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Simple Summary: The greater wax moth (GWM) is a common pest of bee colonies throughout the
world. This study highlighted the global habitat suitability of GWM using the statistical power of
Maxent to model its current and future distribution under climate-change scenarios in 2050 and
2070. Our study shed light on the major environmental factors that manage the habitat suitability of
GWM. To the best of our knowledge, this is the first modeling study of wax moths. In brief, this pest
can cause severe indirect damage to the global honey market totalling millions of dollars; therefore,
developing prompt monitoring or control strategies is advised.

Abstract: Beekeeping is essential for the global food supply, yet honeybee health and hive numbers
are increasingly threatened by habitat alteration, climate change, agrochemical overuse, pathogens,
diseases, and insect pests. However, pests and diseases that have unknown spatial distribution and
influences are blamed for diminishing honeybee colonies over the world. The greater wax moth
(GWM), Galleria mellonella, is a pervasive pest of the honeybee, Apis mellifera. It has an international
distribution that causes severe loss to the beekeeping industry. The GWM larvae burrow into the
edge of unsealed cells that have pollen, bee brood, and honey through to the midrib of the wax
comb. Burrowing larvae leave behind masses of webs that cause honey to leak out and entangle
emerging bees, resulting in death by starvation, a phenomenon called galleriasis. In this study, the
maximum entropy algorithm implemented in (Maxent) model was used to predict the global spatial
distribution of GWM throughout the world. Two representative concentration pathways (RCPs) 2.6
and 8.5 of three global climate models (GCMs), were used to forecast the global distribution of GWM
in 2050 and 2070. The Maxent models for GWM provided a high value of the Area Under Curve
equal to 0.8 ± 0.001, which was a satisfactory result. Furthermore, True Skilled Statistics assured
the perfection of the resultant models with a value equal to 0.7. These values indicated a significant
correlation between the models and the ecology of the pest species. The models also showed a
very high habitat suitability for the GWM in hot-spot honey exporting and importing countries.
Furthermore, we extrapolated the economic impact of such pests in both feral and wild honeybee
populations and consequently the global market of the honeybee industry.

Keywords: climate change; honeybee pests; Maxent; species distribution modeling; GWM

1. Introduction

Over recent decades, apiculture has declined throughout the world as a result of
decreasing numbers of managed honeybee (Apis mellifera L.) colonies [1,2]. To stimulate
local apiculture and pollination, it is critical to make beekeeping a more appealing hobby
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and a less labor-intensive job [3]. Beekeeping is a significant human activity as well as an
important component of the bioeconomy [4]. Furthermore, beekeeping provides several
ecological services, many of which are important to humans [5–9]. Beekeeping products
are used in food and medicine, and beekeepers profit financially [10]. For instance, wax is
one of the most significant and beneficial beekeeping products, with applications in the
pharmaceutical and cosmetics industries [11].

Increased pollinator density and diversity have a direct impact on agricultural pro-
ductivity and can assist smallholder farmers to raise their output by a global average of
24%. It has a major impact on biodiversity and has favorable social effects [12]. Many
negative factors currently affect global beekeeping, posing a threat to its long-term viability.
Advancements in agriculture, degradation of natural ecosystems, pesticide contamination
of bee forage lands, emergence of new bee diseases, honeybee pests, and climate change
have all had a detrimental effect on beekeeping activities in recent decades [13].

Honeybee pests are known to cause considerable losses and spread viral infections
that are difficult to eradicate and for which there are now no treatments [11]. Wax moths
are among these pests [11]. The term “wax moth” refers to a variety of moth species that
attack, invade, damage, and destroy bee colonies and hive products [14]. Additionally, they
are known as the wax (or web) worm, the bee (or wax) miller, or the bee moth [14]. The wax
moth consists of two closely related species: the lesser wax moth (LWM), Achrola grisella,
and the greater wax moth (GWM), Galleria mellonella (Lepidoptera: Pyralidae) [15]. Both
are ubiquitous in honeybee colonies [16]. Globally the GWM is one of the most damaging
and commercially important wax pests. To date, the economic losses ascribed to it have not
been evaluated on a global scale [17]. However, the estimated loss due to GWM infestation
is evaluated in the millions of dollars in many countries throughout the world such as the
U.S., China, and European countries [13].

