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Simple Summary: Culicoides biting midges are nuisance pests of livestock and well-known vectors
of veterinary arboviruses, such as vesicular stomatitis virus (VSV). Female midges ingest viruses
when feeding on blood to obtain protein for egg-laying. After ingesting a VSV-infected blood meal,
the environmental temperature of the resting location mediates the rates at which blood is digested,
eggs are laid, and virus particles are replicated inside the midge. VSV transmission will occur if
the timing of virus amplification aligns with the next feeding–egg-laying cycle. We evaluated the
impact of constant environmental temperatures on midge physiology (lifespan and reproduction),
vector competence for VSV (infection and dissemination), and thermal resting preference. Our results
indicate that after ingesting a blood meal, most midges prefer to rest in areas that fall within their
preferred physiological range regardless of the temperatures at which they were being maintained.
These preferred temperatures maximized their survival, the number of egg-laying cycles, and the
likelihood of VSV transmission. Our temperature approach shows that in the Culicoides–VSV system,
the preferred resting temperature selected by blood-fed midges is beneficial for both insect and virus
transmission.

Abstract: Culicoides midges play an important role in vesicular stomatitis virus (VSV) transmission to
US livestock. After VSV-blood feeding, blood digestion followed by oviposition occurs while ingested
virus particles replicate and disseminate to salivary glands for transmission during subsequent blood-
feeding events. Changes to environmental temperature may alter the feeding–oviposition–refeeding
cycles, midge survival, VSV infection, and overall vector capacity. However, the heterothermic midge
may respond rapidly to environmental changes by adjusting their thermal behavior to resting in areas
closer to their physiological range. Here we investigated the effects of four constant environmental
temperatures (20, 25, 30, and 35 ◦C) on C. sonorensis survival, oviposition, and VSV infection, as well
as resting thermal preferences after blood-feeding. We found that most midges preferred to rest in
areas at 25–30 ◦C. These two constant temperatures (25 and 30 ◦C) allowed an intermediate fitness
performance, with a 66% survival probability by day 10 and oviposition cycles occurring every 2–3
days. Additionally, VSV infection rates in bodies and heads with salivary glands were higher than
in midges held at 20 ◦C and 35 ◦C. Our results provide insight into the implications of temperature
on VSV–Culicoides interactions and confirm that the range of temperature preferred by midges can
benefit both the vector and the arbovirus.

Keywords: Culicoides midges; vesicular stomatitis virus; constant temperature; thermal preference;
vector competence

1. Introduction

Culicoides midges (Diptera: Ceratopogonidae) are well-known nuisance pests and
arbovirus vectors with worldwide epidemiologic implications on a wide variety of agri-
cultural host species [1–3]. Culicoides sonorensis is one of the most common midge species
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associated with livestock across the continental US [4] and are efficient biological vectors of
the rhabdovirus, vesicular stomatitis virus (VSV), causing disease in cattle, horses, sheep,
goats, llamas, alpacas, and swine [5–12]. The clinical resemblance of vesicular stomatitis
with foot-and-mouth disease in cattle and swine leads to quarantines and trade embargoes,
which, along with a reduction in animal production, generate significant economic losses
in affected premises [13].

Among climatic conditions, temperature plays the most significant role in the ecology of
the heterothermic Culicoides midges and the viruses they transmit, mainly by constraining midge
seasonality, distribution, and abundance [1,14–16]. In the last 20 years of rising global temper-
atures, Culicoides-borne virus emergence and re-emergence have increased [14,17] due to the
geographical expansion of vector species [18–24], the increase in their population sizes [25–27],
and physiological alterations that may favor their susceptibility to viruses [16,28–31]. However,
local midge populations may respond rapidly to environmental changes at the individual
level by behaviorally thermoregulating and seeking out microclimates within their optimal
physiological range [32].

Adult Culicoides females must ingest a blood meal to produce eggs [33]. Females from
many Culicoides species blood-feed in swarms on a wide variety of vertebrate hosts but feed
preferentially on domestic and wild ruminants and horses [34,35]. While taking small blood
meals [36,37], the success of midges as vectors is primarily due to large population sizes that can
be sustained with suitable climatic conditions [1]. Under standard laboratory conditions (25 ◦C
and 70% RH), adult C. sonorensis females can complete three to four gonotrophic cycles (GC)
within their three- to six-week lifetime [38]. However, lifespan and blood-feeding frequency
are strongly linked to temperature-mediated metabolic rates [38–41]. Understanding how
temperature impacts midge survivorship and the length of the GC allows us to calculate
the vector abundance and feeding frequency, thereby estimating their vectorial capacity
(Vc) [32].

