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Simple Summary: Costa Rica is near malaria elimination. However, sporadic outbreaks still occur,
and while control strategies have been focused on delivering efficient treatments for infected patients,
an open question is whether control measures targeting the dominant vector, Anopheles albimanus,
are appropriately designed given their ecology and distribution. Here, we illustrate the use of an
ensemble species distribution model (SDM) as a tool to assess the potential exposure to An. albimanus
in palm and pineapple plantations, and to also assess the potential involvement of this mosquito
vector in transmission foci where entomological surveillance is not feasible. We found that both oil
palm and pineapple plantations are very likely to harbor An. albimanus. By contrast, environments
at the Crucitas open-pit gold mine, the epicenter of malaria transmission in 2018 and 2019, have
low suitability for this mosquito species. Our results suggest that medium to high resolution SDMs
can be used to plan vector control activities. Finally, we discuss the high suitability of oil palm and
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pineapple plantations for An. albimanus in reference to recently developed social science theory about
the Plantationocene.

Abstract: In the absence of entomological information, tools for predicting Anopheles spp. presence
can help evaluate the entomological risk of malaria transmission. Here, we illustrate how species
distribution models (SDM) could quantify potential dominant vector species presence in malaria
elimination settings. We fitted a 250 m resolution ensemble SDM for Anopheles albimanus Wiedemann.
The ensemble SDM included predictions based on seven different algorithms, 110 occurrence records
and 70 model projections. SDM covariates included nine environmental variables that were selected
based on their importance from an original set of 28 layers that included remotely and spatially
interpolated locally measured variables for the land surface of Costa Rica. Goodness of fit for the
ensemble SDM was very high, with a minimum AUC of 0.79. We used the resulting ensemble SDM
to evaluate differences in habitat suitability (HS) between commercial plantations and surrounding
landscapes, finding a higher HS in pineapple and oil palm plantations, suggestive of An. albimanus
presence, than in surrounding landscapes. The ensemble SDM suggested a low HS for An. albimanus
at the presumed epicenter of malaria transmission during 2018–2019 in Costa Rica, yet this vector
was likely present at the two main towns also affected by the epidemic. Our results illustrate how
ensemble SDMs in malaria elimination settings can provide information that could help to improve
vector surveillance and control.

Keywords: gold mining; Costa Rica; Plasmodium; vivax malaria; productive landscapes; oil palms;
pineapples; plantationocene; Schmalhausen’s law

1. Introduction

Species distribution models (hereafter SDMs) predict species distribution ranges in
a space defined by coordinates (hereafter G-space). This concept is commonly confused
with environmental niche models (hereafter ENMs), which attempt to depict the species
distribution across a series of environmental gradients, or an environmental space (here-
after E-space) [1,2]. These approaches use georeferenced occurrence points and associated
environmental information, plus computer algorithms, to generate models of the proba-
bilistic distribution of a species in a E-space that becomes projected into a G-space, while
reducing errors regarding species distribution [3,4].

Based on both SDMs and ENMs, populations can be conceived as occupying envi-
ronmental niches that are similar (‘niche similarity’; Peterson et al. [5]) or identical (‘niche
equivalency’; Graham et al. [6]). While the first is relevant for testing broad biogeographic
and evolutionary hypotheses, the latter is useful for testing the transferability of niche
models in space and over relatively short periods of time [7]. In other words, SDMs over-
come the limitations of traditional approaches, such as the widely implemented “Extents
of Occurrence” [1,8,9], for depicting the spatial range of a species as they are not based
on opinions but quantitative relations. SDMs and ENMs can help to forecast trends in
biodiversity loss driven by changing environmental conditions to forecast biological inva-
sions and resolve questions about ecological and evolutionary diversification in response
to environmental changes [5,10–14].

Mosquitoes in the genus Anopheles (Diptera: Culicidae) include several vectors of
human malaria [15]. Successful malaria control efforts have been largely based on vector
reduction [16]. However, anthropogenic changes to the landscape and vector control activ-
ities have been accompanied by shifts in major anopheline vector species, which can be
assessed employing information from SDMs and ENMs. To take several examples, domi-
nant vector species can adapt and expand into new geographic areas and habitats, become
resistant to insecticides, or be displaced by other species, whose genetics and behavior are
unknown. Additionally, unidentified anopheline taxa within cryptic species complexes
may represent incipient evolutionary units, whose ability to adapt to climate change and
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transmit Plasmodium spp. parasites to humans vary with respect to isolated populations
of the same species [17]. All of this evolutionary complexity occurs against a backdrop
of environmental alteration driven by human activity, which in turn influences mosquito
distribution, species composition and density. The result of these interactions is highly focal
and often leads to idiosyncratic malaria transmission patterns that are poorly characterized,
and where standard interventions are not well adapted to reduce transmission, as has been
observed in the Anopheles gambiae complex from Africa [18–20]. Hence, there is a critical
need to characterize the link between anopheline mosquitoes and the environment, espe-
cially in malaria endemic areas where SDMs and ENMs can help to design and implement
precise control activities across the suitable habitat of local malaria vectors [21–23]. In
Mesoamerica, the dominant vector species across the region is Anopheles albimanus Wiede-
mann [24,25]. An. albimanus primarily occurs below 500 m [24,25], although it has been
observed at higher elevations [26]. This mosquito species is crepuscular, zoophilic and
exophagic, with exophilic resting behavior. Larvae and adults have been found over a
wide variety of ecological contexts [27]. Prior SDMs for An. albimanus in Mesoamerica have
been performed at relatively coarsely grained spatial scales between 1 and 8 km [21,27,28],
and these efforts have relied on the use of single algorithms, including boosted regression
trees [27] and MAXENT [21,28], which have not been evaluated as part of ensembles, which
are known to increase the precision and accuracy of SDMs [29].