The GWM is one of a few insect pests that has adapted to living in honeybee hives.
Although the adult moth is more visible to beekeepers, it is the larvae that are highly
destructive to wax combs [18]. GWM larvae do not harm bees directly (i.e., they do not
feed on any stage of the bee’s life stages), but they do attack beeswax combs, which are
an important component of the honeybee nest [19]. In the comb midrib (the base of the
cells), the larvae bore into the comb and develop a remarkable silken tunnel [20]. This
damage is unique to the GWM and is known as galleriasis since they trap emergent bees,
which therefore die of starvation [20]. Moreover, larvae of the GWM have been marked
as potential vectors of many pathogens. For example, spores of Paenibacillus larvae were
found in the larvae fecal pellets dropped in the silken tunnels, and black queen cell virus
(BQCV) is linked with honeybee colony loss [17].

Little is known about the worldwide GWM distribution patterns [21], but various
biotic and abiotic variables influence its occurrence and dispersion [21]. The GWM, like
other honeybee pests, can thrive under certain bioclimatic conditions. Ecological niche
modeling (ENM) tools can establish a statistical correlation between geographical changes
in bioclimatic variables and the distribution of a certain species such as honeybee pests [22].
In the last two decades, a variety of modeling software based on various mathematical
techniques has been developed to achieve this goal; however, the Maximum Entropy
(Maxent) Model is the most successful and accurate [23–25]. Because of its outstanding
predictive performance, Maxent modeling is very useful for predicting the impact of climate
change on a variety of insect species, including honeybee pests [26,27].

Consequently, we aimed in this study to predict the global current and future distribu-
tion of the GWM using the species distribution modeling (SDM) approach. The outcomes
of this study are extremely important and provide an urgent warning for beekeeping safety
in various geographical areas.
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2. Materials and Methods
2.1. Occurrence Data

Approximations of greater wax moth occurrence have been reported on all conti-
nents except Antarctica, and almost all the available records were collected from the
literature [28–39]. In addition, records from digital databases including the Global Bio-
logical Information Facility (GBIF.org (accessed on 3 January 2022): https://doi.org/10
.15468/dl.hbhmdq), and the Centre for Agriculture and Bioscience International (CABI:
www.CABI.org (accessed on 1 January 2022)) were taken into account. The occurrence data
were subjected to three filtration steps to avoid any possible bias. First, duplicated records
were removed [22]; second, records with high spatial uncertainty were eliminated; and
third, to prevent redundant records, spatially rarefied occurrence data based on distance
in ArcGIS (SDM Toolbox: SDM Tools; Universal Tools—Spatially rarefy occurrence data)
were filtered. Finally, the remaining records with 313 points were transformed into comma-
delimited (CSV) forms and used to predict the current and future worldwide distribution
of the GWM (Figure 1).
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Figure 1. Distribution of the occurrence records used in studying the species distribution modeling
of Galleria mellonella.

2.2. Environmental Covariates

To carry out species distribution modeling (SDM), we obtained 19 bioclimatic vari-
ables (www.worldclim.org (accessed on 18 November 2021) having a spatial resolution of
approximately 5 km2. Monthly temperature and rainfall readings collected from forecast
stations between 1950 and 2000 were used to create these covariates.

For current bioclimatic data, 15 bioclimatic covariates were converted into ASCII
format using ArcGIS v 10.7. Bioclimatic layers 8–9 and 18–19 were eliminated due to
known spatial artifacts [22]. We applied the Pearson correlation coefficient to judge the
correlation between each pair of covariates (r2 ≥ |0.8|) to reduce collinearity between
variables [27,40]. This coefficient removed the correlation among the covariates through the
function of SDM Tools in ArcGIS 10.7 (Universal tool; Explore climate data; Remove highly
correlated variable) [40]. Based on this, only five bioclimatic covariates were selected to
produce final models: annual mean temperature (Bio 1), mean diurnal range (Bio 2), annual
temperature range (Bio 7), annual precipitation (Bio 12), and precipitation of the driest
month (Bio 14).

