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Simple Summary: Butterflies of the genus Parnassius are distributed in the mountains across the
Northern Hemisphere. Studies have shown that this genus originated in the regions of West China—
Central Asia. To further explore the spatiotemporal pattern and driving mechanism of Parnassius
diversification, we reconstructed the phylogeny and biogeographic history of Parnassius based
on 45 species. Ancestral area reconstruction obtained by using the statistical dispersal-extinction
cladogenesis model indicated that Parnassius originated in West China (Qinghai-Tibet Plateau and
Xinjiang) during the Middle Miocene. Paleoenvironment changes and host plants were probably
influenced by the dispersal of Parnassius butterflies from West China to East Asia, Europe, and North
America. Furthermore, ancient gene introgression might have contributed to the spread of Parnassius
butterflies from the high mountains of the Qinghai-Tibet Plateau to the low-altitude areas of Central
East China. This study will provide an understanding of the phylogeny and biogeographic history of
the genus Parnassius.

Abstract: We studied 239 imagoes of 12 Parnassius species collected from the mountains of the
Qinghai-Tibet Plateau (QTP) and its neighbouring areas in China. We selected three mitochondrial
gene (COI, ND1, and ND5) sequences, along with the homologous gene sequences of other Parnassius
species from GenBank, to reconstruct the phylogenetic tree and biogeographic history of this genus.
Our results show that Parnassius comprises eight monophyletic subgenera, with subgenus Parnassius
at the basal position; the genus crown group originated during the Middle Miocene (ca. 16.99 Ma),
and species diversification continued during sustained cooling phases after the Middle Miocene
Climate Optimum (MMCO) when the QTP and its neighbouring regions experienced rapid uplift
and extensive orogeny. A phylogenetic network analysis based on transcriptomes from GenBank
suggests that ancient gene introgression might have contributed to the spread of the Parnassius genus
to different altitudes. Ancestral area reconstruction indicates that Parnassius most likely originated in
West China (QTP and Xinjiang) and then spread to America in two dispersal events as subgenera
Driopa and Parnassius, along with their host plants Papaveraceae and Crassulaceae, respectively. Our
study suggests that extensive mountain-building processes led to habitat fragmentation in the QTP,
leading to the early diversification of Parnassius, and climate cooling after MMCO was the driving
mechanism for the dispersal of Parnassius butterflies from West China to East Asia, Europe, and
North America.

Keywords: genus Parnassius; mitochondrial genes; biogeographic history; phylogenetic network;
Qinghai-Tibet Plateau
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1. Introduction

Geologic and paleoclimatic events have played crucial roles in the origin and evolution
of biodiversity on Earth. The collision of the Indian and Eurasian plates, followed by the
uplift of the Qinghai-Tibet Plateau (QTP) [1-3] and subsequent sharp climate changes [4-6]
during the Cenozoic are considered the major driving forces of Asian biodiversity [7-9].
Parnassius Latreille,1804 butterflies are commonly distributed in high-altitude mountains
across Asia, Europe, and North America [10], with the highest diversity concentrated in the
QTP and neighbouring areas [11-14]. Parnassius is the most species-rich genus in the sub-
family Parnassiinae Duponchel, 1835 (Lepidoptera and Papilionidae), with approximately
55 extant species. These butterflies are highly sensitive to environmental change, and
thus, their phylogeographical structure is considered to reflect climate-driven range shifts;
their geographic ranges or connectivity expands during glacial periods, whereas it reduces
during interglacial periods due to the interruption of the gene flow [15,16]. Parnassius
has recently attracted much attention as a model organism of alpine invertebrates in the
investigation of climate change effects on organisms in the Northern Hemisphere [17,18].

Studies have shown that the early Parnassius phylogenies, based on morphology (wing
pattern, venation, or male genitalia), split the genus into up to 10 lineages or subgenera [19-24].
Later on, the evaluation of mitochondrial or nuclear genes (ND1, ND5, 16S, COI, LSU,
EF-1a, or wg) revealed that Parnassius species are clustered into eight subgenera—that is,
Parnassius Latreille, 1804, Driopa Korshunov, 1988, Tadumia Moore, 1902, Lingamius Bryk,
1935, Kailasius Moore, 1902, Koramius Moore, 1902, Sachaia Korshunov, 1988, and Kreizbergia
Korshunov, 1990 [12,13,25-27]. Furthermore, this genus was found to originate in the region
of West China—-Central Asia during the Miocene [26,28]. However, the spatiotemporal
pattern and driving mechanism of biogeographic formation need further exploration for
the genus Parnassius.