The Vc is determined by the environmental, behavioral, and physiological factors that
influence the association between vector, virus, and host [42]. This measure of transmission
potential accounts for vector density, longevity, blood-feeding rates, and the extrinsic
incubation period (EIP) [42,43]. Culicoides adult survival and the period between successive
blood meals are the major determinants of the probability of arbovirus transmission;
however, both parameters are impacted by temperature in diametric opposition [44]. Rising
environmental temperatures increase the blood-feeding frequency by accelerating the egg
development rate but shortening the midge lifespan [38–40]. Culicoides biting activity also
positively correlates with an optimal temperature range, constrained by lower and upper
thresholds at which feeding is suppressed [1]. Although there is variation in Vc between
Culicoides species, common barriers or limitations in the expected number of bites per day,
temporal peaks in Culicoides abundance, temperature-dependent vector mortality, and
the time interval between feeding events could shift in response to climate change and
associated habitat expansions [45].

In contrast, the EIP component of Vc is mainly determined by the time required for
the vector to become infected and subsequently transmit the virus [3,42]. With VSV oral
infection, the virus particles ingested with the bloodmeal must replicate in the midgut
epithelium, escape the midgut, be released into the hemocoel, and subsequently infect a
range of secondary target organs, including the salivary glands [11]. The progeny virions
accumulate in the salivary gland lumen and are transmitted in saliva during subsequent
blood-feeding [3,11]. Under standard laboratory conditions, VSV-disseminated infections
have been reported as early as 3 days post-feeding [11], suggesting a 3-day EIP, which
aligns well with the 3–4 day feeding–egg-laying cycle observed under those conditions.
However, epidemiological models for many Culicoides-borne viruses indicate that current
increasing temperatures may shorten the EIP in a non-linear fashion [46].

Optimal arbovirus transmission occurs when the timing of productive infection (virus–
vector interactions) aligns with the timing of feeding–ovipositing–refeeding (vector–host
interactions) [38–40]. Given the worldwide trend of increasing temperatures [47], it is
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expected that higher temperatures will impact most Culicoides–virus interactions by in-
creasing the midge metabolic rates. Although not all processes may change in a linear
manner, higher temperatures will likely increase individual mortality and biting rates
and reduce the EIP [3,38–40,46]. Therefore, some suggest that the short-lived, yet highly
competent Culicoides may become a minor vector species if this variation in environmental
temperatures result in significant reductions in midge lifespan and/or a misalignment
between the EIP and the blood-feeding frequency [46].

The influence of temperature on Culicoides adult biology has been previously explored
in oocyte development [32], seasonal abundance [48], and flight activity [23,49], as well as
some aspects of vector competence for orbiviruses [3,29,31,39,46,50–52]. However, studies
addressing the temperature-mediated effects on VSV infection and transmission risk at the
microclimate level are lacking. Given the current trajectory of rising global temperature
and the possibility of rapid adaptation through behavioral modifications [32], here we
explored C. sonorensis resting thermal preferences after engorgement with three sequential
blood meals and investigated how four constant temperatures (20, 25, 30, and 35 ◦C) may
influence Culicoides-VSV interactions.

2. Materials and Methods
2.1. Virus and Cells

Stock virus (VSV-NJ; 1982 bovine field isolate, USDA-APHIS, Ames, IA, USA) was
grown in porcine epithelial cells (AG08113; Coriell Institute, Camden, NJ, USA) in Eagles
Minimum Essential Medium (MEM) with Earle’s salts (Sigma, St. Louis, MO, USA) contain-
ing 2% FBS and 100 U penicillin/streptomycin sulfate at 37 ◦C with 5% CO2. Vero MARU
cells (VM; Middle America Research Unit, Panama City, Panama) grown in 199E media
containing 2% FBS, 100 µg/mL of streptomycin, 100 units/mL penicillin, and 0.25 µg/mL
of amphotericin B at 37 ◦C with 5% CO2 were used for detecting the virus by cytopathic
effect (CPE) and for titering the virus from midge samples, as described below.

