbiont Portiera,
several genera of facultative symbionts, such as Arsenophonus, Cardinium, Hamiltonella,
Hemipteriphilus, Rickettsia and Wolbachia have been recorded within various cryptic species
of the B. tabaci complex [15–20]. Previous studies have shown that, Rickettsia is abundant
in many insects including whitefly pests in nature with stable and high frequencies of
infection [21–24]. It can manipulate host reproduction by causing male-killing in some
ladybird beetles or parthenogenesis in eulophid wasps [25–27]. In B. tabaci, it can modify
the adaptability of its whitefly hosts to their environment, such as enhancement in stress
resistance to temperature [28], and altering the survival rate, fecundity and offspring of
the whiteflies [29]. However, the effects of Rickettsia infection may vary between different
B. tabaci cryptic species, or even within the same cryptic species but from different geo-
graphical populations. Some studies have revealed the impact of infection of Rickettsia
on nutrition changes of B. tabaci [30]. However, very few reports come from a multi-
component systems interaction viewpoint; taking Rickettsia associated defense against
fungi, parasitoids and insecticides into one study [31–34]. This lack of information lim-
its our knowledge concerning the Rickettsia-whitefly interaction and the development of
subsequent management strategies.

This study firstly investigated the impact of Rickettsia on the biology of its whitefly
host B. tabaci MEAM1, characterizing how the Rickettsia infection affects the biology of its
host by altering its nutrition. Secondly, this study assessed the contribution of Rickettsia
infection to the immunity of B. tabaci against entomopathogenic fungi, insecticides and
parasitism. The study aimed to reveal the specific undescribed interactions of Rickettsia
and B. tabaci and give further insight and understanding in the continual development of
management strategies against B. tabaci.

2. Materials and Methods
2.1. Plants

Cotton plants (Gossypium hirsutum L. var. Lumianyan no. 32) were used in the current
study to rear B. tabaci populations. Cotton seeds were sown in plastic pots (12 cm diameter
× 15 cm height) containing a soil–sand mixture (10% sand, 5% clay and 85% peat). Plants
were reared in a glasshouse (26 ± 1 ◦C, 16:8 h L:D photoperiod) in a pest- and pesticide-
free environment and watered as required. Plants were used for experiments at their
6–8 expanded leaf stage.

2.2. Insects

Bemisia tabaci MEAM1 cryptic species, were initially collected from eggplant (Solanum
melongena) grown at the training farm of South China Agricultural University (SCAU) in
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Guangzhou, China in 2016. Populations were then reared on cotton plants under standard
laboratory conditions at 26 ± 1 ◦C, 60% relative humidity (RH) and a photoperiod of
16:8 h (L:D). Mitochondrial CO1 gene sequencing was used to check and maintain the
purity of the B. tabaci populations [35]. Two B. tabaci MEAM1 populations, Rickettsia
positive (R+ MEAM1) and Rickettsia negative (R− MEAM1) were set up and maintained
according to the methods of Liu et al. [36]. In brief, population screening was conducted for
single-pair purification using cotton as the host plant. Random whiteflies, newly emerged
and not yet mated, were selected in order to identify their sex (female and male) under
a stereomicroscope (Zeiss SteREO Discovery, Zeiss, Oberkochen, Germany). Following
this, one pair of whiteflies were released into a leaf cage which was attached onto a clean
cotton leaf to allow egg laying for 6 days. After this, the parent adult whiteflies were
recaptured from the cage and examined for the presence of Rickettsia using the Rickettsia-
specific primers (16S rRNA, gltA and Pgt) [18,37]. The above steps were repeated to purify
the population of B. tabaci MEAM1 until the B. tabaci MEAM1 glasshouse population
was numerous enough for experimental trials. To ensure the purity of each population,
approximately 100 adult whiteflies were selected and checked for the presence/absence of
Rickettsia respectively every month.

The parasitoid Encarsia formosa was first collected from parasitized B. tabaci nymphs
on tomato plants at Beijing Academy of Agriculture and Forestry Sciences in 2008. Subse-
quent offspring were reared on cotton plants infested by Rickettsia positive B. tabaci in a
separate glasshouse.