In this study, we collected numerous samples (239 imagoes of 12 Parnassius species) from
different altitudes of the QTP and its neighbouring areas in China (Figure 1, Tables 1 and S1). We
used GenBank data (Table 1) to reconstruct the species-level phylogeny based on 45 species
belonging to eight subgenera and analysed their historical biogeography, along with their
paleogeographic events. In particular, we explored the potential mechanism of reticulate
evolution in the formation of niches at different altitudes.
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Figure 1. Sample locations of 12 Parnassius species collected in this study.
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Table 1. General information regarding the mitochondrial sequences of 45 Parnassius and 4 outgroup species. Details of the samples collected for this study are

presented in Table S1.
Species ND1 (Locality) COI (Locality) ND5 (Locality)
Hypermnestra helios Nickerl, 1846 AJ972131 (Uzbekistan) AM231506 (Uzbekistan) AB095659 (Uzbekistan)
Sericinus montela Gray, 1853 AJ972136 (Fuchu, Japan) AF170868 (Fuchu, Japan) AB095665 (Kyoto, Japan)
Luehdorfia chinensis Leech, 1893 EU622524 (NA) EU622524 (NA) EU622524 (NA)

Luehdorfia taibai Chou, 1994

P. tianschanicus Oberthiir, 1879
P. phoebus Fabricius, 1793

P. honrathi Staudinger, 1882

P. schultei Weiss & Michel, 1989
P. smintheus Doubleday, 1847
P. maharaja Avinoff, 1916

P. acco Gray, 1852

P. mnemosyne Linnaeus, 1758
P. eversmanni Ménétriés, 1850
P. andreji Eisner, 1930

P. stenosemus Honrath, 1890

P. simonius Staudinger, 1889

P. charltonius Gray, 1852

P. hardwickii Gray, 1831

P. clodius Ménétriés, 1855

P. staudingeri Bang-Haas, 1882
P. nordmanni Ménétriés, 1850
P. autocrator Avinoff, 1913

P. loxias Piingeler, 1901

P. delphius Eversmann, 1843

P. inopinatus Kotzsch, 1940

P. patricius Niepelt, 1911

P. boedromius Piingeler, 1901

P. hide Koiwaya, 1987

P. ariadne Lederer, 1853

P. stoliczkanus Felder & Felder, 1864
P. arcticus Eisner, 1968

P. maximinus Staudinger, 1891
P. cardinal Grum-Grshimailo, 1887
P. tenedius Eversmann, 1851

P. actius Eversmann, 1843

KC952673 (NA)

DQ407806 (Dolon Pass, Kyrgyzstan)
AJ972122 (Tomtor, Yakutia, Russia)
AJ972129 (Ghissarski Mts, Uzbekistan)
AJ972073 (Tibet, China)

AJ972125 (Wyoming, USA)

AJ972076 (Ladakh, India)

AJ972070 (Ladakh, India)

AM283061 (Kyrgyzstan)

AJ972056 (Amur, Russia)

AJ972068 (Sichuan, China)

AJ972089 (Zanskar, India)

DQ407809 (Kyrgyzstan)

AJ972079 (Kyrgyzstan)

AJ972069 (E. Nepal)

AJ972058 (California, USA)
AJ972103 (Kaltakol, W. Gissar, Uzbekistan)
AJ972059 (Caucasus, Russia)
AJ972082 (Tajikistan)

AJ972080 (Kyrgyzstan)

AJ972092 (Kyrgyzstan)

AJ972081 (Afghanistan)

AJ972091 (Kyrgyzstan)

AJ972067 (Kyrgyzstan)

AJ972090 (Tibet, China)

AJ972055 (Altai, Russia)

AJ972087 (Ladakh, India)

AJ972062 (Yakutia, Russia)

AJ972094 (Tianshan, Xinjiang, China)
AJ972095 (Tajikistan)

AJ972063 (Yakutia, Russia)
DQ407807 (Tianshan, Xinjiang, China)

KC952673 (NA)

DQ407767 (Dolon Pass, Kyrgyzstan)
AM231499 (Tomtor, Yakutia, Russia)
DQ407772 (Ghissarski Mts, Uzbekistan)
AM?231445 (Tibet, China)

AM231495 (Wyoming, USA)
AM?231448 (Ladakh, India)

AM231442 (Ladakh, India)

AM231422 (Kyrgyzstan)

AM231430 (Amur, Russia)

AM231440 (Sichuan, China)
AM231461 (Zanskar, India)

DQ407758 (Kyrgyzstan)

AM231451 (Kyrgyzstan)