2.2. Blood-Feeding and VSV Oral Infection

Colonized C. sonorensis adult midges (AK colony, USDA, Arthropod-Borne Animal
Diseases Research Unit, Manhattan, KS, USA) were used for all experiments. Adult midges
were maintained in environmental chambers with 70 ± 5% RH and a 13:11 light:dark cycle
and offered 10% sucrose solution ad libitum.

For the first blood meal (1BM), newly emerged midges (1–3 days post-emergence)
were offered either an infectious VSV-spiked bloodmeal (VSV-BM) or a non-infectious
blood meal (BM) (Figure 1). Blood meals consisted of a 1:1 mixture of defibrinated sheep
blood (Lampire Biological Products, Pipersville, PA, USA) and a VSV suspension in MEM
(8.6 Log10 PFU of VSV-NJ per meal; VSV-BM) or MEM alone (non-infectious meal; BM).
Midges were allowed to feed for 60 min on a water-jacketed (37 ◦C) glass bell jar feeder
through parafilm (MilliporeSigma, St. Louis, MO, USA). After each feeding event, midges
were anesthetized with CO2, fully engorged blood-fed females were sorted from unfed
and partially fed, and 40–60 fully engorged females were placed into individual cardboard
cages (4 oz) with a small cup (20 mm diameter) containing a water-moistened pad and a
filter paper disk for oviposition.

Two cages of fully engorged females from each infection (BM-fed controls and VSV-BM
fed midges) were placed into a secondary container and held at constant temperatures
of 20 ◦C ± 0.5, 25 ◦C ± 0.5, 30 ◦C ± 0.5, or 35 ◦C ± 0.5 for up to 10 days. One day after
oviposition, at the end of the first and second gonotrophic cycles (1GC and 2GC), both BM-
fed controls and VSV-BM fed midges were provided subsequent non-infectious bloodmeals
(2BM and 3BM). As above, 40–60 fully engorged females were sorted into cardboard cages
and held at the same temperature at which they started the experiment (Figure 1).
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resting temperature preference, midge survival, gonotrophic cycles, and VSV infection.

In addition, after every feeding event (1BM, 2BM, and 3BM) 25 CO2-anesthetized,
fully engorged females from each group were placed in cardboard cages and immediately
used for resting thermal preference assays (Section 2.4; Figure 1).

2.3. Constant Temperature-Mediated Effects on Survival and Gonotrophic Cycles

Two groups of 40–60 VSV-BM fed and BM-fed controls held at constant temperatures
of 20, 25, 30, and 35 ◦C were visually inspected at 24 h intervals for signs of oviposition
(presence of eggs laid on oviposition cup filter paper) and mortality (dead midges at the
bottom of the cages) for up to 10 days after the initial meal (maximum survival day for all
groups). As indicated above (Section 2.2), one day after oviposition at the end of each GC,
midges were provided subsequent non-infectious bloodmeals (2BM and 3BM), and fully
engorged females were kept at the same environmental temperature at which they started
the experiment (Figure 1). The effects of environmental temperature on the length of the
GC (days) and midge probability of survival (days) were evaluated in four independent
replicates consisting of two cages from each infection group (n = 40–60 midges per cage)
for each temperature tested (total n = 3520 midges, 64 cages).

2.4. Resting Thermal Preference after Engorgement

The resting temperature preference after engorgement was evaluated using a thermal
gradient comprised of two AHP-1200CPV cold/hot plates and a TGB-5030 aluminum bar
(ThermoElectric Cooling America Corporation, Chicago, IL, USA) with a clear polycarbon-
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ate lid to contain the midges. A center lengthwise divider was used to accommodate two
simultaneous testing groups (control and experimental) and to maintain stable temperature
and humidity conditions within the arena. The experimental arena (60 × 30 cm) ranged
from 15 ◦C to 35 ◦C, increasing linearly along the surface. The temperatures of the lid (8 cm
above the gradient surface) ranged from 22 ◦C to 27 ◦C in a more non-linear fashion. To
maintain humidity conditions during the experiment, polyethylene-coated chromatogra-
phy paper was taped over the aluminum bar (glossy side down) and lightly sprayed with
distilled water at the beginning of the experiment. Prior to the start of an experiment, each
zone’s temperature range was manually confirmed using 2–4 consecutive measurements
with an infrared laser thermometer (Simzo, Fisher Scientific, Inc., Waltham, MA, USA). To
have a visual representation of the temperature preference across the length of the arena,
the paper surface was marked into temperature zones: 15–20, 20–25, 25–30, and 30–35 ◦C;
plus, one buffer area at the cold end (14 ± 1 ◦C) and one at the hot end (34 ± 1 ◦C).