2.3. Entomopathogenic Fungus and Insecticides

Akanthomyces attenuatus (previously Lecanicillium attenuatus) SCAUDCL53 strain (NCBI
accession No. MH558279) was provided by the Engineering Research Center of Biocontrol,
Ministry of Education in SCAU, which was initially collected from Fujian Province in
2016. The A. attenuatus was inoculated on a Potato Dextrose Agar (PDA) medium in 9 cm
diameter Petri dishes and sealed with parafilm. Plates were incubated for eight days under
the conditions outlined by Khan et al. [38]. Following sporulation, the spores were scraped
into a sterilized dry conical bottle containing 50 mL 0.05% Tween-80 and thoroughly shaken
via a magnetic stirrer. The conidial suspension was filtered and poured into a new, sterilized
dry conical flask. A hemocytometer (Neubauer) was used to determine the concentration
of the stock solution which was diluted into five concentrations ranging from 1 × 108,
1 × 107, 1 × 106, 1 × 105 and 1 × 104 conidia/mL.

The two insecticides, imidacloprid (95% WP, Anhui Huaxing Chemical Co., Ltd.,
Maanshan, China) and spirotetramat (97% WP, Hebei Weiyuan Biochemical Co., Ltd.,
Shijiazhuang, China) were used to assess the effect of Rickettsia infection on the chemical
resistance of B. tabaci MEAM1.

2.4. Effect of Rickettsia on Development and Reproduction of Bemisia tabaci

Healthy and fully expanded cotton leaves were marked on the cotton plants and
covered with leaf cages (diameter: 7 cm; height: 7 cm). Five pairs of Rickettsia positive (R+)
and Rickettsia negative (R−) B. tabaci adults (2–4 days old) were separately released into a
leaf cage to allow egg-laying for five days. After five days, the number of eggs produced by
the mating pairs were counted under a stereomicroscope (Zeiss SteREO Discovery). This
experiment investigating fecundity was repeated in nine parallel replications for both R+

and R− whiteflies.
In addition, 20–30 pairs of R+ and R− B. tabaci adults (2–4 days old) were separately

released into a leaf cage to allow egg-laying for 24 h. After 24 h the adult whiteflies were
removed. The development and survival of the B. tabaci nymphs were then observed every
24 h. Following the emergence of adult whiteflies, sex identification was made under a
stereomicroscope (Zeiss SteREO Discovery, Zeiss, Oberkochen, Germany). The treatments
were repeated in three parallel replications.
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2.5. Effect of Rickettsia on the Nutritional Changes of Bemisia Tabaci

The nutritional contents of B. tabaci were determined by using 100 pairs of R+ and R−

B. tabaci adults respectively. A total of ten cotton leaves were caged to introduce whiteflies
of each Rickettsia status for oviposition for 24 h. After the subsequent emergence of R+

and R− whitefly adults (2 h old), specimens were collected in an Eppendorf tube, weighed
10 mg per sample and frozen in liquid nitrogen. Frozen samples were then ground and
homogenized in PBS (pH 7.4). This crude homogenate was centrifuged at 10,000 rpm at
4 ◦C for 10 min and stored at −80 ◦C for further experimentation.

The protein contents of R+ and R− B. tabaci adults were measured according to the
protocol provided by the manufacturer Beyotime Biotechnology. The absorbance was read
in a Microplate Spectrophotometer (XMark™, BIO-RAD, Hercules, CA, USA). Bicinchoninic
acid (BCA) was used to determine Cu+ at a wavelength of 562 nm [39].

The anthrone method was used to estimate the soluble sugar and glycogen content as
outlined by Halhoul and Kleinberg [40] and trehalose as outlined by Ferreira et al. [41] at
630 nm wavelength by using a microplate analyzer. The same supernatant was used for all
the experiments.