GBIF.org
https://doi.org/10.15468/dl.hbhmdq
https://doi.org/10.15468/dl.hbhmdq
www.CABI.org
www.worldclim.org
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For future bioclimatic data, we obtained parallel covariate datasets from (www.
worldclim.org (accessed on 18 November 2021)), covering the two periods 2050 (aver-
age of estimates for 2041–2060) and 2070 (average of predictions for 2061–2080) [41]. These
future data layers were also converted to ASCII format via ArcGIS v 10.7. Two representa-
tive concentration pathways (RCPs), 2.6 and 8.5 (https://www.worldclim.org/data/cmip6
/cmip6climate.html (accessed on 18 November 2021)), were used to account for future
GWM distribution. The RCPs were scenarios from the Coupled Model Intercomparing
Project Phase 5 (CMIP5), which describes alternative dynamics for CO2 emissions and
the resulting atmospheric concentration, the lowest anthropogenic radiative forcing level
scenario (RCP 2.6), and high greenhouse gas emissions (RCP 8.5).

We used three general circulation models, or global climate models (GCMs), for each
RCP in each time period for a total of 12 combinations (i.e., 3 GCMs × 2 RCPs × 2 time
periods). The three GCMs are the Beijing Climate Center (BCC-CSM 1_1), the National
Center for Atmospheric Research (CCSM4), and, the Meteorological Research Institute
(MRI-CGCM3). These GCMs are part of the current GCM climate estimates in the IPCC’s
Fifth Assessment Report. Finally, we obtained the mean predicted distribution of each
RCP (2.6 and 8.5) for all three GCMs at each of the two periods, 2050 and 2070, to be easily
compared with the current distribution of the GWM.

2.3. Modeling Approach

Among several software packages such as BIOCLIM, CLIMEX and GARP [42,43],
Maxent has been used to predict the current and future global distribution of the GWM.
Meanwhile, Maxent’s artificial intelligence of maximum entropy is often regarded as
the most widely used software for simulating species distributions using presence-only
data [44,45]. Maxent has outperformed other methods for estimating possible species
distributions, regardless of the quantity or geographical range of species records, when
compared to other software [45]. Thus, Maxent v 3.4.1 was used to model the current
and future global distribution of the GWM. In our models, 75% of the occurrence records
were used to train the model, whereas 25% of the records were used to test it [40]. The
number of background points and iterations were set at 10,000 and 1000, respectively [46].
Furthermore, 10-fold cross-validation was used to repeat the process, which increased the
model’s performance [46]. The habitat suitability regions of all the resultant models were
classified into five classes—-rare, low, medium, high, and very high—-in Arc GIS through
layer properties (Classified—Symbology—Natural Breaks (Jenks)) [27].

2.4. Model Evaluation

Model performance was estimated using the area under curve (AUC) of the receiver
operating characteristics (ROCs), which ranged from 0 (random discrimination) to 1 (perfect
discrimination) [27,47]. Models with AUC values less than 0.5 were considered poor-fitting,
while those with values greater than 0.75 were considered well-fitting [47]. The accuracy of
the projected models was further assessed using True Skill Statistics (TSS) [27,48], in which
values ranged from 0 to 1. Positive values close to 1 indicated a good relationship between
the predictive model and the distribution, whereas negative values close to 0 indicated a
weak relationship [48].

3. Results
3.1. Modeling Performance

The AUC is one of the effective evaluation parameters of maximum entropy modeling
and tends to be high with good modeling outputs. Here, the AUC equaled 0.8, indicated
that the model had a considerable impact on the GWM environment (Figure S1). For a
functional assessment of the model, TSS was used, and a value of 0.7 illustrated good
map-producing quality. As a general rule, TSS values ≥0.5 are acceptable.

www.worldclim.org
www.worldclim.org
https://www.worldclim.org/data/cmip6/cmip6climate.html
https://www.worldclim.org/data/cmip6/cmip6climate.html
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3.2. Contribution of Bioclimatic Variables