Within 10–15 min of every feeding event (sorting time), 25 CO2-anesthetized, fully
engorged females were loaded through small holes in the polycarbonate cover onto the
starting zone (22–23 ◦C) at the center of the arena. Midges were allowed 15 min to recover
from the CO2 exposure for maximum responsiveness during the initial exploratory period.
During the next 15 min, midge movement slowed and ceased. At the 30 min mark, a single
photo was taken to depict the distribution of midges across the temperature zones. After
each trial, the arena was flooded with CO2 and all midges were collected using a vacuum
pooter for virus testing as described below (Sections 2.5 and 2.6).

To restrict circadian rhythm effects on Culicoides behavior, all blood feedings and
resting preference trials were conducted at approximately the same time of day. All
behavioral assays were conducted by simultaneously testing 25 fully engorged VSV-fed
females and 25 blood-fed controls immediately after engorgement with 1BM, 2BM, and
3BM (Section 2.2; Figure 1). Seven independent replicates were performed for resting
temperature preference after the engorgement of newly emerged females with the first
blood meal (1BM or VSV-BM). Four behavioral assays were conducted with midges held at
each temperature (20, 25, 30, and 35 ◦C) after the ingestion of the second BM (2BM; at the
end of 1GC) and third BM (3BM; at the end of 2GC). A digital image was used to record
midge position and determine the distribution frequency at each thermal zone selected by
infected and non-infected midges.

2.5. RNA Extraction and RT-qPCR for Detection of VSV

Ten midges at the end of the resting thermal preference assays (Figure 1) were sampled
as heads (with salivary glands attached) and decapitated bodies. Individual bodies and
heads were sorted in 300 µL of TRIzol (Invitrogen; Thermo Fisher Scientific, Inc., Waltham,
MA, USA) and stored at −80 ◦C until further processing. Frozen TRIzol samples were
thawed on ice and homogenized by high-speed shaking with a Bead Mill Homogenizer
(Omni, Kennesaw, GA, USA) [53]. Total RNA was extracted using Trizol-BCP (1-bromo-
3chloropropane; Life Technologies, Thermo Fisher Scientific, Inc., Waltham, MA, USA),
and RNA extracts were analyzed using TaqMan Fast Virus 1-Step MasterMix (Applied
Biosystems; Thermo Fisher Scientific, Inc., Waltham, MA, USA) in a reverse transcriptase
quantitative PCR (RT-qPCR) assay to detect the L (polymerase) gene, as previously de-
scribed [7]. Standard curves and the calculation of Cycle threshold (Ct) values were carried
out with the 7500 Fast Dx software (Applied Biosystems; Thermo Fisher Scientific, Inc.,
Waltham, MA, USA). RT-qPCR reactions with Ct ≤ 36.5 were considered positive for VSV
RNA [7,53]. To account for plate-to-plate inter-run variations, a standard positive control
of known VSV ssRNA concentration was used in every RT-qPCR run. Ct values plotted
against the log10 of known VSV genome ssRNA ng concentrations with linear regression
(y= −3.30578x + 11.02683) allowed the determination of viral genomic equivalents per
midge [7]. Infection rates were calculated by dividing the number of VSV-RNA positive
bodies by the total number assayed by RT-qPCR. Dissemination rates were calculated as the
number of VSV-RNA positive heads divided by the number of VSV-RNA positive bodies.
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2.6. Virus Isolation

Five individual females sampled at the end of the resting thermal preference assays
(Figure 1) were collected in 500 µL of antibiotic medium [53] for virus isolation from
whole bodies and stored at −80 ◦C until further processing. Frozen midges were thawed
on ice and individually homogenized and centrifuged to pellet debris [53]. Whole-body
homogenates (200 µL) were plated over a monolayer of VM cells with 85–90% confluency.
Plates were incubated for up to six days. The observation of CPE after one or two passages
was used to indicate an infectious virus within that sample [7]. If the homogenate was CPE+
in the first passage, virus titers were determined by a standard plaque assay using 200 µL
of the remaining original, non-passaged homogenate. For homogenates that showed CPE
after a second passage, VSV was confirmed in randomly selected wells by RT-qPCR, but no
attempts to titer the original homogenate were made. The infectious virus-positive rate
was calculated as the number of CPE+ whole-body homogenates divided by the number of
midges assayed.