2.6. Effect of Rickettsia on the Defense of Bemisia tabaci against Akanthomyces attenuatus

A total of ten healthy cotton plants were taken, and three fully expanded cotton leaves
were selected from each plant and covered with individual leaf cages. There were forty
pairs of R+ and R− B. tabaci adults that were separately released into a leaf cage of different
plants, respectively. After 48 h of egg-laying, the whiteflies were removed. Emerged
nymphs were reared up to the 4th instar on the respective leaf. A total of one hundred
nymphs were randomly selected per instar, with excess nymphs removed from the leaves
via a fine camel hairbrush. Leaves with whitefly nymphs were plucked from the plants
and immersed in the conidia suspension with concentrations mentioned above for 15s and
then allowed to air-dry at room temperature as outlined in Cuthbertson et al. [42]. Leaves
dipped in 0.05%Tween-80 were used as controls. Following this, the leaves were placed in
Petri dishes containing 1% water agar medium, covered with a thin plastic layer with small
puncture holes for aeration. All the treatment and control experiments were repeated in
three parallel replications. All the Petri dishes were placed in separate climate chambers
(PQX-250, Jintan Experimental Instrument Co. Ltd., Jiangsu, China) to avoid contamination
at identical temperature (26.0 ± 1 ◦C), relative humidity (70–85%) and photoperiod (14:10
(L:D)); the light intensity was maintained at approximately 3000 Lux. Survival data were
collected daily over the following seven days.

2.7. Effect of Rickettsia on the Defense of Bemisia Tabaci against the Parasitoid

As outlined above, three healthy and expanded cotton leaves were selected from one
cotton plant and covered with leaf cages. Fifty pairs of R+ and R− B. tabaci adults were
separately released into the leaf cages. Following egg-laying for 24 h, the whiteflies were
removed. Approximately 160 nymphs were randomly selected per instar, with excess
nymphs removed using a fine camel hairbrush. Eight females of E. formosa (5 days old)
were introduced into the leaf cage for 24 h before being removed. All the treatments were
repeated five times. The parasitism rate, developmental duration, and emergence rate (%)
of E. formosa were subsequently recorded.

2.8. Effect of Rickettsia on the Resistance of Bemisia tabaci to Insecticides

For the toxicity assay, seven geometrically progressive concentrations ranging from
3.125 mg/L, 6.25 mg/L, 12.5 mg/L, 25 mg/L, 50 mg/L, 100 mg/L and 200 mg/L of
imidacloprid and spirotetramat were diluted in water. The dip impregnation method was
used to determine the toxicity of imidacloprid and spirotetramat to second instar nymphs
of R+ and R− B. tabaci. When the nymphs developed to second instar, 100 nymphs on one
leaf were randomly selected and plucked from the plant, immersed entirely in the different
pesticide concentrations of imidacloprid and spirotetramat for 10s, then dried at room
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temperature, again following method of Cuthbertson et al. [42]. For controls, individual
leaves were dipped in ddH2O. Treated leaves were again placed in Petri dishes as outlined
above. The data for survival of R+ and R− B. tabaci nymphs were collected daily over the
following five days.

The residual method was used to determine the toxicity of imidacloprid and spirote-
tramat to R+ and R− B. tabaci adults. Plants and B. tabaci adults were obtained as outlined
above. In a 20 mL tube, 0.5 mL of each concentration of imidacloprid and spirotetramat
were added separately; the tubes were then physically shaken well to apply the pesticide
to the wall of the tube evenly. Following 1 min of shaking, the remaining pesticide was
discarded, and the tubes air-dried. Again, tubes washed in ddH2O were used as controls.
A total of fifteen pairs of R+ and R− B. tabaci adults were then placed into each tube, re-
spectively, for 30 min before being released into the new leaf cages. All the treatment and
control experiments were repeated in three parallel replications. Whitefly mortality was
recorded after six hours.