In Mesoamerica, malaria is still an important vector-borne disease. However, Costa
Rica is on the verge of eliminating the disease. This malaria elimination is the result of
several control efforts, where elimination has been accelerated following changes in the
treatment coupled with mass drug administration campaigns [30,31] and housing quality
improvement [32]. Nevertheless, since 2016, malaria cases re-emerged given the trans-
boundary movements of pineapple plantation workers from Nicaragua [30], and illegal
gold mining in the Crucitas district of San Carlos county [33]. In the malaria elimination
context, SDMs are of great value as they can help to quickly evaluate the potential presence
of a vector in an area with malaria transmission, but without entomological information.
For example, in Costa Rica, the most recent malaria outbreaks have been controlled during
the dry season [31] when it is difficult to collect vector samples [34,35]. Using an SDM, for
example, it can be quickly assessed if a dominant vector, such as An. albimanus, is, or was,
likely to be present in areas with transmission, thus allowing the planning of precise control
interventions for the rainy season when the mosquito is more abundant [35]. Similarly,
SDMs can be used to determine whether dominant vector species are likely to be present in
areas where vulnerable populations migrate for economic reasons. From the perspective of
vector control operations, however, SDMs even at 1 km are limited in their ability to help
plan precise control operations. Given the current capacities in the national vector control
program of Costa Rica [36], fine- and ultra-fine-resolution SDMs will more effectively guide
the identification of larval habitats and/or the implementation of insecticide applications
following the detection of malaria cases, following current protocols for malaria outbreak
mitigation [37].

Here, we use mid-resolution spatial data, at 250 m, where we incorporate several layers
derived from remotely sensed and locally measured environmental variables to create an
ensemble SDM for An. albimanus. This SDM, which combines predictions from an ensemble
of several quantitative methodologies, is a robust approximation to the distribution of
this major malaria vector, which we use to retrospectively assess the possibility that this
vector was present in the transmission foci associated with malaria epidemics in 2018
and 2019 [31,38] and in landscapes used for pineapple production, where some malaria
outbreaks have been recurrently observed over recent years.

2. Materials and Methods
2.1. Mosquito Occurrence Records

We assembled a dataset of An. albimanus occurrences with records from collections
made largely by the vector control program of the Costa Rican Ministry of Health during
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surveillance and control activities for vector-borne diseases [39]. Additional occurrence
data were obtained from the Global Biodiversity Information Facility (GBIF—https://www.
gbif.org/ accessed on 20 February 2021) by searching the terms “Anopheles albimanus” for
species and “Costa Rica” for country. For the GBIF, we did not restrict the time frame
for the search, which allowed us to consider a larger collection of occurrence points.
Only occurrences that were georeferenced were selected. We also included records from
molecular population genetic studies on An. albimanus from southern Mesoamerica, which
encompassed extensive mosquito sampling across Costa Rica [28,40,41]. Records from
the genetic studies and the vector control program were collected after 2000. Occurrence
records used in this study are available online at https://osf.io/acjyg/.

2.2. Occurrence Data Quality Control

Occurrence data (Figure 1) were checked for duplicates and records with incomplete lo-
cation information. When found, these records were removed. Surveillance data commonly
suffer from spatial bias for a variety of reasons, including site accessibility and uneven
sampling efforts. This clustering of occurrence points can result in the overrepresentation of
certain areas and, subsequently, model overfit [42]. As such, occurrence records occurring
within 0.5 km of each other were removed using the spThin function from the R package
“spThin” [43], which is described in [44]. We started with 227 records and ended with
110 occurrence records after thinning the dataset.
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Figure 1. Map showing the distribution of Anopheles albimanus record locations; divisions indicate
the districts of Costa Rica. The inset histogram shows the distribution of elevations from locations
where An. albimanus has been sampled. The inset legend indicates symbols and color coding for the
presence of An. albimanus. The vector file for the districts of Costa Rica is from Costa Rica’s National
Geographical Institute [45]. The map used a public domain map from the US National Park Service
as its base [46]. An. albimanus has been recorded in all seven provinces of Costa Rica, in 28 out of
83 counties and in 55 out of 487 districts.
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2.3. Pseudoabsence Points

While it is possible to fit species distribution models with presence-only data, using
presence–absence data has been shown to have superior performance [6]. However, true
absence points are rare and particularly difficult to confirm for mobile species [47]. Without
true absence points, we rely on an artificial set of absence points, termed pseudoabsence
points [47,48]. There are many different strategies for generating these points, so we refer
to the suggestions by Barbet-Messin et al. [47], who detail the best sampling method based
on the SDM algorithms used. Pseudoabsences were generated using the “SRE” method in
the biomod2 package. This method uses a surface range envelope (SRE) model to identify
a range of suitable environmental conditions [49]. Pseudoabsence points are then sampled
randomly outside of that area, as they are considered to be environmentally dissimilar from
the location of presence points.

2.4. Environmental Data

We created a multilayer raster that included several variables that have been associated
with the occurrence of An. albimanus. Table 1 shows all the covariates included in the
multilayer raster, whose sources and processing are described in the Data Sources and
Processing subsection.

Table 1. Environmental covariates considered for Anopheles albimanus species distribution modeling
in Costa Rica. * Geological feature, ** vector files.