DQ407770 (E. Nepal)

AF170871 (California, USA)
AM231477 (Kaltakol, W. Gissar, Uzbekistan)
AM231432 (Caucasus, Russia)
AM231454 (Tajikistan)

AM231452 (Kyrgyzstan)

DQ407762 (Kyrgyzstan)

AM231453 (Afghanistan)

AM231463 (Kyrgyzstan)

AM231439 (Kyrgyzstan)

AM231462 (Tibet, China)

AM?231429 (Altai, Russia)

AM231459 (Ladakh, India)

AM231434 (Yakutia, Russia)
AM231466 (Tianshan, Xinjiang, China)
AM231467 (Tajikistan)

AM231435 (Yakutia, Russia)
DQ407765 (Tianshan, Xinjiang, China)

KC952673 (NA)

AB095648 (Alai, Kyrgyzstan)
AB(095654 (Magadan, Russia)
AB096091 (Uzbekistan)

AB095619 (Tibet, China)

AB095653 (Colorado, USA)

AB095615 (Ladakh, India)

AB095652 (Tibet, China)

AB095626 (Kyrgyzstan)

AB095608 (Amur, Russia)

AB095643 (Sichuan, China)

AB095656 (Ladakh, India)

AB095649 (Kyrgyzstan)

AB095630 (Kyrgyzstan)

AB094969 (E. Nepal)

AB095624 (Montana, USA)
AM283087 (Kaltakol, W. Gissar, Uzbekistan)
AB094968 (Caucasus, Russia)
AB095634 (Tajikistan)

AB096090 (Kyrgyzstan)

AB095632 (Kyrgyzstan)

AB095641 (Afghanistan)

AB095620 (Tianshan, Xinjiang, China)
AB095629 (Tianshan, Xinjiang, China)
AB095613 (Qinghai, China)
AB094970 (Altai, Russia)

AB095650 (Ladakh, India)

AB095639 (Yakutia, Russia)
AB095651 (Tianshan, Xinjiang, China)
AB095644 (Tajikistan)

AB095658 (Yakutia, Russia)
AB095622 (Tianshan, Xinjiang, China)
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Table 1. Cont.

Species

ND1 (Locality)

COI (Locality)

ND5 (Locality)

P. bremeri Bremer, 1864

P. augustus Friihstorfer, 1903

P. imperator Oberthiir, 1883

P. cephalus Grum-Grshimailo, 1891
P. epaphus Oberthiir, 1879

P. nomion Fischer de Waldheim, 1823
P. imperator Oberthiir, 1883

P. cephalus Grum-Grshimailo, 1891
P. epaphus Oberthtir, 1879

P. nomion Fischer de Waldheim, 1823
P. acdestis Grum-Grshimailo, 1891

P. szechenyii Frivaldszky, 1886

P. glacialis Butler, 1866

P. stubbendorfii Ménétriés, 1849

P. orleans Oberthiir, 1890

P. simo Gray, 1852

P. apollo Linnaeus, 1758

P. apollonius Eversmann, 1847

AJ972126 (Korea)

AJ972084 (Tibet, China)

AJ972083 (Qilianshan, Gansu, China)
AJ972075 (Kun Lun Shan, China)
AJ972104 (Hankar, Ladakh, India)

AJ972109 (Datong Shan, Qinghai, China)

This study (7 populations)
This study (4 populations)
This study (6 populations)
This study (5 populations)
This study (5 populations)
This study (2 populations)
This study (5 populations)
This study (4 populations)
This study (5 populations)
This study (7 populations)
This study (2 populations)
This study (1 population)

AM231501 (Korea)

AM231456 (Tibet, China)

DQ407775 (Qilianshan, Gansu, China)
AM?231447 (Kun Lun Shan, China)
AM?231478 (Hankar, Ladakh, India)

AM231480 (Datong Shan, Qinghai, China)

This study (7 populations)
This study (4 populations)
This study (6 populations)
This study (5 populations)
This study (5 populations)
This study (2 populations)
This study (5 populations)
This study (4 populations)
This study (5 populations)
This study (7 populations)
This study (2 populations)
This study (1 population)

AB095611 (Korea)

AB095645 (Tibet, China)
AB095612 (Qinghai, China)
AB095616 (Qamdo, Tibet, China)
AB095610 (Qilianshan, Gansu, China)
AB095609 (Primorye, Russia)
This study (7 populations)

This study (4 populations)

This study (6 populations)

This study (5 populations)

This study (5 populations)

This study (2 populations)

This study (5 populations)

This study (4 populations)

This study (5 populations)

This study (7 populations)

This study (2 populations)

This study (1 populations)
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2. Materials and Methods
2.1. Specimen Collection

A total of 239 imagoes of 12 Parnassius species were collected from natural populations
distributed in the QTP and its neighbouring areas (Figure 1, Tables 1 and S1). The species
were identified according to their morphological characteristics following Weiss and Rigout
(2006) [10]. Fresh samples were immediately placed in 100% ethanol for fixation and
preserved at —20 °C for subsequent experiments.