The contribution percentage of each bioclimatic variable of the predictive distribution
model is illustrated using the jackknife test (Figure 2, Table 1). The results indicated the
importance of temperature-related variables to GWM modeling. Annual mean temperature
(bio_1) was the most effective climatological parameter that affected GWM distribution. In
addition, the annual temperature range (bio_7) made a large contribution to the distribution
of this pest. Annual precipitation (bio_12) came third among effective factors for pest
allocation (Figure 2, Table 1). Meanwhile, according to the response curves of the most
important environmental factors, the favorable annual mean temperature for the GWM
ranged from 5 to 28 ◦C (Figures S2).
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Table 1. Relative percentages of bioclimatic variables used in Maxent to model the current and future
habitat suitability of the Greater Wax Moth (GWM), Galleria mellonella.

Bioclimatic Variables Description Contribution
Percentages

Bio 1 Annual Mean Temperature 64.2%

Bio 7 Temperature Annual Range 19%

Bio 12 Annual Precipitation 7.2%

Bio 14 Precipitation of Driest Month 5.6%

Bio 2 Mean Diurnal Range (Mean of
monthly max temp—min temp) 4.1%

3.3. Predicted Current Potential Distribution of GWM

Based on distribution records and environmental covariates, the current model pro-
duced by Maxent agrees with the natural distribution range of the GWM (Figure 3). In
Europe, great habitat suitability for the GWM puts Slovenia, Slovakia, France, Italy, Bel-
gium, and Great Britain at high or very high risk. Africa, on the other hand, shows medium
suitability throughout most of the continent with high and very high risks on the Mediter-
ranean coast as well as the coasts of Morocco, Namibia, Western Sahara and parts of South
Africa and the African horn. Further, in Asia, the risk is high through the southern part of
the continent with very high risk in some parts of the Persian Gulf, China, India, Vietnam,
Thailand and Japan (Figure 3); otherwise, the New World did not differ from the Old
World in suitability for the GWM. Eastern North America, especially the U.S., appears
to be at very high risk with some pockets of very good suitability through the western
parts. The southwest coastal areas of South America, including Chile and the middle line
of Latin America, as well as the eastern Atlantic coasts of Argentina and Brazil also have
high-risk areas (Figure 3). The Australian eastern coast is also at very high risk while its
mainland shows medium-to-high suitability. New Zealand appears to have high and very
high suitability for such pests. The produced model clearly indicated the international
distribution of the GWM (Figure 3).



Insects 2022, 13, 484 6 of 12

Insects 2022, 13, x FOR PEER REVIEW 6 of 12 
 

 

and very high suitability for such pests. The produced model clearly indicated the inter-
national distribution of the GWM (Figure 3). 

 
Figure 3. Current potential distribution of Galleria mellonella. 

3.4. The Predicted Future Potential Distribution of GWM in 2050 and 2070 
Three GCMs were used to evaluate the future status of the GWM during 2050 and 

2070 using RCPs 2.6 and 8.5 (Figure 4). Future changes ranged from nonsignificant 
changes in the BCC 2.6 scenario to very clear changes in MG 8.5: a clearly visible loss in 
habitat suitability in tropical Africa and a gain in habitat suitability in northern Europe 
and North America (Figure 4). 

 
Figure 4. Predicted future distribution of Galleria mellonella under two RCPs (2.6 and 8.5) for three 
future scenarios (GCMs). 

The mean risk maps of the three GCMs for two different RCPs in 2050 and 2070 ap-
pear to summarize the level of changes to GWM risk due to global warming (Figure 5). 
For the optimistic climatic change prediction (2.6, 2050 RCP), the changes are very quiet 
and usually not significant on all continents (Figures 5 and 6). Furthermore, for the worst 
climate change scenario (8.5, 2070 RCP) the insect loss has a very large range, especially 
in the subtropical region of Africa or Asia, and a clear range shift appears in northern 
Europe (Figure 6). 

Figure 3. Current potential distribution of Galleria mellonella.

3.4. The Predicted Future Potential Distribution of GWM in 2050 and 2070

Three GCMs were used to evaluate the future status of the GWM during 2050 and
2070 using RCPs 2.6 and 8.5 (Figure 4). Future changes ranged from nonsignificant changes
in the BCC 2.6 scenario to very clear changes in MG 8.5: a clearly visible loss in habitat
suitability in tropical Africa and a gain in habitat suitability in northern Europe and North
America (Figure 4).
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Figure 4. Predicted future distribution of Galleria mellonella under two RCPs (2.6 and 8.5) for three
future scenarios (GCMs).