Covariate Raster Original Spatial
Resolution (Covariate Units)

Frequency (Period
Sampled)

Derived Layers
(Abbreviation)

MODIS—Enhanced
Vegetation Index (EVI) 250 m (Adimensional Ratio)

16 days
(2000-02-24 to

2019-12-31)

Standard Deviation, SD
(EVSD)

Kurtosis (EVIK)
Maximum (EVMA)
Minimum (EVMI)

Median (EVI)

MODIS—Normalized
Difference Vegetation Index

(NDVI)
250 m (Adimensional Ratio)

16 days
(2000-02-24 to

2019-12-31)

SD (NVSD)
Kurtosis (NVIK)

Maximum (NVMA)
Minimum (NVMI)

Median (NDVI)

MODIS—Land Surface
Temperature 1000 m (◦ Kelvin)

Daily
(2000-02-24 to

2019-12-31)

SD (TSDM)
Kurtosis (TKM)

Maximum (TMAM)
Minimum (TMIM)

Range (TRM)
Median (TMM)

PALSAR—Forest/Non-Forest 25 m (1 = Forest, 2 = Non-forest,
3 = Water) Annual (2007–2019)

Mode (PFC)
SD (PFSD)

Kurtosis (PFK)

NASA—Digital Elevation
Model 30 m (Meters Above Sea Level) 2000 s *

Elevation (ELEV)
Aspect (ASP)

Roughness (ROUG)
Slope (SLOP)

GPWv4—Population Density 1000 m (Population Density) 2015 Population Density (POPD)

INM—Rainfall 1:5000 (mm) **
Annual average based on
daily records (1963-01-01

2013-12-31)
Rainfall (RAIN)

INM—Temperature 1:5000 (◦C) **
Annual average based on
daily records (1963-01-01

2013-12-31)

Mean (TMS)
Minimum (TMIS)

Maximum (TMAS)
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2.5. Data Sources and Processing

When building our multilayer raster, we used surfaces for the enhanced (EVI) and
normalized difference vegetation indices (NDVI) from moderate resolution imaging spec-
troradiometer (MODIS) images [50,51] as the basis grid. EVI and NDVI are commonly
used as vegetation growth proxies [52], with EVI being more appropriate for measur-
ing differences in areas with high canopy and dense vegetation [51]. We also included
other raster layers from MODIS, including data for surface temperature [53], as well as a
forest/non-forest land use classification based on advanced land observing satellite (ALOS)
phased arrayed L-band synthetic aperture radar (PALSAR) images [54]. The PALSAR
forest classification is based on identified forests with an area larger than 0.5 ha, with over
10% forest coverage in accordance with the Food and Agriculture Organization (FAO)
definition [54]. We also included data for population density from the Gridded Population
of the World, Version 4 (GPWv4) with the Population Density Adjusted to Match 2015
Revision of UN WPP Country Totals dataset [55]. Data from the NASADEM_HGT v001
digital elevation model were also included [56].

All raster data were downloaded from Google Earth Engine (GEE) using javascript
code available on the GEE website [57]. For MODIS and PALSAR variables that had time
series of images, we estimated median, standard deviation, kurtosis and maximum and
minimum composite images using the javascript reducer function in GEE. The downloaded
data were warped, i.e., re-projected and re-sampled [58], using the bicubic spline algorithm
and the EVI/NDVI grid as a template, using the command sf_warp from the “stars” package
of R. We chose the bicubic spline algorithm, given that it has the best performance in terms
of precision and accuracy when compared with other algorithms used to resample raster
images [59]. The resulting 250 m digital elevation model was further processed to estimate
slope, aspect and roughness using the terrain function of the “raster” package for R. Slope
and aspect were measured in radians. Briefly, slope is the rate of elevational change of
the landscape measured in the steepest direction at any point, while the aspect is the
direction in which the slope is measured (where 0 is north, π/2 is east, π is south and 3π/2
is west) [60]. Meanwhile, roughness at a given pixel is the largest elevation difference
within the set of nine pixels composed by that given (‘focal’) pixel and its eight surrounding
neighbor cells in the rectangular raster grid [61].

We also included rainfall [62] and temperature [63–65] data from the Costa Rican
National Meteorological Institute and data about the built environment based on a coupled
photogrammetric and cadastral record analysis [45]. These data were vector files [45,62–65],
and were rasterized over the 250 m grid of EVI and NDVI raster layers using the command
sf_rasterize of the R package “stars”.

All the raster layers were then stacked into a multilayer raster brick with the commands
stack and brick from the “raster” package using R. The resulting multilayer raster, with a
resolution of 250 m, is available online at https://osf.io/acjyg/.

2.6. Parametric Models, Machine Learning Algorithms and Variable Selection

We employed a parametric model for SDM, the logistic generalized linear model
(L-GLM), which can predict the presence and absence of a species based on a linear combi-
nation of variables [66]. We also employed the following six machine learning algorithms to
produce models that estimate habitat suitability: classification and regression tress (CAT),
generalized boosted regression models (GBM) [67], random forests (RF) [68], artificial
neural networks (ANN) [68], the multiple adaptive regression splines (MARS) and MAX-
ENT [1–3]. GBM and RF are based on the use of CAT, which are computational tools that
iteratively find thresholds and other non-linearities in the association of covariates with
a response [69]. In the case of GBM, trees are boosted, meaning that simpler trees are
combined to improve the accuracy of predictions [67]. In RF, trees are built for resampled
datasets in a fashion similar to the one used for building a bootstrap [68,70]. Meanwhile,
ANN are models that incorporate non-linearities in the association of variables by using
nonlinear functions that combine the information from several variables (called ‘inputs’ in

https://osf.io/acjyg/
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ANN terminology) in layers of neurons, which become combined (‘activated’) to generate
a prediction (‘output’) [68]. MARS is a technique that uses spline fitting to find piecewise
linear basis functions that accommodate non-linear relationships between the environmen-
tal covariates and presence probability of a species [71]. Finally, MAXENT maximizes an
entropy function that separates the distribution of environmental variables from pixels
where the species has been recorded from the background distribution of the same variables
where the studied species has not been sampled, taking into account the constraints derived
from environmental conditions [3].