2.2. DNA Extraction, Polymerase Chain Reaction Amplification, and Sequencing

Total genomic DNA was extracted from the chest muscles of the samples by using a
Rapid Animal Genomic DNA Isolation Kit (Sangon Biotech, Shanghai, China) following
the manufacturer’s instructions. Three mitochondrial DNA segments (ND1, ND5, and
COI) were amplified using primers reported in previous studies [29-31] (Table 52). All
primers were synthesised by Sangon Biotechnology Co., Ltd., Shanghai, China. The
polymerase chain reaction (PCR) procedures used the following cycling parameters: initial
denaturation for 2 min at 94 °C; 35 cycles of 1 min at 94 °C, 1 min at 46-57 °C, and 1 min at
72 °C; and a final extension of 10 min at 72 °C. The PCR products were purified using a
DNA Purification Kit (Tiangen Biotech, Beijing, China) and sequenced directly on an ABI
3730xI DNA analyser by General Biotechnology Co., Ltd., Wuhu, China.

The mitochondrial sequences (COI, ND1, and ND5) of 41 Parnassiinae species were
downloaded from GenBank (Table 1). To reduce the effect of possible chimeras concatenated
by the three mitochondrial segments, we selected the same or a neighbouring locality for
each species. A total of 45 Parnassius species were studied, of which 12 species were newly
sequenced and 37 species were from GenBank. P. imperator, P. cephalus, P. epaphus, and
P. nomion came from not only GenBank but, also, this study.

2.3. Phylogenetic Analysis

The gene sequences were separately aligned using MUSCLE in MEGA®6.0 [32] and
concatenated into one dataset by using DAMBE?.0 [33]. Kimura 2-parameter distances
were calculated using MEGA for all species and for the populations of each species. Haplo-
type diversity information was calculated using DnaSP v.5.0 [34]. Nei’s genetic distance
matrix among populations and Mantel tests of relative contributions between genetic and
geographic distances were estimated by GenALEx [35].

With four Parnassiinae species, namely Luchdorfia taibai Chou, 1994, Luehdorfia chinensis
Leech, 1893, Sericinus montelus Gray, 1853, and Hypermnestra helios (Nickerl, 1846), as
the outgroups, the phylogenies of 45 Parnassius species were reconstructed based on the
sequence data of three mitochondrial genes (File S1) with the maximum likelihood (ML) and
Bayesian inference (BI) methods. The ML analysis was conducted using IQ-TREE software,
version 1.6.8, under the GTR + F + R4 models determined through ModelFinder [36], and
the bootstrap value of each node of the ML tree was evaluated with 5000 replicates (-bb
5000 -m GTR + F + R4). The Bayesian analysis was performed using MrBayes 3.1.2 [37],
and the best substitution model for each partition was selected as GTR + I + G under
the Akaike information criterion by using Modeltest 3.06 [38]. The MCMC chains (with
random starting trees) were run with one cold and three heated chains simultaneously for
1,000,000 generations and sampled at every 100 generations, with a burn-in of 25% samples
discarded until the chain convergence was reached. The confidence value of each node of
the BI tree is presented as the Bayesian posterior probability.

To verify the previous observation that Parnassius butterflies experienced early rapid
radiation [39], we further analysed the reticulate evolutionary relationships based on the
previously published transcriptomes of Parnassius (P. imperator Oberthiir, 1883, P. simo Gray,
1852, P. orleans Oberthtir, 1890, P. acdestis Grum-Grshimailo, 1891, P. epaphus Oberthiir, 1879,
P. cephalus Grum-Grshimailo, 1891, P. glacialis Butler, 1866, and P. jacquemontii Boisduval,
1836) and the outgroup species S. montelus [40]. High-quality reads were assembled using
Trinity [41], and the obtained transcripts were clustered to unigenes by using Cd-hit-est
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(threshold 0.95) [42]; the putative orthologues were identified using OrthoFinder [43],
and the single-copy unigenes were selected and aligned using MUSCLE [44] to obtain
the information condensed by Gblock [45]. The maximum likelihood phylogenetic tree
was reconstructed based on each orthologue with RaxML [46] by using S. montelus as
the outgroup, and the phylogenetic networks were predicted with PhyloNet by using
maximum pseudo-likelihood models under 0~2 reticulation [47].