2.9. Statistical Analyses

Statistical analyses were performed by using SAS software (v.8.01). Data were tested
for normality (Shapiro–Wilks test) and homogeneity of variance (Levene’s test) before using
parametric tests. Egg hatch ability, the mortality rate of whitefly, the parasitism rate and
the emergence rate of parasitoids among different treatments were arcsine transformed
wherever the data did not conform to a normal distribution. The biological data, nutrition
contents and parasitism were compared among treatments using a t-test. The cumulative
corrected mortality rate (%) of whiteflies caused by the entomopathogenic fungus and in-
secticides respectively were compared among treatments using two-way ANOVA. Tukey’s
post-hoc test assessed the mean difference between and among the treatments at p < 0.05.
Significant differences between treatments were estimated at p < 0.05, p < 0.01, and p < 0.001
significance levels. Graphical work was done via GraphPad Prism 5 (GraphPad, La Jolla,
CA, USA).

3. Results
3.1. Effect of Rickettsia on Development and Reproduction of Bemisia tabaci

Our results showed that both the fecundity and egg hatching rate of R+ B. tabaci
are higher than that of R− B. tabaci, with the difference in fecundity being significant
(t16 = 12.31, p = 0.0001, t4 = 0.79, p = 0.47; Figure 1a,b). The developmental period of
R+ B. tabaci F1 generation was also significantly shorter than that of R− B. tabaci individuals
(t4 = 2.88, p = 0.045; Figure 1c), but their survivorship from egg to adult was higher than
the R- individuals (t4 = 3.12, p = 0.03; Figure 1d). In addition, the percentage of females
in the R+ F1 generation was significantly higher than that of R− F1 generation (t4 = 4.794,
p = 0.0087; Figure 1e), and the average longevity of R+ F1 female adults was significantly
longer than that of R− F1 female adults (t4 = 4.585, p = 0.01; Figure 1f). Therefore, we
can conclude that Rickettsia plays a positive role in terms of the fecundity, the number of
females and survival rate in the B. tabaci MEAM1 population.
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The contents of glycogen (t4 = 2.89, P = 0.04), soluble sugar (t4 = 4.10, p = 0.015) and trehalose 
(t4 = 3.48, P = 0.025) were all significantly elevated in the R+ B. tabaci compared to that of R− 
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Figure 1. The effect of Rickettsia infection on the fecundity (a), hatching rate (b), developmental du-
ration (c), survival rate from egg to adult (d), sex ratio (% female) (e) and longevity (f) of Bemisia tabaci
MEAM1 cryptic species. R+: Rickettsia positive population; R−: Rickettsia negative population. Data
were compared among treatments using t-test, and stars over the bars *, **, **** signify differences
were significantly different at 0.05, 0.01 and 0.0001 levels respectively, ns signifies differences were
not significant.

3.2. Effect of Rickettsia on the Nutritional Components of Bemisia tabaci

The presence of Rickettsia had clear effects on the nutritional components of B. tabaci.
The contents of glycogen (t4 = 2.89, p = 0.04), soluble sugar (t4 = 4.10, p = 0.015) and trehalose
(t4 = 3.48, p = 0.025) were all significantly elevated in the R+ B. tabaci compared to that of R−

individuals (Figure 2a–c). However, there was no significant change between the protein
concentrations of R+ and R− B. tabaci populations (t4 = 0.05, p = 0.96) (Figure 2d).
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1), the fungus-infected newly emerged adults (Figure 3c-2) showed symptoms such as 
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B. tabaci (Figure 4). No matter the age of the whitefly treated, the conidial suspension con-
centration and Rickettsia all significantly affected the mortality of the whitefly (Table S1). 

Figure 2. The effect of Rickettsia infection on the glycogen content (a), soluble sugar content (b),
trehalose content (c) and protein content (d) of Bemisia tabaci MEAM1 cryptic species. R+: Rickettsia
positive population, R−: Rickettsia negative population. Data were compared among treatments using
t-test, and stars over the bars * signify differences were significantly different at 0.05 level respectively,
ns signifies differences were not significant.