For variable selection, we generated 10 sets of 110 pseudoabsence points, as the
process of data cleaning left us with 110 occurrences and machine learning algorithms
work best with symmetric datasets [47,68], i.e., with the same number of occurrence and
pseudoabsences in this case. Pseudoabsence points were generated using the surface range
envelope algorithm described in Section 2.3, where points are chosen at random from areas
considered to be environmentally dissimilar from the locations of presence points [47]. We
then ran each one of the seven methods mentioned above three times, and each of the
three times, we included 100 permutations for each covariate at a time to estimate variable
importance, a measurement of the drop in explained variance or prediction accuracy.
Based on this preliminary analysis, we chose all variables whose importance was above
5%. Once a reduced number of covariates was selected, we generated an additional
pseudoabsence dataset of 110 locations, which was run ten times with each one of the seven
models, including 100 permutations for each covariate to assess their importance. We used
the resulting values to generate an ensemble SDM map that weighted all the resulting
70 projected predictions for An. albimanus habitat suitability, using the ROC value from
each individual model.

Evaluation strip plots were employed to visualize the probability of occurrence re-
sponse curve for each covariate in the final model. The strip plots are generated by
producing a prediction from a model using a new dataset in which only one variable
is allowed to vary in a sequence between the minimum and maximum, while the other
variables are fixed at their median values [72].

All analyses were completed using the biomod2 package [49,73] for R [74]. This pack-
age was selected for its ability to incorporate several techniques and for its reproducibility.
Five folds were created with 10 repetitions, and each data partition contained approxi-
mately the same number of presence points. The BIOMOD_Modeling function was used for
model generation, and a total of 280 individual models were fit for variable selection, and
70 additional models were fit to generate the SDM map. As mentioned above, models were
evaluated using k-fold cross-validation, and the evaluation statistics returned were area
under the curve (AUC) and the true skill statistic (TSS). The AUC statistic estimates the
model’s likelihood to correctly differentiate between presence and absence locations, with
a value of 0.5 suggesting that model performance is no better than random chance. The
TSS statistic works similarly and is equal to the sum of model sensitivity and specificity
minus one. A final ensemble model was fit to include all models with an AUC score of
0.7 or higher, and each model was weighted proportionally to its AUC score. We only
consider AUC scores of 0.7 and above, as they are considered to demonstrate high model
performance [75].

2.7. Applications for SDMs in the Context of Malaria Elimination

We used the resulting ensemble SDM for An. albimanus to investigate its probable pres-
ence in the productive landscapes of Costa Rica, i.e., areas with plantations of commodity
crops for export. We also retrospectively evaluated if An. albimanus was likely to be present
in the 2018–2019 malaria outbreak associated with open-pit gold mining in Crucitas [31].

2.7.1. Background Information about Productive Landscapes in Costa Rica

In Costa Rica, oil palm has been a major commodity crop for export since the 1940s,
with the country producing around 190,000 metric tons of crude oil per year [76,77]. As
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of 2019, Costa Rica has 73,900 hectares in oil palm plantations [78]. Another common
commodity crop is pineapple. An interesting feature of pineapple plantations in Costa
Rica is that their total area has been increasing in recent years, rising from approximately
13,300 ha in 2000 to 65,400 ha in 2019 [79]. This substantial shift in land use, central to the
development of the northern border in the country, has occurred as pineapple has become
a major commodity crop for markets in Europe and North America [80]. Currently, Costa
Rica is the main global producer of pineapples, reporting revenues close to USD one billion
per year [81]. Figure 2 shows the location and extent of palm oil (Figure 2A) and pineapple
(Figure 2B), which are present, respectively, in 80 and 51 districts out of 487 districts in the
country, according to estimates for 2019.

Insects 2022, 13, x FOR PEER REVIEW 8 of 22 
 

 

2.7. Applications for SDMs in the Context of Malaria Elimination 
We used the resulting ensemble SDM for An. albimanus to investigate its probable 

presence in the productive landscapes of Costa Rica, i.e., areas with plantations of com-
modity crops for export. We also retrospectively evaluated if An. albimanus was likely to 
be present in the 2018–2019 malaria outbreak associated with open-pit gold mining in 
Crucitas [31]. 

2.7.1. Background Information about Productive Landscapes in Costa Rica 
In Costa Rica, oil palm has been a major commodity crop for export since the 1940s, 

with the country producing around 190,000 metric tons of crude oil per year [76,77]. As of 
2019, Costa Rica has 73,900 hectares in oil palm plantations [78]. Another common com-
modity crop is pineapple. An interesting feature of pineapple plantations in Costa Rica is 
that their total area has been increasing in recent years, rising from approximately 13,300 
ha in 2000 to 65,400 ha in 2019 [79]. This substantial shift in land use, central to the devel-
opment of the northern border in the country, has occurred as pineapple has become a 
major commodity crop for markets in Europe and North America [80]. Currently, Costa 
Rica is the main global producer of pineapples, reporting revenues close to USD one bil-
lion per year [81]. Figure 2 shows the location and extent of palm oil (Figure 2A) and 
pineapple (Figure 2B), which are present, respectively, in 80 and 51 districts out of 487 
districts in the country, according to estimates for 2019. 

 
Figure 2. Major plantation landscapes of Costa Rica for (A) oil palm and (B) pineapple. In both 
panels, the inset legends indicate the location of the plantations, and districts are colored according 
to the presence of plantations. Estimates are for 2019 and based on estimates from the PRIAS lab at 
the Centro Nacional de Alta Tecnología, CENAT [78,79]. 