2.4. Divergence Time Estimation

As time calibration priors, we used the oldest fossil of the subfamily Parnassiinae,
namely Thaites ruminiana Scudder, 1875, from the Chattian Stage (23.03-28.1 Ma, Late
Oligocene) [48] for the minimum age of the crown group Parnasiinae, with a lognormal
distribution, and Doritites bosniaskii Rebel, 1898 from the Messinian (5.33-7.25 Ma, Late
Miocene) of Italy (Tuscany) [48], as sister to Archon (Luehdorfiini), also constraining the
crown of Luehdorfiini + Zerynthiini with this minimum age (5.33Ma) in a lognormal
distribution. The maximum bound of the calibration priors was set to 140 Ma based on the
estimated age of the host—plant Angiosperms [49,50].

On the basis of the time priors, the divergence time of Parnassius was estimated us-
ing BEAST v1.83 [51]. The MCMC chain was run for 10 million generations to achieve
convergence and was sampled every 1000 generations. Convergence was assessed from
the effective sampling size after 10% of the burn-in samples were discarded using Tracer
v1.6 [52]. The Maximum Clade Credibility (MCC) tree was obtained using the Tree Annota-
tor program in the BEAST package. The final chronogram and node ages were visualised in
FigTree v1.4.3 [53]. In addition, the lineages through time (LTT) [54] analysis was conducted
to determine the tempo of the species diversification and to assess its possible relation to
climatic changes and geological events. LTT plots of the log numbers of the lineages against
the log divergence time were constructed using the packages ape and ggplot2 in R v.3.2.

2.5. Ancestral Area Reconstructions

Ancestral area reconstructions (AARs) were conducted using RASP 4.2 [55] with the
statistical dispersal-vicariance method (S-DIVA) [56] and dispersal-extinction cladogenesis
(S-DEC) method [57]. The S-DEC model allows for sympatric speciation, allopatric specia-
tion, and anagenetic range expansion and contraction. Considering the rapid radiation of
Parnassius, the subsequent analysis was mainly based on the S-DEC model. For the AARs
based on topography, we divided the geological area distribution of Parnassius into six
regions as follows: QTP and Xinjiang; Mid-Eastern China, Korea, and Japan; Northeast
Asia; North America; Central and Western Asia; and Europe. The time trees used in this
analysis were generated through BEAST v1.83. The plot of AAR was realised by obtaining
the marginal probabilities of alternative ancestral distributions integrated with the statisti-
cal dispersal-vicariance analysis frequencies of an ancestral range at a node averaged for
all trees.

3. Results
3.1. Sequence Alignment and Genetic Distances

The DNA sequence alignments of the mitochondrial genes ND1, ND5, and COI of
45 Parnassius species in this study were 453, 750, and 600 bp, respectively. None of the
concatenated DNA sequences contained indels or stop codons. These fragments contained
643 variable sites, of which 515 were Parsimony-informative sites. The interspecific genetic
distances estimated among the 45 Parnassius species showed that the lowest genetic distance
(0.0038) was between P. phoebus (Fabricius, 1793) and P. bremeri Bremer, 1864, and the highest
distance (0.0907) was between P. hardwickii Gray, 1831 and P. tenedius Eversmann, 1851
(Table S3).

Among the newly sequenced 239 imagoes of 12 Parnassius species, 93 mitochondrial
haplotypes were detected (Table S1). The genetic and geographic distances were analysed
among the populations of these Parnassius species with at least three populations (Figure 2
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and Table 1), and the results showed that significant differences exist between low- and high-
altitude species (Table 2). For the low-altitude Parnassius species, P. stubbendorfii Ménétriés,
1849 covers a mean geographic distance of 1370 km and a mean genetic distance of 0.0027;
P. glacialis covers a mean geographic distance of 839 km and a mean genetic distance of
0.0023. However, the high-altitude species, namely P. imperator, P. simo, and P. orleans, cover
relatively shorter mean geographic distances of 593, 360, and 330 km, corresponding to
relatively greater mean genetic distances of 0.0171, 0.0065, and 0.0041, respectively. For the
geographic distribution patterns, our previous study of 13 P. glacialis populations supported
the isolation-by-distance (IBD) hypothesis of low-altitude species through a Mantel test [17];
in this study, we found a similar IBD pattern in seven populations of the high-altitude
species P. simo (p = 0.01).