3.3. Effect of Rickettsia Persistence on Bemisia tabaci Defense against Akanthomyces attenuatus

The bioassay results showed that the A. attenuatus SCAUDCL53 isolate has high
pathogenicity to all instar nymphs of R+ and R− B. tabaci (Figure 3). At five days after
infection, compared with healthy 3rd instar nymphs (Figure 3a-1), the fungus-infected 3rd
instar nymphs (Figure 3a-2) were wrapped in white mycelium and had a change in body
color. Comparing healthy 2d old pupae (Figure 3b-1), the fungus-infected 2d old pupae
(Figure 3b-2) were again wrapped in white mycelium. Here, the body became dried out
and again a color change was evident. When comparing healthy newly emerged adults
(Figure 3c-1), the fungus-infected newly emerged adults (Figure 3c-2) showed symptoms
such as being wrapped in white mycelium, changes in body color, unresponsiveness and
in several cases the body became dried up. The mortality rate increased with the increase
in conidial suspension concentration; highest mortality rate was at a concentration of
1 × 108 conidia/mL. Overall, the mortality rate of R+ B. tabaci was distinctly lower than that
of R− B. tabaci (Figure 4). No matter the age of the whitefly treated, the conidial suspension
concentration and Rickettsia all significantly affected the mortality of the whitefly (Table S1).
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Figure 3. The infection phenotype of Bemisia tabaci MEAM1 nymphs treated with Akanthomyces
at-tenuatus (1 × 108 conidia/mL). Panels (a-1,a-2) were healthy 3rd nymphs and the fungus-infected
3rd nymphs, (b-1,b-2) were healthy 2d age pupae and the fungus-infected 2d age pupae, (c-1,c-2)
were healthy newly emerged adults and the fungus-infected newly emerged adults of Rickettsia
negative B. tabaci on the 5th day after infection.
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Bioassay results revealed, when infecting the MEAM1 nymphs, a higher semi-lethal
concentration (LC50) is required for R+ B. tabaci than R− B. tabaci to get 50% mortality.
This indicates that the Rickettsia negative MEAM1 nymphs were more susceptible to A.
attenuatus infection (Table 1).

Table 1. Virulence of Akanthomyces attenuatum SCAUDCL53 against different Rickettsia positive and
Rickettsia negative developmental stages of B. tabaci.

Instar Rickettsia
+/−

LC50
(95% CI Conidia/mL)

Regression
Virulence Model χ2 p

1st R− 1.52 × 106 (5.77 × 105 − 4.30 × 106) Y = 0.273x − 1.687 4.18 0.24
R+ 6.18 × 107 (1.93 × 107 − 3.87 × 108) Y = 0.297x − 2.317 2.64 0.45

2nd R− 3.19 × 106 (1.80 × 106 − 6.0 × 106) Y = 0.488x − 3.172 4.80 0.19
R+ 1.28 × 107 (5.62 × 106 − 3.80 × 107) Y = 0.357x − 2.54 6.19 0.10

3rd R− 1.56 × 107 (2.37 × 106 − 1.29 × 109) Y = 0.350x − 2.52 6.60 0.09
R+ 2.23 × 109 (1.65 × 108 − 1.36 × 1012) Y = 0.188x − 1.754 0.50 0.92

4th R− 1.82 × 108 (4.65 × 107 − 1.79 × 109) Y = 0.294x − 2.426 5.42 0.14
R+ 4.93 × 1011 (3.41 × 109 − 8.07 × 1019) Y = 0.151x − 1.768 1.404 0.70