The mean risk maps of the three GCMs for two different RCPs in 2050 and 2070 appear
to summarize the level of changes to GWM risk due to global warming (Figure 5). For the
optimistic climatic change prediction (2.6, 2050 RCP), the changes are very quiet and usually
not significant on all continents (Figures 5 and 6). Furthermore, for the worst climate change
scenario (8.5, 2070 RCP) the insect loss has a very large range, especially in the subtropical
region of Africa or Asia, and a clear range shift appears in northern Europe (Figure 6).
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3.5. Two-Dimension Niche Analysis

The enveloped test was used to generate the two-dimension niche of the GWM for the
most effective bioclimatic variables used in studying this pest: the annual mean temperature
(bio_1) and the annual precipitation (bio_12) (Figure 7). The results indicated the impressive
adaptability of this pest to different environmental conditions. Its annual mean temperature
ranges from 5 to 28 ◦C, and the annual amount of rainfall ranges from 0 to 2500 mm. Such
results give a great idea about the broad distribution of this notorious pest as it can live in
very dry hot deserts and very cold rainy areas.
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4. Discussion

Beekeeping is critical to the world’s food supply [21,22] as pollinators are very im-
portant for global food production and nutrition security [49–51]. Beekeeping also helps
conserve natural resources, particularly in populations living near forests [52], and it pro-
vides a major source of national revenue through the sale of honey, wax, propolis, royal
jelly, and bee venom [21,49,53,54].

Honey consumption has consistently increased over the past decades for two main
reasons: an expanding global population, and a growing number of customers, notably
from young people, who prefer natural foods [13]. Because of these factors, many countries
cannot meet their honey need from domestic production alone and must import increasing
amounts [13,21]. Furthermore, in some cases certain honey-importing countries require
significant quantities of cheap honey from the international market so that it can be re-
exported as locally produced honey [13,55]. The United States, Germany, Japan, the United
Kingdom, and other European countries currently rank the highest in honey imports [13].

Factors like climate change, habitat fragmentation and loss, agriculture intensification,
overdependence on agrochemicals, and, increasingly, viruses, pests, and diseases all pose
threats to honeybee health, pollination, and associated livelihoods [20]. Pests are the most
economically important because of their wide geographic distribution and ability to cause
both direct (physical injury) and indirect (pathogen and disease vector) damage [21]. In
bee health, it is critical to understand the elements that determine the multiplication and
dissemination of honeybee pests on various spatial scales, as well as the level of risk [49].
As a result, enhanced pest diversity forecasting and accurate honeybee pest dispersion
maps will provide the tools and information needed to combat honeybee pests, one of
which is the GWM, considered to be one of the most distributed and destructive [13,20,21].

Our present work is the first study to assess the global warming and climate change
effects on the global distribution of the GWM using the robust predictive power of Maxent.
The projected habitat suitability of our Maxent model coincided closely with the actual
occurrence of GWM records with a high AUC value, implying a close association between
the model and the species’ ecology. Furthermore, the TSS value of 0.7 indicated that the
model predictions and the dispersion of the pest were in perfect accord.

The most important characteristic influencing GWM distribution, according to previ-
ous studies, is temperature [20,21]. According to our model, ambient temperature was the
most effective bioclimatic variable affecting GWM distribution in the jackknife test. The
annual mean temperature (Bio 1) and temperature annual range (Bio 7) contributed 64.2
and 19%, respectively, in GWM distribution. The other bioclimatic factors, according to
the jackknife test, were annual precipitation (Bio 12), precipitation of driest month (Bio 14),
and mean diurnal range (Bio 2) (Figure 2). Moreover, the two-dimensional niche analysis
confirmed temperature as a key covariate affecting GWM distribution (Figure 7).