0.0300

0.0250—

0.0200—

0.0150

Nei's genetic distances

0.0100—

0.0050—

0.0000—

Species
® P simo ]
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Figure 2. Genetic distance versus geographic distance among the populations of Parnassius species in
this study. HA: high-altitude; LA: low-altitude. The altitude distributions of the Parnassius species in
this study are presented in Table 2.
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Table 2. Mean intraspecific geographic and Nei’s genetic distances of the Parnassius species.

Species Mean Genetic Mean Geographic Main Altitude
Distance Distance (km) Distribution (m)

P. glacialis 0.0023 839 200-2000
P. stubbendorfii 0.0027 1370 300-2500
P. nomion 0.0034 498 2000-3500
P. imperator 0.0171 593 2800-5100
P. orleans 0.0041 330 3000-5000
P. epaphus 0.0020 368 3800-5100
P. acdestis 0.0037 593 4000-5000
P. simo 0.0065 360 4000-5100
P. cephalus 0.0041 193 4000-5100

3.2. Phylogenetic Analysis and Divergence Times

The phylogenetic analyses inferred using the Bl and ML methods resulted in virtually
identical tree topologies with high supporting values for most clades (Figure 3). The
Parnassius species are grouped into eight major subgenera: Parnassius, Tadumia, Sachaia,
Lingamius, Kreizbergia, Driopa, Kailasius, and Koramius. Among these, Driopa and Sachaia form
a clade, sister to Kreizbergia; this three-subgenera clade clusters with the Tadumia + Lingamius
group, and this five-subgenera group then clusters with Kailasius + Koramius (Figure 3). On
the basis of this cladogram, the divergence times were estimated, showing that Parnassius
diverged approximately 16.99 Ma (95% HPD and 26.45-10.40 Ma during the Late Eocene
to Middle Miocene; Figure 4c,d), with subgenera Parnassius and Driopa each diverging at
approximately 11.76 Ma (95% HPD, 17.98-7.51 Ma) and 10.07 Ma (95% HPD, 16.17-5.74 Ma),
respectively. The other four subgenera (Tadumia, Kailasius, Koramius, and Kreizbergia)
distributed in the QTP and Central and Western Asia began to diverge at approximately
9.69-4.12 Ma (Late Miocene to Early Pliocene). Our time tree (Figure 4) indicated that the
population expansions of Parnassius butterflies occurred during the Late Miocene cooling
(7-5.4 Ma) [58] and Quaternary Glaciation periods (since 2.58 Ma).

As shown in Figure 5, our network analyses of the 1896 single-copy unigenes (File S2)
identified among S. montelus and eight Parnassius species, with the 0~2 reticulation models
inferred using PhyloNet with the maximum pseudo-likelihood method, indicate that at
least two ancient introgression events occurred among the Parnassius clades: (1) ancient
introgression from the common ancestor to P. glacialis (Figure 5b), likely responsible for
the diversification of P. glacialis from high-altitude species and their spread to low-altitude
areas of Eastern China (Figure 5d), and (2) ancient gene introgression from the ancestors of
subgenera Tadumia and Kailasius to the subgenus Parnassius (Figure 5c), reflecting frequent
gene flows among closely related clades distributed in high-altitude mountains during the
early speciation of Parnassius.
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gene sequences. The sequences are shown in File S1.
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Figure 4. Estimated divergence dates and diversification rate of Parnassius and their association
with geological and climatic events. (a) Lineage-through-time plot and 95% confidence intervals
of lineage diversification. (b) Diversification rate per million years since the Early Miocene. The
dashed line represents the rapid diversification events of Parnassius. (c) Divergence time estimates
through BEAST, with 95% HPD intervals at the branches. * Indicates the calibration points. (d) Global
temperature curve based on oxygen isotopes [4]. (e) Elevation curve of the Qinghai-Tibetan Plateau
(QTP) since the Eocene [59].
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introgression event causing LA divergence. Decimals in figures (b,c) are the estimated percentage
likelihoods of ancient introgressions with 1896 single-copy unigenes.