2.7. Statistical Analysis

Data were pooled from the independent replicates of each experiment and tested
for normality (Kolmogorov–Smirnov test). For variables following a normal distribution,
analysis of variance (ANOVA) with multiple comparisons (Tukey’s test) was used to
compare the significance of the oviposition timing, resting thermal preferences, and Ct
value differences of bodies. Non-parametric tests (Kruskal–Wallis with Dunn’s correction
for multiple comparisons) were used to evaluate the significance of Ct value differences
of heads (with glands) and the proportion of infected heads, bodies, and whole bodies.
Kaplan–Meier curves and Mantel–Cox log-rank tests were used to evaluate survival and
mortality rates. GraphPad Prism version 9 (GraphPad Software Inc., San Diego, CA, USA)
was used for statistical analysis and the creation of graphs.

3. Results
3.1. Constant Temperature-Mediated Effects on Survival and Gonotrophic Cycles

Overall, the length of each GC (Figure 2a; Table S1) was affected by temperature but
not infection status. Lower temperatures correlated with longer cycles, with significant
differences between midges held at cold (20 ◦C), mild (25 ◦C), and hot (30 and 35 ◦C)
temperatures. The average GC length was 4.5 days at 20 ◦C, 3.4 days at 25 ◦C, and
2.6 days at 30 and 35 ◦C, with the 1GC occurring faster (by one day less) than the two
subsequent GCs in all temperature groups. Only midges held at higher temperatures (30
and 35 ◦C) were able to complete the 3GC within 10 days after ingesting their first blood
meal. Likewise, the survival probability (Figure 2b; Table S2) was affected by temperature
(Mantel-Cox model, p ≤ 0.0001) but not infection status. Lower temperatures correlated
with higher survivability. For both VSV-fed and non-infected control midges, the day 10
survival probability was significantly different between midges held at 20 ◦C and 35 ◦C
(81% and 57%, respectively, p ≤ 0.0001). There was no significant difference in the day 10
survival probability between midges held at 25 ◦C and 30 ◦C (65.7% and 68%, respectively,
p = 0.8).
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survival of VSV-fed and non-infected control midges held at constant temperatures of 20 ◦C (blue),
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used to determine statistical significance in the timing of oviposition, as indicated (p > 0.05, ns, not
significant; **** p ≤ 0.0001). Survival curves were calculated using the Kaplan–Meier method. Error
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3.2. Constant Temperature-Mediated Effects on VSV Infection

Following initial infection with VSV-BM, bodies from midges held at 20, 25, and 30 ◦C
exhibited similar viral loads at 2BM (end of 1GC), ranging from 1 to 2.6 log10 genome
equivalents (Figure 3a). Although not statistically significant, lower viral loads (genomic
equivalents, GE) were observed in midge bodies held at 35 ◦C at 2BM (1 to 1.5 log10 GE).
The viral load increased from 2BM to 3BM for midges held at 25 or 35 ◦C (1.8 log10 GE,
p = 0.8 and 1.75 log10 GE, p = 0.005, respectively), but not for midges held at 20 or 30 ◦C.
Only a significant difference in infection rates (Figure 4a) was found between midges held
at 20 and 25 ◦C (p = 0.01), which coincides with the overall lowest (20 ◦C) and highest
(25 ◦C) RNA titers detected in bodies by RT-qPCR (Figure 3a).
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with multiple comparisons were used to determine statistical significance, as indicated (* p ≤ 0.05; 
** p < 0.01; *** p < 0.001). 