3.4. Effect of Rickettsia Infection on Parasitism Rate of Encarsia formosa

Rickettsia infection distinctly increased the defense ability of B. tabaci against paras-
tization from the endoparasitoid E. formosa. The average parasitism rate of E. formosa
in R+ B. tabaci reduced approximately 26% compared to those in R− B. tabaci (t8 = 2.50,
p = 0.037; Figure 5a). Also, the generational developmental duration of E. formosa progeny
in R+ B. tabaci nymphs was about 6.56% shorter than those in R− B. tabaci nymphs
(t8 = 3.38, p = 0.0097; Figure 5b). However, there was no significant effect on the emergence
rate of E. formosa progeny that developed in the R+ and R− B. tabaci nymphs (t8 = 0.88,
p = 0.40; Figure 5c).
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Figure 5. The effects of Rickettsia infection in B. tabaci MEAM1 on the parasitism of Encarsia formosa.
(a) parasitism rate, (b) developmental duration of E. formosa F1 larvae, (c) emergence rate of E. for-mosa
F1 adults. R+: Rickettsia positive population, R−: Rickettsia negative population. Data were com-pared
among treatments using t-test, and stars over the bars *, ** indicate that differences were significantly
different at 0.05 and 0.01 levels respectively, ns indicate that differences were not significant.

3.5. Effect of Rickettsia Infection on Insecticide Resistance of Bemisia tabaci

With an increase in imidacloprid concentrations, B. tabaci second instar nymphs and
adults’ mortality significantly increased. Also, the mortality of R+ B. tabaci second instar
nymphs and adults were both lower than those of R− B. tabaci second instar nymphs
(Figure 6a) and adults (Figure 6b). The semi-lethal concentrations (LC50) of imidacloprid
to R+ B. tabaci second instar nymphs and adults were higher than those of R− B. tabaci
second instar nymphs and adults (Table 2). In addition, the bioassay results showed that
when second instar whitefly nymphs were treated with imidacloprid, the concentration of
imidacloprid significantly affected the mortality of the whitefly; but there was no association
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with the infection status of Rickettsia. However, when the whitefly adults were treated, both
the concentration of imidacloprid and Rickettsia infection status significantly affected the
mortality of the whitefly (Table S2).
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Table 2. Toxicity of imidacloprid and spirotetramat against different developmental stages of Rickettsia
positive and Rickettsia negative B. tabaci.

Pesticide Instar Rickettsia
+/− LC50 (95% CI) mg/L Regression

Virulence Model χ2 p

Imidacloprid Adult R− 88.28 (65.14 − 132.22) Y = 0.87x − 1.70 2.22 0.70
R+ 106.32 (83.28 − 144.95) Y = 1.20x − 2.43 1.82 0.77

2nd
nymph R− 34.89 (25.20 − 53.33) Y = 0.76x − 1.17 3.38 0.50

R+ 44.28 (31.79 − 69.72) Y = 0.79x − 1.30 2.05 0.73

Spirotetramat Adult R− 97.97 (75.97 − 132.55) Y = 1.15x − 2.28 2.03 0.73
R+ 120.14 (57.00 − 1336) Y = 0.71x − 1.47 0.83 0.66

2nd
nymph R− 13.24 (10.68 − 16.19) Y = 1.24x − 1.39 2.69 0.61

R+ 24.83 (19.46 − 32.56) Y = 1.00x − 1.39 0.55 0.97

Different results were observed when spirotetramat was used against R+ and
R− B. tabaci second instar nymphs (Figure 6c) and adults (Figure 6d). The semi-lethal
concentrations (LC50) of spirotetramat to R+ B. tabaci second instar nymphs and adults
were higher than those of R− B. tabaci second instar nymphs and adults (Table 2). When
second instar whitefly nymphs were treated with spirotetramat, both the concentration
of spirotetramat and Rickettsia infection status significantly affected the mortality of the
whitefly; significant interactions were observed. However, when whitefly adults were
treated the concentration of spirotetramat significantly affected the mortality of the whitefly,
but there was no association with the Rickettsia infection status (Table S2). In general, all
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the bioassay data indicated that Rickettsia infection enhanced the whitefly host’s resistance
to insecticides.

4. Discussion

Insect bacterial endosymbionts affect insect hosts’ biological, physiological and ecolog-
ical traits, including their adaptation to temperature stress, immunity and resistance ability
against entomopathogenic fungi and natural enemies; endosymbionts may also affect the
development, survival and reproductive pattern of their insect hosts [28,43–45]. Although
Rickettsia species have been verified in their function as primary nutritional symbionts
and reproductive manipulators [37,46], their role in the vast majority of hosts is unknown.
The Rickettsia in B. tabaci MEAM1 is in the well-defined bellii clade [36,47], which has also
shown to positively influence various fitness measures of B. tabaci, including the induction
of a higher reproduction rate and a female-biased sex ratio [22,48]. In this study, we demon-
strated the role of Rickettsia focusing on its resistance ability against entomopathogenic
fungi, a natural enemy and several chemical pesticides.