3.3. Ancestral Area Reconstruction

Our AAR of the S-DIVA model (Figure S1) showed a similar origination (QTP and/or
Central Asia) as previous studies [28]. Unlike S-DIVA, the S-DEC model indicated that
Parnassius originated in the regions of West China (QTP and Xinjiang) during the Middle
Miocene (Figure 6). The historical biogeography of the subgenus Parnassius is closely
related to the evolution of its host plants (Crassulaceae), such as Rhodiola, which origi-
nated in the QTP and spread to all of Eurasia by rapid radiation from 12 Ma [60]. Our
study indicated that the subgenus Parnassius was undergoing speciation during this time
(Figure 6). Moreover, our reconstruction shows that the common ancestor of other sub-
genera (Tadumia, Sachaia, Lingamius, Kreizbergia, Driopa, Kailasius, and Koramius) originated
in the QTP region (Figure 6A) and then gradually spread to other regions of Eurasia and
North America, which is supported by the fact that the speciation of these subgenera is
largely consistent with the phylogeographic history of their host plants belonging to the
Saxifragaceae family [61].

The empirical LTT plot (Figure 4a) showed that the diversification rate of Parnas-
sius increased significantly during the Late Miocene. Our reconstructed speciation rate
curve (Figure 4b) showed that Parnassius experienced a remarkable increase in species
diversification during the Late Miocene and Early Pleistocene (approximately 7.0-5.0 and
2.0-1.0 Ma, respectively).
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Figure 6. Time tree and ancestral area reconstruction of Parnassius based on mitochondrial DNA.
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(B) Central East China, Korea, and Japan; (C) Northeast Asia; (D) North America; (E) Central and
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4. Discussion

Studies have shown that the QTP and its neighbouring Asian regions experienced
five main stages of uplift associated with climatic events [62]: the India—Eurasia collision
(55-40 Ma), the early uplift of the QTP (45-35 Ma), the extension of uplift and the on-
set of the monsoon system in Asia (35-20 Ma), the progressive uplift of high mountain
ranges and aridification of Central Asia (20-10 Ma), and the final extension of the uplift
(10 Ma—present). These Cenozoic events triggered the rapid radiation of animals and plants
through habitat fragmentation, the key factor leading to the formation of morphologically
and physiologically novel habitats and interspecific hybridisation [60,63,64]. Our study
indicates that the genus Parnassius originated approximately 20-10 Ma (Middle Miocene)
during the aforementioned progressive uplift of the mountain ranges and aridification in
Central Asia (Figure 4).

Due to rapid diversification driven by environmental changes, some inconsistencies
exist in the Parnassius phylogeny based on mitochondrial or nuclear genes [12,13,25-28,65].
Most of them place the subgenus Parnassius at the basal position and cluster the other sub-
genera into three clusters: Driopa + Kreizbergia, Tadumia + Lingamius, and Kailasius + Koramius.
Although mitochondrial genes might affect the phylogenetic stability caused by the pe-
culiarities of inheritance, our results (Figure 3), which are based on three mitochondrial
genes, are consistent with the phylogeny generated by multiple mitochondrial and nuclear
genes (ND1, ND5, 16S, COI, and EF-1x) in a previous study [28]. A few studies have placed
the subgenus Driopa at the basal position [12], which is contrary to the results of this study.
Our network analysis suggests that an ancient introgression probably occurred from the
hypothetical common ancestor to generate P. glacialis (Figure 5b); the consequent gene flows
would have reduced the genetic distance between the common ancestor and the subgenus
Driopa, causing difficulties in its phylogenetic reconstruction. A similar ancient gene in-
trogression is suggested between the ancestor of the subgenera Tadumia plus Kailasius and
the basal subgenus Parnassius (Figure 5c). These gene introgressions are probably caused
by frequent geographical overlaps of closely related taxa during the rapid topographic
and climatic changes in the region, similar to that found in Heliconius butterflies, causing
difficulties in its phylogenetic inference [66,67].

Studies have shown that plants belonging to the Crassulaceae family are the primary
host plants for the subgenus Parnassius, whereas other subgenera of the genus Parnassius
are associated with Papaveraceae or Saxifragaceae [14,68]. Butterflies have been found
to coevolve with their host plants over the course of evolutionary history [60,69]. Our
divergence time estimates (Figure 4) indicate that Parnassius butterflies began to diverge
during the Early Miocene, approximately 16.99 Ma, during a phase of rapid uplift of the
QTP (Figure 4e) associated with extensive mountain building in the region, which likely
caused habitat fragmentation, leading to subsequent allopatric speciation, which is con-
sidered the most essential factor driving the early rapid diversification of Parnassius. Along
with climate cooling after the Middle Miocene Climate Optimum (MMCO, ~17-14 Ma) [4]
and during the Quaternary Ice Age (2.6-0.1 Ma), Parnassius butterflies broke the barri-
ers of mountains and valleys and spread out from the QTP and adjacent Central Asia
(Figures 4 and 6). These distributional changes correlated with the host plants of Parnassius
butterflies—that is, Rhodiola (Crassulaceae), as shown in previous studies [60], originated
in the QTP and diversified during the Middle Miocene, whereas another family of host
plants (Saxifragaceae) spread from Eastern Asia to Western Asia and Northeast Asia [69].
Moreover, the expansion process of Parnassius butterflies has been proven by previous
studies on single-species phylogeography (for example, P. apollo (Linnaeus, 1758) [18,70],
P. phoebus [71], and P. glacialis [17]), although these species might show different patterns of
expansion and contraction caused by glacial-interglacial cycles during the Quaternary period.