The current model for the potential distribution of the GWM is closely associated with
present-day distributions (Figure 3). Almost all of mainland Europe—-north to south and
east to west—-showed very high suitability for the GWM. Hot-spot lands of the honeybee
industry, e.g., Slovenia and Slovakia, showed very high suitability. Only Belarus, Ukraine,
and Portugal showed high suitability. European markets are characterized by the high
quality of honey and its products [13,56], so the very high suitability for the GWM has a
negative impact on honeybee markets. Honey imports into the EU have increased at an
average rate of 10,284 tons per year over the last 15 years, with China being the primary
source of that growth [13]. The prices EU countries pay for Chinese honey are highly
disparate, which could be due to the differing importer quality standards [57]. Although a
high price does not guarantee honey purity, cheap honey does have a larger chance of being
tampered with [58]. As a result, the import price can serve as the first indicator of poor
honey quality, prompting the need for additional research into the product’s purity [57,58].

In Asia, our current predictive model showed high and very high suitability in the
Persian Gulf region, India, China, and Japan, which is one of the highest importing countries
for honeybee products [13]. The effect of very high GWM suitability is especially maximized
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in China, one of the most important honeybee product exporting countries [13]. Annual
Chinese exports equal approximately 128,330 tons followed by India at 35,793 tons, which
also showed high suitability [59].

In the New World, our current model showed areas with high and very high suitability.
The U.S., Mexico, Argentina, Brazil, and Chile showed high suitability for the GWM. The
market for honey imports in the United States has been steadily increasing [60], and one
reason is because of destructive pests like the GWM and Varroa mite [61]. Domestic U.S.
honey production fell by 705 tons per year in recent years, while honey imports climbed
by 6,956 tons per year [60]. In 2017, domestic honey production only met 25% of U.S.
demand. Following the “honeygate” investigation into the illegal importation of honey
from China, the pattern of honey imports changed [13]. Meanwhile, Argentina, Brazil,
and Chile are the main exporters of honeybee products with 81,183; 24,203; and 7,137 tons,
respectively [13,60]. Both Australia and New Zealand were included in the list of the
25 honey-exporting countries in 2016 [13]. Furthermore, the eastern coast of Australia and
the mainland of New Zealand showed very high suitability for the GWM, which threatens
their honeybee products industry.

In Africa, generally, the suitability of the GWM is considered to be medium risk due
to high temperature [21], but tropical countries, the Horn of African and South Africa
showed very high suitability. The economy of the honeybee market and its products
in Africa are not clear [52], which may be due to poor vegetation and the low value of
African honey [21,52]. Meanwhile, our predictive models suggest that the GWM has a
destructive effect in countries like Egypt, Kenya, Morocco, and South Africa, which have
very high suitability.

Future predictive models illustrate that the pest will have a wider distribution range.
Three GCMs under two RCPs (2.6 and 8.5) for 2050 and 2070 were used to evaluate
the global future status of the GWM (Figures 4–6). From the trusted maximum entropy
implemented in Maxent, the 12 future scenarios confirmed the dangerous status of the
GWM throughout the world (Figures 4 and 5), and the near and distant future threats
to honeybee products industries (Figure 4). Our predictive future models in the three
GCMs in 2050 and 2070 clarified that hot-spot European countries for honeybee products
(e.g., Ukraine, Germany, France, Italy). Belgium, Slovenia, and Slovakia will suffer from
very high GWM suitability [62] (Figure 5). Moreover, the GWM showed high and very
high suitability in future models for China, India, Vietnam, and Thailand, which are
considered to be the highest Asian exporters of honeybee products [13,59,62]. Similarly,
in the Americas, the U.S., Mexico, Argentina, Brazil, Chile, and Cuba will have a very
high suitability (Figures 4 and 5). Likewise, the future predictive models accounted for the
invasion of the GWM to the mainland of Australia and New Zealand. Finally, in Africa,
our future models predict habitat loss for the GWM in tropical and subtropical Africa due
to temperature increases.

Our research contributes to a better understanding of the current and future status of
the GWM around the world. The models developed in this study analyzed the effect of
climate change on the existing and future distribution of the GWM using just climatological
factors. For this objective, several papers only used climate factors [22,27,40]. Considering
other environmental variables, such as human population, land cover, vegetation index,
and host animal distribution, could help to improve them. However, the lack of future data
on these variables may restrict their utility in researching the impact of climate change on
present distribution models.