It has been confirmed that Rickettsia can impact whiteflies in multiple ways includ-
ing reproduction, development and survivorship [49]. For example, infected Rickettsia
whiteflies produce more offspring that survive to adulthood at greater rates and develop
more quickly compared with uninfected whiteflies [22]. Similarly, Chiel et al. [29] and
Shi et al. [45] reported that infection of Rickettsia significantly shortened the developmental
period of their B. tabaci hosts. Our results revealed that R+ B. tabaci have higher fecundity,
survival rate, number of females and higher longevity than the R- B. tabaci, while there
were shorter developmental periods for R+ B. tabaci. All our results in the current study
further confirmed the above findings.

Endosymbionts are also known as male-killers or to be female-biased (convert non-
transmitting male hosts into transmitting females through feminization of genetic males and
parthenogenesis induction) [50], among which, Rickettsia has been revealed to manipulate
host reproduction, either by killing male offspring as embryos (male-killing) or by inducing
parthenogenesis [26]. Our results also showed that R+ B. tabaci produced more female
offspring than the R− population. It has been reported that, Rickettsia can raise the fitness
of infected female indirectly by manipulating host reproduction, either by killing male off-
spring as embryos (male-killing) or by inducing parthenogenesis. The result of nucleotide
sequencing of the 16S rRNA gene in Hagimori et al. [51] indicated that the parasitoid
Neochrysocharis formosa (Westwood) is infected with a Rickettsia bacterium, which appears
to be causative of the thelytokous parthenogenesis (in which mothers produce only female
offspring from unfertilized eggs). This is the first finding of parthenogenesis-induction by
Rickettsia among insects. Moreover, Neochrysocharis formosa (Westwood) (Hymenoptera:
Eulophidae) males infected with Rickettsia produced by antibiotic treatment exhibited the
same courtship behaviors as the arrhenotokous males, but at a lower rate, and did not
produce fertilized progeny [52].

Endosymbionts have been reported to affect the nutritional contents of insect hosts [53].
For instance, the breakdown of glycogen generates glucose, which enters the glycolytic
pathway being converted into pyruvate. This process leads to ATP generation and provides
energy for insect activities [54]. It has been reported that the function of soluble sugar is
to offer energy for the hosts’ muscles when an insect is walking or escaping [55,56]. Thus,
alteration in soluble sugar content may cause a significant change in the normal functioning
of the organism. Trehalose is an important disaccharide in all biological forms and provides
energy for growth, metamorphosis, stress recovery, chitin synthesis, and insect flight [57].
From the elevated level of glycogen, soluble sugar and trehalose, we hypothesized that
Rickettsia infestation also affects the physiology of B. tabaci. Endosymbionts can promote
insect fitness by contributing to nutrition [58], they play a prominent role in insect nutri-
tional ecology by aiding in digestion of food or providing nutrients that are limited or
lacking in the diet [59,60]. Lv et al. [61] reported that Buchnera aphidicola helps the pea
aphid Acyrthosiphon pisum to overcome the nutritional deficiency of a plant-based diet. In



Insects 2022, 13, 1161 12 of 16

our study, due to increased egg-laying, B. tabaci produces more energy reserves to support
reproduction and other daily metabolic activities.