2.7.2. Anopheles albimanus in Productive Landscapes of Costa Rica 
Oil palm plantations (Figure 2A) are common throughout Costa Rica, but have not 

been associated with malaria outbreaks. A major characteristic of oil palm plantations is 
the use of residues as compost, which is managed in a way that reduces the abundance of 
Anopheles spp. mosquitoes [82,83]. By contrast, a common feature of many recent malaria 

Figure 2. Major plantation landscapes of Costa Rica for (A) oil palm and (B) pineapple. In both
panels, the inset legends indicate the location of the plantations, and districts are colored according to
the presence of plantations. Estimates are for 2019 and based on estimates from the PRIAS lab at the
Centro Nacional de Alta Tecnología, CENAT [78,79].

2.7.2. Anopheles albimanus in Productive Landscapes of Costa Rica

Oil palm plantations (Figure 2A) are common throughout Costa Rica, but have not
been associated with malaria outbreaks. A major characteristic of oil palm plantations is
the use of residues as compost, which is managed in a way that reduces the abundance of
Anopheles spp. mosquitoes [82,83]. By contrast, a common feature of many recent malaria
outbreaks in Costa Rica has been their apparent association with pineapple plantations [38].
In the context of malaria elimination, it is important to understand the entomological risk
associated with the landscapes used to grow these two major commodity crops. As a proof
of concept, we compared An. albimanus habitat suitability, measured as a probability, in
land used for palm (Figure 2A) and pineapple (Figure 2B) plantations with that of the
remaining land in the plantation districts. Based on estimates for An. albimanus dispersal,
which has been recorded as occurring in distances of up to 3 km [84,85], we also compared
the suitability in the plantations plus buffers of 1, 2 and 3 km with that of the remaining
plantation-surrounding land in the plantation districts (Figure 3).



Insects 2022, 13, 221 9 of 22

Insects 2022, 13, x FOR PEER REVIEW 9 of 22 
 

 

outbreaks in Costa Rica has been their apparent association with pineapple plantations 
[38]. In the context of malaria elimination, it is important to understand the entomological 
risk associated with the landscapes used to grow these two major commodity crops. As a 
proof of concept, we compared An. albimanus habitat suitability, measured as a probabil-
ity, in land used for palm (Figure 2A) and pineapple (Figure 2B) plantations with that of 
the remaining land in the plantation districts. Based on estimates for An. albimanus disper-
sal, which has been recorded as occurring in distances of up to 3 km [84,85], we also com-
pared the suitability in the plantations plus buffers of 1, 2 and 3 km with that of the re-
maining plantation-surrounding land in the plantation districts (Figure 3). 

 
Figure 3. Plantation districts (in white) and plantations (in orange), and the different spatial buffers, 
1 km (yellow), 2 km (blue) and 3 km (red), used for comparing Anopheles albimanus habitat suitability 
between plantations and surrounding land in plantation districts. As indicated by the inset titles, 
the left panel shows the spatial buffers for oil palm plantations, and the right panel shows those for 
pineapple plantations. 

2.7.3. Anopheles albimanus in the Crucitas Outbreak of 2018–2019 
We also used the resulting An. albimanus ensemble distribution model to investigate 

if the 2018–2019 malaria outbreak observed in locations within the Cutris and Pocosol 
districts of San Carlos county (Canton San Carlos in Spanish) [31] occurred in areas with 
high suitability for An. albimanus. We evaluated the suitability of An. albimanus in circular 
areas of 3, 5 and 7 km from the population center in the Crucitas open-pit gold mine and 
the towns of Llano Verde and Boca Arenal. 

3. Results 
We obtained 227 occurrence points for An. albimanus. Following data cleaning, 110 

records remained, most of which were generally located around the perimeter of Costa 
Rica (Figure 1). Figure 4 shows the correlations of the different covariates at the pixels 
with points where An. albimanus has been collected.  

Figure 3. Plantation districts (in white) and plantations (in orange), and the different spatial buffers,
1 km (yellow), 2 km (blue) and 3 km (red), used for comparing Anopheles albimanus habitat suitability
between plantations and surrounding land in plantation districts. As indicated by the inset titles,
the left panel shows the spatial buffers for oil palm plantations, and the right panel shows those for
pineapple plantations.

2.7.3. Anopheles albimanus in the Crucitas Outbreak of 2018–2019

We also used the resulting An. albimanus ensemble distribution model to investigate
if the 2018–2019 malaria outbreak observed in locations within the Cutris and Pocosol
districts of San Carlos county (Canton San Carlos in Spanish) [31] occurred in areas with
high suitability for An. albimanus. We evaluated the suitability of An. albimanus in circular
areas of 3, 5 and 7 km from the population center in the Crucitas open-pit gold mine and
the towns of Llano Verde and Boca Arenal.

3. Results

We obtained 227 occurrence points for An. albimanus. Following data cleaning,
110 records remained, most of which were generally located around the perimeter of
Costa Rica (Figure 1). Figure 4 shows the correlations of the different covariates at the
pixels with points where An. albimanus has been collected.