Figure 3. Constant temperature-mediated effects on VSV in individual (a) bodies and (b) heads with
salivary glands, as detected by RT-qPCR of VSV-infected Culicoides midges after a second (2BM) and
third (3BM) blood meal while being held at constant temperatures of 20 ◦C (blue), 25 ◦C (green), 30 ◦C
(orange), and 35 ◦C (red). RT-qPCR cycle threshold (Ct; left Y-axis) and viral genome equivalents
(GE; right Y-axis), as indicated. One-way ANOVA (bodies) and the Kruskal–Wallis test (heads)
with multiple comparisons were used to determine statistical significance, as indicated (* p ≤ 0.05;
** p < 0.01; *** p < 0.001).
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Figure 4. Constant temperature-mediated effects on infection rates of Culicoides midges orally infected
and provided (a,b) a second (2BM) and (c,d) a third (3BM) blood meal while being held at constant
temperatures of 20 ◦C (blue), 25 ◦C (green), 30 ◦C (orange), and 35 ◦C (red). (a,c) Infection rates of
bodies and heads as detected by RT-qPCR and (b,d) infectious virus in whole bodies as detected
by cytopathic effect (CPE) screening after one or two passages on Vero cells. The Kruskal–Wallis
test with multiple comparisons was used to determine statistical significance (* p≤ 0.05). Error bars
represent the standard error of the mean (SEM).

Regarding dissemination rates, VSV RNA was detected in heads of midges held at
all temperatures (Figure 3b). Although midges held at 35 ◦C had the highest GE detected
(2.9 log10; Figure 3b), they showed the lowest number of VSV-positive heads (Figure 4b).
There was no significant difference in the VSV RNA titers between feeding events in the
heads of midges held at 20, 30, and 35 ◦C (p > 0.99, p =0.33, and p > 0.99, respectively). In
midges held at 25 ◦C, the mean RNA titer in the heads significantly increased between
meals, reaching its highest mean value at 3BM (1.45 log10 GE, p = 0.009; Figure 3b). There
were no statistically significant effects of temperature on dissemination rates (Figure 4b) or
the detection of infectious viruses in whole bodies (Figure 4c).

3.3. Resting Thermal Preference

Immediately after engorgement with their first meal (VSV-BM or 1BM), there was no
effect of the infectious status of the meal on the mean final distribution of newly emerged
midges (1–3 days post-emergence, 25 ◦C) across the thermal gradient arena (p < 0.0001).
Therefore, the data of both meal treatments were pooled to evaluate the resting temperature
preference after the engorgement of midges with their first blood meal, prior to infection
onset. Groups were separated as BM-fed or VSV-BM-fed for all subsequent meals. For
the first meal, most midges selected the 25–30 ◦C thermal zone (43.7% ± 6; Figure 5a;
Table S3). Likewise, most midges selected the 25–30 ◦C thermal zone after ingesting their
2BM and 3BM (Figure 5b–e; Table S3). Only VSV-infected midges held at 25 ◦C after 3BM
(Figure 5c) and 35 ◦C (Figure 5e) either did not have a conspicuous option or selected the
cooler 20–25 ◦C thermal zone.
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Figure 5. Culicoides resting temperature preference after engorgement. Mean final distribution of
midges across the thermal gradient arena after engorgement with the (a) first blood meal (1BM and
VSV-BM combined) and second (2BM) and third (3BM) blood meals in midges held at (b) 20 ◦C,
(c) 25 ◦C, (d) 30 ◦C, and (e) 35 ◦C. Error bars represent the standard deviation (SD).

A combined analysis of resting preferences across both subsequent meals (2BM, 3BM)
indicated that midges prefer to rest in areas of the gradient above the starting zone (>22 ◦C)
(three-way ANOVA; p < 0.0001). There was no effect of infectious status (F1,24= 0.21, p = 0.65)
or the blood-feeding event (F1,24 = 0.02, p = 0.88) on the resting temperature preference of
C. sonorensis, nor any interaction between the two (F1,24 = 0.34, p = 0.56).

4. Discussion

Environmental temperatures drive Culicoides seasonality and abundance [18,19,23,24,54,55],
shaping vector-to-host ratios and influencing the probability that midge-borne viruses will
become established following an introduction [1,16,56,57]. The most traditional equation to
calculate vectorial capacity (Vc) accounts for the vector density, the number of blood meals
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taken, the vector survival rate, and the extrinsic incubation period (EIP) [16]. However, this
model assumes that the EIP is proportional to the vector’s life expectancy, implying that the
vector will survive the EIP [43,46]. To better understand how the resting temperature range
selected by fully engorged C. sonorensis midges may mediate Culicoides–VSV interactions,
we combined quantitative behavioral analyses with fitness-related traits and infection
patterns at four constant thermal regimes to inform the potential Vc outcomes.