Endosymbionts also play an important role in the enhancement or detraction of the
defense system of the pest host against different management strategies, for example, in-
secticides [62], entomopathogenic fungi [63] and biological control parasitoids [42,64]. Our
results showed that Rickettsia enhanced resistance of B. tabaci to imidacloprid, spirotetramat,
it has been found that insecticide resistance was increased in hosts infected with some
symbionts, but we speculate that the enhancement or decrease of insecticide resistance
may depend on the endosymbiont-insecticide association, for example, Rickettsia increased
the resistance of whiteflies to acetamiprid and spiromesifen, but not diafenthiuron [65];
Rickettsia coexisting with another symbiont, Arsenophonus, was shown to confer insecticide
resistance to acetamiprid in B. tabaci, but did not affect susceptibility to diafenthiuron [62].
In addition, Pan et al. [66] reported that the thiamethoxam-susceptible population of B.
tabaci harbored more Portiera and Hamiltonella than the thiamethoxam-resistant population,
whereas the thiamethoxam-resistant population of B. tabaci harbored more Rickettsia than
the thiamethoxam-susceptible population.

We reached a consensus currently that non-chemical control measures became the
alternative and best choice for the management of insect pests, due to increasing resistance
to chemical pesticides [67]. Some studies indicated several facultative endosymbionts
of the pea aphid have been implicated in increasing their host resistance to pathogenic
fungi [43,68–70]. Panteleev et al. [63] revealed that females of Drosophila melanogaster
infected with Wolbachia were more resistant to the fungus Beauveria bassiana (an insect
pathogen) than uninfected females; infected females also exhibited changes in oviposition
substrate preference. Hendry et al. [32] also reported that Rickettsia infected B. tabaci
exhibited a decreased mortality rate due to the entomopathogenic bacteria Pseudomonas
syringae compared to Rickettsia negative B. tabaci. Our results revealed that R+ B. tabaci
individuals showed a significant mortality reduction when A. attenuates was applied, and
to each specific stage of B. tabaci, a higher concentration was necessary to manage R+

individuals compared to the R− individuals. Endosymbionts also protect their host against
parasitoids. The endosymbiont Buchnera aphidicola protects Acyrthosiphon pisum against the
hymenopteran parasitoid Aphidius ervi by causing high mortality in developing parasitoid
larvae [43]. Regiella insecticola was also reported to protect its aphid hosts against the
parasitoids Aphidius colmani and Aphidius asychis [71,72]. Hamiltonella did not reduce the
susceptibility of aphid to two species of parasitoids (A. ervi and Ephedrus plagiator) and
did not affect the fitness of wasps that successfully completed development, but it may
reduce the risk of parasitism in its aphid hosts by making them less attractive to searching
parasitoids [73]. All these studies along with our findings indicate that, although differing
in symbiont species, endosymbionts may share the same functional contribution to their
insect hosts.

In conclusion, results from this study and those of previous studies suggest that Rick-
ettsia infestation benefits B. tabaci by aiding in enhanced reproduction, higher survival and
faster development by improving its host’s nutritional composition. Rickettsia infection
improved its host’s fitness by enhancing its resistance towards insecticides (imidacloprid
and spirotetramat), entomopathogenic fungus (A. attenuatus) and parasitoid (E. formosa).
This study is useful in understanding the role of endosymbionts within an insect host. En-
dosymbionts can affect the fitness of their host and they play important roles in protecting
their host from environmental stress, such as natural enemies and toxins. However, there
are still several unanswered questions that need to be addressed: (1) bacterial endosym-
bionts are common in insects, so potentially symbiont-mediated protection exists in many
insect species, thus, how common is this phenomenon in nature and is this effect the same
in different insects? (2) Endosymbionts can enhance their resistance towards insecticides,
entomopathogenic fungi and parasitoids, but the breadth of mechanisms that underlie
how the symbionts provide protection is still largely unknown. (3) How should we adjust
subsequent pest control strategies in response to these characteristics of symbiotic bacteria?



Insects 2022, 13, 1161 13 of 16

All these aspects should be further investigated in the future, to support development of
novel strategies of pest biological control.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/insects13121161/s1, Table S1. Analysis of variance (ANOVA) on the
effects of different concentrations of Akanthomyces attenuatus and Rickettsia infection on the mortality
of whitefly; Table S2. Analysis of variance (ANOVA) on the effects of different concentrations of
insecticide and Rickettsia infection on the mortality of whitefly.
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