Pearson’s correlation matrix (Figure 4) reveals clusters of high correlations (abso-
lute value of Pearson’s r > 0.6). Particularly for the MODIS-based temperature variables,
station-based temperature, EVI and NDVI, measures of variability (kurtosis and standard
deviation), as well as minimum, maximum and average values. These patterns of associa-
tion called for a process of variable selection based on variable importance, whose results
are presented in Figure 5. Of the twenty-eight environmental variables initially investigated,
only nine were selected for inclusion in the final ensemble model. During model selection,
variable importance was over 5% for only nine environmental covariates (Figure 5A). El-
evation and standard deviation of NDVI were the two most important variables, being
prescribed 29% and 16% variable importance, respectively. Of the nine remaining, the most
important environmental covariates were elevation, minimum temperature and standard
deviation of NDVI (Figure 5B). Using seven different algorithms, a total of 70 models were
generated to estimate habitat suitability. AUC and TSS scores for each algorithm, reported
in Table 2, indicate universally strong model performance.
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Table 2. Mean area under curve (AUC) and true skill statistic (TSS) values, with standard deviation
(±SD), based on the 10 model repetitions per algorithm that were used to build the ensemble
distribution model for Anopheles albimanus in Costa Rica. Abbreviations: L-GLM, logistic generalized
linear model; MARS, multiple adaptive regression spline; CAT, classification and regression trees;
RF, random forest; GBM, generalized boosting model; ANN, artificial neural networks; MAXENT,
maximum entropy.

Algorithm AUC TSS

L-GLM 0.91 ± 0.05 0.75 ± 0.11
MARS 0.89 ± 0.04 0.68 ± 0.09
CAT 0.79 ± 0.07 0.58 ± 0.13
RF 0.92 ± 0.04 0.76 ± 0.10

GBM 0.91 ± 0.05 0.72 ± 0.10
ANN 0.85 ± 0.07 0.63 ± 0.12

MAXENT 0.92 ± 0.04 0.76 ± 0.10

RF and MAXENT demonstrated the strongest performance with AUC scores of 0.92 ± 0.04
and TSS scores of 0.76 ± 0.10. Classification and regression trees demonstrated good
performance, but comparatively were the worst performing algorithm (AUC = 0.79 ± 0.07,
TSS = 0.58 ± 0.13). From the 70 models created, a single final weighted ensemble model
was created (Figure 6).
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Habitat suitability ranged across Costa Rica from 0 to 1, with a score of 1 representing a
habitat where An. albimanus should be present. There is some variation in the classification
of these scores, but we consider scores ranging from 0 to 0.3 to have poor suitability,
0.3 to 0.5 to be moderately suitable, 0.5 to 0.7 to have good habitat suitability and 0.7
to 1 to be a highly suitable environment [75]. The ensemble model estimates the lowest
suitability for An. albimanus to be across the central mountain range of the country, the
Cordillera Central, with areas of higher suitability patchily distributed throughout the
country lowlands and concentrated along the perimeter of the country (Figure 6). Areas of
particularly high suitability (probability > 0.7) include a patch in the southeastern portion
of the country in the Pacific basin, including regions bordering with Panamá, two strips
along the southern border and a patch just below the middle of the northern border; all
these patches are concentrated in the Atlantic basin of Costa Rica. The contribution of the
different environmental variables in shaping the ensemble SDM for An. albimanus can be
seen in Figure 7.

The probability of occurrence decreases as elevation increases, but drops dramatically
once elevation exceeds 1000 m according to all the algorithms studied (Figure 7A). The
probability of occurrence is not largely affected by NDVI (Figure 7B) or maximum NDVI
(Figure 7C), with probabilities just decreasing for extreme large values. For most model
types, a standard deviation of NDVI (Figure 7D) is negatively correlated with probability
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of occurrence, especially once the value is greater than 0.2. However, very little correlation
is observed when the ANN and classification trees algorithms were used. Suitability
only changed with population density (Figure 7E) for the L-GLM, where it decreased
for extremely high densities. Rain (Figure 7F) did not have an impact on suitability
for most models, the only exception being the L-GLM and MAXENT, where suitability
monotonically decreased as rainfall increased. Meanwhile a non-monotonic decrease in
habitat suitability was observed with ANN as rainfall increased. Roughness increases
(Figure 7G) where mainly associated with a monotonic decrease in An. albimanus suitability,
according to MAXENT. The kurtosis of MODIS-based land surface temperature (Figure 7H)
suggests that more platykurtic environments, i.e., those with low kurtosis, increased habitat
suitability for An. albimanus, with the exception of ANN and RF, which where insensitive to
changes in kurtosis. Generally, minimum temperature (Figure 7I) has a positive correlation
with the probability of occurrence. However, when temperatures begin to increase past
30 degrees, the correlation becomes negative. Only when these variables reach the upper
values of their distribution, do we tend to see a decline in the probability of occurrence.
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Figure 7. Strip plots of the predicted probability of Anopheles albimanus occurrence as function of
the covariates considered in the ensemble of best models. In the plots, each line represents the
mean for the replicated runs of each model. Model methodologies are color-coded (see bottom of
the figure). Covariates included (A) elevation, (B) NDVI, (C) maximum NDVI, (D) SD of NDVI,
(E) population density per km2, (F) rainfall measured in mm, (G) landscape roughness, (H) MODIS-
based temperature kurtosis and (I) MODIS-based minimum temperature in ◦C.

A comparison between the presence of plantations (Figure 2) and habitat suitability
for An. albimamus (Figure 6) suggests that there is a strong relationship between the two.
This correlation is further confirmed by a comparison of habitat suitability in plantations
and non-plantation landscapes (Figure 8).
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Figure 8. Boxplots comparing Anopheles albimanus habitat suitability in plantations and non-plantation
landscapes from plantation districts for oil palms (A) without a spatial buffer, t = 170.01, df = 13,879,
p-value < 2.2 × 10−16, (B) with a 1 km spatial buffer, t = 200.54, df = 99,252, p-value < 2.2 × 10−16,
(C) with a 2 km spatial buffer, t = 204.02, df = 209,115, p-value < 2.2 × 10−16 and (D) with a 3 km spatial
buffer, t = 210.34, df = 298,572, p-value < 2.2 × 10−16; and for pineapples (E) without a spatial buffer,
t = 177.12, df = 14,391, p-value < 2.2 × 10−16, (F) with a 1 km spatial buffer, t = 242.18, df = 107,952,
p-value < 2.2 × 10−16, (G) with a 2 km spatial buffer, t = 262.72, df = 172,789, p-value < 2.2 × 10−16

and (H) with a 3 km spatial buffer, t = 278.23, df = 208,638, p-value < 2.2 × 10−16. In all panels, the
boxplots show the median for the distribution of pixel values, while the boxes represent the 25th and
75th percentiles of the data. For each boxplot comparison, we report t values for two-sample Welch’s t
tests, a statistic used to compare means between two groups, in this case plantation vs. non-plantation
pixels. We chose Welch’s t test for the comparison because it accounts for heterogeneous variances in
the compared groups [86].