5. Conclusions

The greater wax moth (GWM) targets wax combs either inside or outside beehives and
is considered among the most common apiculture pests. The economic damage from the
GWM to the beekeeping industry has not been widely elevated, but it is expected to be high.
Herein, ecological niche modeling was used to evaluate habitat suitability for the GWM at
two different times. The models showed high performance with highly accurate outputs.
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The ambient temperature factor was the most effective bioclimatic variable that affected
GWM distribution. In addition, the annual mean temperature and annual temperature
annual range contributed 64.2 and 19% respectively to the GWM distribution. The resultant
models highlighted a very high habitat suitability for the GWM in countries with high
beekeeping activity. Developing prompt monitoring and control strategies is essential
because this pest adapts to a wide range of environmental conditions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/insects13050484/s1, Figure S1: The receiver operating characteristic
(ROC) curve for Greater wax moth (GWM), Galleria mellonella; Figure S2: Response curves of the
most relevant environmental factors affecting the distribution of the greater wax moth (GWM),
Galleria mellonella; the shown values are average of ten replicate runs.

Author Contributions: E.M.H., M.G.N., A.A.A.-K., H.F.A.-S. and M.H.R. conceptualization, formal
analysis, development of methodology, Investigation, writing—original draft, data curation; E.M.H.,
M.G.N., H.F.A.-S. and M.H.R. writing—review; E.M.H., A.A.A.-K. and H.F.A.-S. for Linguistic editing;
and A.A.A.-K. for funding acquisition. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by Princess Nourah bint Abdulrahman University Researchers
Supporting Project number (PNURSP2022R37).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in the article.

Acknowledgments: The authors acknowledge the support from Princess Nourah bint Abdulrah-
man University Researchers Supporting Project number (PNURSP2022R37), Princess Nourah bint
Abdulrahman University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ellis, J.D.; Evans, J.D.; Pettis, J.S. Colony losses, managed colony population decline and Colony Collapse Disorder in the United

States. J. Apic. Res. 2010, 49, 134–136. [CrossRef]
2. Potts, S.G.; Roberts, S.P.M.; Dean, R.; Marris, G.; Brown, M.A.; Jones, H.R.; Neumann, P.; Settele, J. Declines of managed honeybees

and beekeepers in Europe. J. Apic. Res. 2010, 49, 15–22. [CrossRef]
3. Neumann, P.; Carreck, N.L. Honeybee colony losses. J. Apic. Res. 2010, 49, 1–6. [CrossRef]
4. Bradbear, N. Bees and Their Role in Forest Livelihoods: A Guide to the Services Provided by Bees and the Sustainable Harvesting,

Processing and Marketing of Their Products. In Non-Wood Forest Products No. 19 Bulletin; Food and Agriculture Organization of
the United Nations (FAO): Rome, Italy, 2009.

5. Klein, A.M.; Boreux, V.; Forno, F.; Mupepele, A.C.; Pufal, G. Relevance of wild and managed bees for human well-being. Curr.
Opin. Insect Sci. 2018, 26, 82–88. [CrossRef]

6. Vinci, G.; Rapa, M.; Roscioli, F. Sustainable Development in Rural Areas of Mexico through Beekeeping. Int. J. Sci. Eng. Invent.
2018, 4, 1–7. [CrossRef]

7. Gomes, G.C.; Gomes, J.C.C.; Barbieri, R.L.; Miura, A.K.; de Sousa, L.P. Environmental and ecosystem services, tree diversity and
knowledge of family farmers. Floresta Ambiente 2019, 26, e20160314. [CrossRef]

8. Patel, V.; Pauli, N.; Biggs, E.; Barbour, L.; Boru, B. Why bees are critical for achieving sustainable development. Ambio 2020, 50,
49–59. [CrossRef]

9. Patel, V.; Biggs, E.M.; Pauli, N.; Boru, B. Using a social-ecological system approach to enhance understanding of structural
interconnectivities within the beekeeping industry for sustainable decision making. Ecol. Soc. 2020, 25, 24. [CrossRef]
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