From the vector’s perspective, the most critical parameters for predicting vector-borne
transmission are biting rates and survival [31,58]. Thus, we evaluated the length of the
GC as an approximation of the feeding–oviposition–refeeding frequency during a 10-day
lifespan. The results of this study are consistent with the expected effects of temperature
changes on both fitness-related traits [32,38–41]. Midges showed the highest probability of
survival (81%) and most extended GC length (4.5 days) at the lowest tested temperature
(20 ◦C), and the lowest probability of survival (57%) and shortest GC lengths (2.6 days)
at the highest tested temperature (35 ◦C). Interestingly, midges held at 30 ◦C were able to
sustain the fastest oviposition–refeeding cycles (GC length of 2 days) while sustaining an
optimal survival (67%).

Although most biological processes occur faster at higher temperatures, including the
virogenesis rate during the EIP [52], there is a trade-off between viral transmission and
vector life expectancy [43,46]. It has been suggested that the transmission potential of an
infected vector is maximized at intermediate temperatures where the vector’s physiological
performance aligns with the EIP and blood-feeding frequency [43,46]. Our study found that
the highest infection rates and number of disseminated infections occurred in midges held
at 25 ◦C and 30 ◦C. Moreover, our results indicate that VSV infection and dissemination
rates are constrained at the lowest (20 ◦C) and highest (35 ◦C) temperatures evaluated.
However, further experiments are needed to determine whether these temperatures impact
infection and dissemination by acting directly on VSV replication or by acting indirectly on
competence factors in the vector.

Lower temperatures slowed VSV replication rates, as seen by the lack of titer increase
in bodies and heads between feeding events of midges held at 20 ◦C. Interestingly, we
detected the highest percent of infectious virus (by CPE) in midges at this temperature.
These results may suggest that slowing VSV replication rates at the lower temperature
do not affect its infectivity. Although unknown for VSV, the threshold for infection and
replication of most Culicoides-borne orbiviruses has been determined to lay within 11–15
◦C [3,59,60]. It has been previously shown that C. sonorensis females can survive and
complete an entire gonotrophic cycle (lasting 10–13 days) in temperatures as low as 13
◦C [32]. Short-term exposure to low temperatures can stimulate cold-hardening responses
in C. sonorensis adults, which allows a non-diapausing life stage to enhance its tolerance
to subzero temperatures [61], and transient warmer periods in winter may be conducive
to virus replication, leading to transmission when infected adults are able to survive, fly,
and feed on hosts [49,59]. Anecdotal evidence during VSV outbreaks suggest that adult
Culicoides may be the vector responsible for low rates of transmission seen during cool
days (above freezing) in late fall and early spring. Therefore, it is critical to explore how
changing climatic conditions may favor VSV overwintering in the adult stage in climates
with moderately low winter temperatures.

In the context of Culicoides–VSV at 25 ◦C as the reference temperature (standard
laboratory conditions), our results indicate that the Vc of a Culicoides population can
be potentially maximized in a temperature range of 20–30 ◦C, and decreased at 35 ◦C.
Although the Vc outcome under natural settings is difficult to predict due to fluctuating
day/night temperatures, the complexity of the midge physiological responses, and the
number of variables involved in its calculation, it is expected that rising global temperatures
due to climate change will likely affect C. sonorensis–VSV dynamics. As seen with our
results, constant temperatures near 30 ◦C will potentially provide an increased opportunity
for virus transmission. A preferred resting temperature range of 25–30 ◦C may also favor
the number of midge generations per year and, consequently, the number of adults and
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biting frequency, while maximizing the number of adults able to survive the VSV EIP.
However, other variables such as daily and seasonal fluctuations, vegetation coverage,
and air temperature can modulate the availability of ideal Culicoides macrohabitats [62,63].
Therefore, midge resting preferences to particular microhabitats can ensure that, regardless
of the macroclimatic conditions outside the ideal, the actual temperatures experienced by a
midge may still be within their optimal physiological range [28].