For both oil palm (Figure 8A–D) and pineapple plantations (Figure 8E–H), the habitat
suitability is significantly greater compared to non-plantation areas in plantation districts.
The addition of spatial buffers decreases the difference in habitat suitability between
plantation and non-plantation landscapes, but at all spatial buffers, habitat suitability is
still overwhelmingly greater around both oil palm and pineapple plantations.

When considering the relationship between habitat suitability and the 2018–2019
malaria outbreak, areas with a suitability over 0.7 are seen in the two outbreak districts
examined (Figure 9A). The majority of Crucitas has low habitat suitability, but near the
southwestern portion of the district, there is a small region of moderate-to-high suitability
(Figure 9B). Suitability is very low, around 10% at 3km, and increases as the radius of the
area considered increases from the center of the open-pit gold mine, up to 17% at 7 km
(Table 3). Ranges of habitat distribution in Llano Verde are patchy (Figure 9C); however,
suitability was slightly above 30% across the buffer (Table 3). Boca Arenal has the most
consistently high habitat suitability (Figure 9D), with 70% suitability at 3 km, a value that
slightly decreased as the buffer radius increased (Table 3).
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Figure 9. Ensemble distribution model for Anopheles albimanus in (A) Cutris and Pocosol districts,
where symbols indicate the locations associated with the 2018–2019 Crucitas malaria outbreak (for
details, refer to the inset legend), and in (B) Crucitas, (C) Llano Verde and (D) Boca Arenal. In all
panels, color indicates habitat suitability quantified by probabilities from 0 to 1, as presented in the
legend of panel (A). In all panels, the Y axis is the latitude and the X axis is the longitude. In all
panels, each pixel is a 250 m square, and in panels B, C and D, the circular areas have a 7 km radius.

Table 3. Anopheles albimanus mean habitat suitability (HS) probability around the three locations of
the 2018–2019 malaria outbreak associated with illegal open-pit gold mining in Crucitas, Costa Rica.

Location
Spatial Buffer Radius (HS Mean ± S.D.)

3 km 5 km 7 km

Crucitas 0.10 ± 0.04 0.12 ± 0.09 0.17 ± 0.15

Llano Verde 0.33 ± 0.18 0.33 ± 0.19 0.31 ± 0.19

Boca Arenal 0.70 ± 0.05 0.69 ± 0.06 0.67 ± 0.09

4. Discussion

Our results suggest that mid-to-high spatial resolution SDMs could become an es-
sential part of the toolkit used in routine vector control program operations. The first
interesting feature of our ensemble model was that seven out of the nine variables em-
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ployed as covariates to produce the SDMs were from remotely sensed data, which has the
potential to streamline SDMs that automatically update predictions as new data become
available. All the remotely sensed variables that were in the models used for the ensemble
have been reported to be associated with An. albimanus presence and abundance. The
most important variable was elevation, accounting for 25 to 30% of variability in the SDMs,
which had a robust pattern across the different models, with all models suggesting that
habitat suitability decreased as elevation increased. This pattern can reflect two things.
Firstly, it reflects the known association between elevation and temperature, where the
latter increases and the former decreases [20]. Secondly, it could also be related to landscape
features, as lowlands have concentrations of wetlands and other habitats that are known to
harbor large densities of An. albimanus [87–90]. This suggestion is also supported by the
decrease in suitability with roughness for a subset of the models and increasing minimum
temperature. An. albimanus population dynamics studies have shown a negative relation-
ship between increased rainfall and abundance [34,35], which could in turn translate into
those areas consistently receiving more rainfall as being less likely to be suitable for An.
albimanus, as observed in the models where rainfall was an important covariate. Similarly,
suitability decreases at very high NDVI values and reflects the ecology of An. albimanus,
as the species prefers sunlit habitats [27,87], and similar patterns of occurrence, where the
mosquito is not present in land with near-saturation NDVI values or the dense vegetation
cover it is associated with, have been observed elsewhere in Mesoamerica [88,91–95]. In-
creasing population density per km2 was only associated with a decrease in suitability for
L-GLM models, and this result could reflect the lack of larval habitats for An. albimanus
in more urbanized landscapes, while also highlighting the importance of making SDMs
with ensembles of models, since the possibility to incorporate information from different
covariates increases, as they can be incorporated with different functional forms [29,73].

A novel result from our study is the association of habitat suitability with measures
of higher order of variability in the environmental variables. Across most models, habitat
suitability decreased as the variance of NDVI increased, suggesting that An. albimanus
occurrence is associated with landscapes that are relatively stable in terms of vegetation
change. However, the association with MODIS-based temperature kurtosis indicates that
habitats with low kurtosis, i.e., having platykurtic distributions, are where covariates are
relatively more variable towards the mean than the extremes [96,97]. A significant associ-
ation with kurtosis and the SD of environmental variables illustrates how An. albimanus
distribution is sensitive both to average environmental conditions and their patterns of
variability, following Schmalhausen’s law [98], the ecological principle that indicates that
sensitivity to different environmental variables could increase as the limits of tolerance
to any environmental variable are reached, and that organisms are, therefore, sensitive
to changes in the different statistical moments of environmental factors shaping their
abundance and distribution [20].