Our AAR (Figure 6) indicates that most Parnassius butterflies were distributed in
Asia and Europe during earlier evolutionary periods, whereas a few species, such as
P. clodius Ménétriés, 1855, P. eversmanni Ménétriés 1850, P. smintheus Doubleday, 1847,
and P. phoebus, later extended their distribution to North America. Among the subgenus
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Driopa, P. nordmanni Ménétriés, 1850 and P. mnemosyne (Linnaeus, 1758) reached Europe
at approximately 7.8 and 5.4 Ma (Late Miocene) (Figures 4 and 6), respectively, probably
through the intervening mountain ranges in Central Asia. Furthermore, another migration
group, including P. clodius and P. eversmanni, reached the mountain ranges in North China,
such as the Qinling Mountains and Taihang Mountains, and further dispersed towards
North America. The members of the subgenus Parnassius, namely P. apollo, P. sminthius,
and P. phoebus, show similar routes of dispersion to Europe and North America during
the Quaternary Ice Age (Figures 4 and 6), reflecting the distributional history of their host
plant: Rhodiola (Crassulaceae) [60].

Additionally, we found that P. glacialis extended its distribution from the high moun-
tains of the QTP to the low-altitude areas of Central East China (Figure 6), possibly also
during the Quaternary Ice Age. Our results indicate that, compared with the high-altitude
species, the relatively lower-altitude populations of P. glacialis harboured significantly lower
genetic distances versus geographic distances (Figure 2); their drastically different new
habitats have led to remarkable morphological adaptations, such as body size enlargement
and wing colour lightening. We suggest that probable ancient gene introgression events,
as shown in our network analysis (Figure 5b,d), might have contributed to the adaptive
evolution of P. glacialis.

5. Conclusions

Our analyses of 239 specimens of 12 Parnassius species, collected from the QTP and
neighbouring regions, show that the eight-subgenus phylogeny was resolved based on
three mitochondprial gene (COI, ND1, and ND5) sequences, with subgenus Parnassius at the
basal position; the crown-group of genus Parnassius originated during the Middle Miocene
(ca. 16.99 Ma), coeval with the rapid uplift phase of the QTP and extensive orogeny in the
regions of West China and Central Asia. Ancestral area reconstruction of the Parnassius
species indicates that, during the progressive climate cooling after MMCO, dispersal likely
occurred from West China (QTP and Xinjiang) to Central Asia, East and North China,
Europe, and North America. We found that the early diversification and biogeographic
changes of Parnassius are also associated with the butterflies” host plants in time and space.
We conducted phylogenetic network analyses based on 1896 single-copy unigenes (File S2)
identified among eight Parnassius species, which suggested that ancient gene introgression
events probably occurred during the rapid radiation of Parnassius due to the geographical
overlaps of closely related taxa and interspecific hybridisation. In addition, we found that
some low-altitude species, such as P. glacialis, harbour a significantly lower interspecific
genetic divergence against geographic distance among populations compared with alpine
populations, suggesting a higher rate of gene flow among low-latitude butterflies than
among high mountain butterflies.

Supplementary Materials: The following supporting information can be downloaded at https:
/ /www.mdpi.com/article/10.3390/insects13050406/s1: Figure S1: Ancestral area reconstruction
obtained by the statistical dispersal-vicariance method. Table S1: Sample information of 12 Parnassius
species and their populations used in this study. Table S2: List of primers used for PCR amplifica-
tion. Table S3: Kimura 2-Parameter genetic distance among the 45 Parnassius species in this study.
File S1: One hundred and thirty-four concatenated mitochondrial segments (COI, ND1, and ND5) of
45 Parnassius and 4 outgroup species. File S2: One thousand, eight hundred and ninety-six single-
copy unigene sequences identified among S. montelus and 8 Parnassius species. oob: P. orleans; jbo:
P. jacquemontii; agg: P. acdestis; iob: P. imperator; cgr: P. cephalus; sgr: P. simo; ess: P. epaphus; bqj:
P. glacialis; sdf: S. montelus.
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