Interestingly, VSV-infected midges held at 35 ◦C either failed to respond or selected
a cooler 20–25 ◦C thermal zone. This suggests that a combination of high temperatures
and infection status might be shaping midge thermal behavior to prefer lower resting
temperatures. In other vector–pathogen systems, thermal preference changes have been
shown to limit the virulence of a pathogen or the influence of the infectious agent [64,65].
However, across all temperatures, our combined results indicated no effect of infectious
status on resting temperature preference. It is important to note that our preference
assays took place only for a short period after engorgement (30 min), and not 100% of
the midges tested positive for VSV infection after the assays (30–96.7%). Thus, future
thermotaxis analyses using microinjected midges (bypassing the midgut and ensuring
positive infectious status) may be needed to fully determine whether the infectious status
significantly influences thermal behaviors at the cost of potential effects from the injection.

In addition to temperature fluctuations in a natural context, other abiotic factors such
as humidity and light must be considered. These parameters are rarely combined and
studied in the laboratory under fluctuating conditions because the level of complexity
could mask the effects of single variables. However, the preferred range of microclimatic
conditions chosen by midges would allow for a better understanding of vector responses to
climate change. In that sense, it is still necessary to evaluate midge thermotaxis in precisely
controlled and ethologically relevant thermal gradients to determine if midges modulate
their response to thermal cues on a daily cycle or if the temperature preference observed
here would be more robust at specific times of the day [62,63].

C. sonorensis populations are widely distributed in the US, with a reported range
spanning the western, south-central, mid-Atlantic, and southeastern states [4,66]. There are
several ecological regions with unique or endemic climatic conditions in this geographical
range. However, the most preferred thermal zone chosen by midges, and the optimal phys-
iological range of 25–30 ◦C (77–86 ◦F), can be found between July and August throughout
the California coast, the plateau regions, most of the north-central US, the central plains,
and parts of the northeast [67,68]. In addition, this temperature range is also predominant
in the Chihuahuan Desert and most of the southeast between May to September [67,68]. At
the same time, fine-scale differences between the temperatures of surfaces and the shade
relative to the surrounding air may create microclimates with optimal temperatures [69],
allowing midges to behaviorally thermoregulate for extended portions of the year in any
given location. Therefore, during VSV outbreaks, which often start in May in the southern
states and July–August in the more northern states, infected midges will have an inter-
mediate physiological performance (reproduction and survival) accompanied by a higher
likelihood of having disseminated infections by the time they feed on a subsequent meal
after infection.

Assuming that a field population of 3000 C. sonorensis midges (80% being females) [48]
choose to rest in microclimates with temperatures ranging 25–30 ◦C after feeding on a VSV-
infected host, by extrapolating our results, 1584 females (66%) would be able to complete
two-to-three gonotrophic cycles, lasting an average of three days, resulting in three-to-four
blood-feeding opportunities within 10 days. Moreover, this intermediate temperature range
would also provide the optimal opportunity to maximize the infection processes involved
in transmission. With infection rates above 80% and dissemination rates ranging from 30 to
48%, in this scenario, approximately 475–760 females would potentially survive the EIP
and inflict infectious bites on susceptible hosts. By preferentially resting in areas closer
in temperature to their ideal physiological range, VSV-infected midges may maximize
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their fitness-related traits along with providing highly permissive temperatures for VSV
replication.

In an epidemiological context of vector species and environmental aspects, we have
shown that Culicoides thermal behavior can have significant epidemiological implications
on vector capacity and VSV transmission potential. However, the emergence of Culicoides-
borne viruses worldwide indicates that pathogen–vector–host interactions are highly dy-
namic [70,71]. The rising average global temperature, along with more frequent heatwaves,
large storms, and remarkably sunny and cloudy days, could have significant consequences
for ecosystem stability [72–74]. Therefore, further work integrating additional relevant
environmental conditions is necessary to investigate whether seasonal and daily fluctuating
temperatures may significantly impact Culicoides vectorial capacity and thermal tolerance
to temperatures outside their ideal physiological range.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/insects13040372/s1, Table S1: Statistical results of Tukey’s multiple
comparisons test to determine the differences in the gonotrophic cycle length, Table S2: Statistical
results of the Mantel–Cox model applied to determine the survival probability, Table S3: Culicoides
resting temperature preference after engorgement.
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