The resulting ensemble SDM has an increased resolution when compared with previ-
ous efforts that have generated SDMs for the territory of Costa Rica, and ranged between
1 and 8 km [21,27,28]. This increased resolution, at 250 m, could potentially help optimize
field activities by highlighting areas needing entomological surveillance. We illustrate this
with the two applications that we developed in this study.

In the first application, we compared the An. albimanus habitat suitability in plantations
of two major commodity crops in Costa Rica. One has been long established, as is the
case for oil palms, and the other is an emerging global commodity crop, where Costa Rica
is the main global producer [81], as is the case with pineapples. Interestingly, in both
cases, the suitability was increased in the plantations when compared with surrounding
areas in districts where plantations are located, a result robust to different assumptions
about the area of influence of a plantation, assuming a maximum 3 km dispersal for An.
albimanus [84]. The environmental homogenization driven by monocultures [99,100] such
as oil palm and pineapple plantations provides new habitats for An. albimanus to thrive in
Costa Rica’s lowlands. An open canopy for sunlit man-made irrigation habitats, ground
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wheel tracks created by vehicles used in commodity crop production and transportation
and microclimatic conditions that could enhance mosquito reproduction and survival are
a few examples of conditions that can enhance the fitness of An. albimanus in light of
what we know about its life history and ecology [87]. Nevertheless, little research has
been conducted into An. albimanus in oil palm and pineapple plantations as a malaria
transmission risk factor.

Furthermore, some recent malaria outbreaks have been associated with pineapple
plantations [30,31], and we are not aware of entomological studies in such plantations.
In contrast, for oil palm plantations, a few entomological studies have shown that such
plantations lead to decreases in anopheline abundance when compared with the previous
vegetation type [82,83]. These studies suggest that decreases in anopheline mosquitoes
might be related to water management practices that reduce the likelihood of Anopheles
spp. larval habitats [82,83]. Although some ecological conditions are present for the
development of An. albimanus, little malaria has been observed in the area of Costa
Rica dominated by oil palm plantations, and part of that could be related to a decrease
in the entomological risk of transmission. However, part of the difference could also
be related to historical patterns in the social development of southwestern Costa Rica.
This area, where oil palm plantations are concentrated, has historically seen low malaria
transmission [32,38]. The development and settlement of oil palm plantations occurred
when the Costa Rican state was engaged in the development of a social welfare state where
plantation workers had access to decent housing, i.e., housing built of materials, and with
characteristics, that reduce exposure to mosquito bites [32] and access to basic healthcare
and other services [101], which seems privileged when compared with current working
conditions at pineapple plantations in northern Costa Rica, which have been promoted by
a neoliberal economic context [80] whose tendencies to impose austerity in public health
investment have been associated with the emergence and re-emergence of vector-borne
diseases globally [99]. This possibility is further re-enforced when looking at historical
malaria patterns in Costa Rica. The disease used to be concentrated in the Caribbean
basin when the United Fruit Company (UFCo) started a commodity crop economy with
banana plantations [38] that imposed extremely detrimental working and living conditions
for the workers, as exposed in the literary work of Carlos Luis Fallas [102] and Joaquin
Gutiérrez [103], who vividly described the heavy toll of tropical diseases on plantation
workers. Beyond these literary depictions, the large numbers of cases and deaths were even
recorded by the UFCo itself [104]. Recent developments in social scientific theories have
described this association between plantations and depauperated social, environmental
and health conditions as the Plantationocene [105]. Our results suggest that incorporating
the model of social and economic relations imposed by the Plantationocene might be key to
understanding the differences between oil palm and pineapple plantations in terms of the
generation of malaria outbreaks in Costa Rica. Beyond this study, examining the role of the
Plantationocene in generating spatial patterns in diseases is an important research question
to prevent the emergence of infectious diseases beyond the need of ecological research on
mosquito abundance and infection in both types of plantations.

Our second application asked if habitat suitability for An. albimanus implied that this
was the main vector during the 2018–2019 malaria outbreak associated with illegal open pit-
gold mining in Crucitas [31]. Our results suggest that the likelihood of Anopheles albimanus
being present at the mine itself was very low, with a suitability of only 10%. And this result
unlikely reflects “out of date” land cover data, as we considered environmental information
that overlapped with the time of the Crucitas malaria outbreak, having ourselves processed
a time series of satellite-derived images that included images taken as the outbreak was
happening. However, the mosquito was likely present at the two main towns also affected
by the epidemic. This result highlights that as malaria cases become rarer following
elimination efforts, additional secondary vector species of Anopheles could be responsible
for transmission. In principle, this calls for improved entomological surveillance in the field.
In that sense, we think that SDMs could be extremely useful to prioritize areas needing
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entomological surveillance following malaria outbreaks, especially as An. albimanus has
been observed in mining areas of Colombia [24], but our model does not indicate that the
Crucitas environment is suitable for its development. This notwithstanding, other vector
species might be potentially present in the Crucitas open-pit gold mine, with possibilities
including Anopheles vestitipennis Dyar & Knab and Anopheles punctimacula Dyar & Knab, as
these species thrive in recently disturbed environments and commonly co-occur with An.
albimanus in Mesoamerica [106,107]. Similarly, Anopheles darlingi Root, has been predicted
to be present in the area with SDMs [108] and has been reported in Panamá [109], but has
not yet been detected in Costa Rica.

Finally, this study clearly shows the advantages of developing finely grained SDMs
for vectors, as they produce information that could help guide research, surveillance and
control efforts for vector-borne diseases as part of efforts for more precise [110,111] public
health practice.
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